Recent advances in molecular machines based on toehold-mediated strand displacement reaction
Yijun Guo, Bing Wei, Shiyan Xiao, Dongbao Yao, Hui Li, Huaguo Xu, Tingjie Song, Xiang Li, Haojun Liang
Recent advances in molecular machines based on toehold-mediated strand displacement reaction
Background: The DNA strand displacement reaction, which uses flexible and programmable DNA molecules as reaction components, is the basis of dynamic DNA nanotechnology, and has been widely used in the design of complex autonomous behaviors.
Results: In this review, we first briefly introduce the concept of toehold-mediated strand displacement reaction and its kinetics regulation in pure solution. Thereafter, we review the recent progresses in DNA complex circuit, the assembly of AuNPs driven by DNA molecular machines, and the detection of single nucleotide polymorphism (SNP) using DNA toehold exchange probes in pure solution and in interface state. Lastly, the applications of toehold-mediated strand displacement in the genetic regulation and silencing through combining gene circuit with RNA interference systems are reviewed.
Conclusions: The toehold-mediated strand displacement reaction makes DNA an excellent material for the fabrication of molecular machines and complex circuit, and may potentially be used in the disease diagnosis and the regulation of gene silencing in the near future.
toehold-mediated strand displacement / DNA molecular machines / SNP / gene expression regulation
[1] |
Yurke, B., Turberfield, A. J., Mills, A. P. Jr, Simmel, F. C. and Neumann, J. L. (2000) A DNA-fuelled molecular machine made of DNA. Nature, 406, 605–608
CrossRef
Pubmed
Google scholar
|
[2] |
Zhang, D. Y. and Seelig, G. (2011) Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem., 3, 103–113
CrossRef
Pubmed
Google scholar
|
[3] |
Pan, J., Li, F., Cha, T. G., Chen, H. and Choi, J. H. (2015) Recent progress on DNA based walkers. Curr. Opin. Biotechnol., 34, 56–64
CrossRef
Pubmed
Google scholar
|
[4] |
You, M., Peng, L., Shao, N., Zhang, L., Qiu, L., Cui, C. and Tan, W. (2014) DNA “nano-claw”: logic-based autonomous cancer targeting and therapy. J. Am. Chem. Soc., 136, 1256–1259
CrossRef
Pubmed
Google scholar
|
[5] |
Rudchenko, M., Taylor, S., Pallavi, P., Dechkovskaia, A., Khan, S., Butler, V. P. Jr, Rudchenko, S. and Stojanovic, M. N. (2013) Autonomous molecular cascades for evaluation of cell surfaces. Nat. Nanotechnol., 8, 580–586
CrossRef
Pubmed
Google scholar
|
[6] |
Andersen, E. S., Dong, M., Nielsen, M. M., Jahn, K., Subramani, R., Mamdouh, W., Golas, M. M., Sander, B., Stark, H., Oliveira, C. L. P.,
CrossRef
Pubmed
Google scholar
|
[7] |
Parolini, L., Kotar, J., Di Michele, L. and Mognetti, B. M. (2016) Controlling self-assembly kinetics of DNA-functionalized liposomes using toehold exchange mechanism. ACS Nano, 10, 2392–2398
CrossRef
Pubmed
Google scholar
|
[8] |
Hellyer, T. J. and Nadeau, J. G. (2004) Strand displacement amplification: a versatile tool for molecular diagnostics. Expert Rev. Mol. Diagn., 4, 251–261
CrossRef
Pubmed
Google scholar
|
[9] |
Kushwaha, M., Rostain, W., Prakash, S., Duncan, J. N. and Jaramillo, A. (2016) Using RNA as molecular code for programming cellular function. ACS Synth. Biol., 5, 795–809
CrossRef
Pubmed
Google scholar
|
[10] |
Green, A. A., Silver, P. A., Collins, J. J. and Yin, P. (2014) Toehold switches: de-novo-designed regulators of gene expression. Cell, 159, 925–939
CrossRef
Pubmed
Google scholar
|
[11] |
Qian, L. and Winfree, E. (2011) Scaling up digital circuit computation with DNA strand displacement cascades. Science, 332, 1196–1201
CrossRef
Pubmed
Google scholar
|
[12] |
Song, T. and Liang, H. (2012) Synchronized assembly of gold nanoparticles driven by a dynamic DNA-fueled molecular machine. J. Am. Chem. Soc., 134, 10803–10806
CrossRef
Pubmed
Google scholar
|
[13] |
Xu, H., Deng, W., Huang, F., Xiao, S., Liu, G. and Liang, H. (2014) Enhanced DNA toehold exchange reaction on a chip surface to discriminate single-base changes. Chem. Commun. (Camb.), 50, 14171–14174
CrossRef
Pubmed
Google scholar
|
[14] |
Yao, D., Song, T., Sun, X., Xiao, S., Huang, F. and Liang, H. (2015) Integrating DNA-strand-displacement circuitry with self-assembly of spherical nucleic acids. J. Am. Chem. Soc., 137, 14107–14113
CrossRef
Pubmed
Google scholar
|
[15] |
Song, T., Xiao, S., Yao, D., Huang, F., Hu, M. and Liang, H. (2014) An efficient DNA-fueled molecular machine for the discrimination of single-base changes. Adv. Mater., 26, 6181–6185
CrossRef
Pubmed
Google scholar
|
[16] |
Zhang, D. Y., Turberfield, A. J., Yurke, B. and Winfree, E. (2007) Engineering entropy-driven reactions and networks catalyzed by DNA. Science, 318, 1121–1125
CrossRef
Pubmed
Google scholar
|
[17] |
Zhang, D. Y. and Winfree, E. (2009) Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc., 131, 17303–17314
CrossRef
Pubmed
Google scholar
|
[18] |
Srinivas, N., Ouldridge, T. E., Šulc, P., Schaeffer, J. M., Yurke, B., Louis, A. A., Doye, J. P. K. and Winfree, E. (2013) On the biophysics and kinetics of toehold-mediated DNA strand displacement. Nucleic Acids Res., 41, 10641–10658
CrossRef
Pubmed
Google scholar
|
[19] |
Machinek, R. R. F., Ouldridge, T. E., Haley, N. E. C., Bath, J. and Turberfield, A. J. (2014) Programmable energy landscapes for kinetic control of DNA strand displacement. Nat. Commun., 5, 5324
CrossRef
Pubmed
Google scholar
|
[20] |
Nakayama, S., Yan, L. and Sintim, H. O. (2008) Junction probes- sequence specific detection of nucleic acids via template enhanced hybridization processes. J. Am. Chem. Soc., 130, 12560–12561
CrossRef
Pubmed
Google scholar
|
[21] |
Xing, Y., Yang, Z. and Liu, D. (2011) A responsive hidden toehold to enable controllable DNA strand displacement reactions. Angew. Chem. Int. Ed. Engl., 50, 11934–11936
CrossRef
Pubmed
Google scholar
|
[22] |
Huang, F., You, M., Han, D., Xiong, X., Liang, H. and Tan, W. (2013) DNA branch migration reactions through photocontrollable toehold formation. J. Am. Chem. Soc., 135, 7967–7973
CrossRef
Pubmed
Google scholar
|
[23] |
Hemphill, J. and Deiters, A. (2013) DNA computation in mammalian cells: microRNA logic operations. J. Am. Chem. Soc., 135, 10512–10518
CrossRef
Pubmed
Google scholar
|
[24] |
Prokup, A., Hemphill, J., Liu, Q. and Deiters, A. (2015) Optically controlled signal amplification for DNA computation. ACS Synth. Biol., 4, 1064–1069
CrossRef
Pubmed
Google scholar
|
[25] |
Amodio, A., Zhao, B., Porchetta, A., Idili, A., Castronovo, M., Fan, C. and Ricci, F. (2014) Rational design of pH-controlled DNA strand displacement. J. Am. Chem. Soc., 136, 16469–16472
CrossRef
Pubmed
Google scholar
|
[26] |
Chen, X. (2012) Expanding the rule set of DNA circuitry with associative toehold activation. J. Am. Chem. Soc., 134, 263–271
CrossRef
Pubmed
Google scholar
|
[27] |
Zhu, J., Zhang, L., Zhou, Z., Dong, S. and Wang, E. (2014) Aptamer-based sensing platform using three-way DNA junction-driven strand displacement and its application in DNA logic circuit. Anal. Chem., 86, 312–316
CrossRef
Pubmed
Google scholar
|
[28] |
Zhu, J., Zhang, L., Dong, S. and Wang, E. (2013) Four-way junction-driven DNA strand displacement and its application in building majority logic circuit. ACS Nano, 7, 10211–10217
CrossRef
Pubmed
Google scholar
|
[29] |
Genot, A. J., Zhang, D. Y., Bath, J. and Turberfield, A. J. (2011) Remote toehold: a mechanism for flexible control of DNA hybridization kinetics. J. Am. Chem. Soc., 133, 2177–2182
CrossRef
Pubmed
Google scholar
|
[30] |
Bommarito, S., Peyret, N. and SantaLucia, J. Jr (2000) Thermodynamic parameters for DNA sequences with dangling ends. Nucleic Acids Res., 28, 1929–1934
CrossRef
Pubmed
Google scholar
|
[31] |
SantaLucia, J. Jr and Hicks, D. (2004) The thermodynamics of DNA structural motifs. Annu. Rev. Biophys. Biomol. Struct., 33, 415–440
CrossRef
Pubmed
Google scholar
|
[32] |
Wang, C., Bae, J. H. and Zhang, D. Y. (2016) Native characterization of nucleic acid motif thermodynamics via non-covalent catalysis. Nat. Commun., 7, 10319
CrossRef
Pubmed
Google scholar
|
[33] |
Protozanova, E., Yakovchuk, P. and Frank-Kamenetskii, M. D. (2004) Stacked-unstacked equilibrium at the nick site of DNA. J. Mol. Biol., 342, 775–785
CrossRef
Pubmed
Google scholar
|
[34] |
Pyshnyi, D. V. and Ivanova, E. M. (2002) Thermodynamic parameters of coaxial stacking on stacking hybridization of oligodeoxyribonucleotides. Russ. Chem. Bull., 51, 1145–1155
CrossRef
Google scholar
|
[35] |
Yurke, B. and Mills, A. P. (2003) Using DNA to power nanostructures. Genet. Program. Evolvable Mach., 4, 111–122
CrossRef
Google scholar
|
[36] |
Yang, X., Tang, Y., Traynor, S. M. and Li, F. (2016) Regulation of DNA strand displacement using allosteric DNA toehold. J. Am. Chem. Soc., 138, 14076–14082
CrossRef
Pubmed
Google scholar
|
[37] |
Khimji, I., Shin, J. and Liu, J. (2013) DNA duplex stabilization in crowded polyanion solutions. Chem. Commun. (Camb.), 49, 1306–1308
CrossRef
Pubmed
Google scholar
|
[38] |
Smith, B. D. and Liu, J. (2010) Assembly of DNA-functionalized nanoparticles in alcoholic solvents reveals opposite thermodynamic and kinetic trends for DNA hybridization. J. Am. Chem. Soc., 132, 6300–6301
CrossRef
Pubmed
Google scholar
|
[39] |
Zhang, T., Shang, C., Duan, R., Hakeem, A., Zhang, Z., Lou, X. and Xia, F. (2015) Polar organic solvents accelerate the rate of DNA strand replacement reaction. Analyst, 140, 2023–2028
CrossRef
Pubmed
Google scholar
|
[40] |
Dave, N. and Liu, J. (2010) Fast molecular beacon hybridization in organic solvents with improved target specificity. J. Phys. Chem. B, 114, 15694–15699
CrossRef
Pubmed
Google scholar
|
[41] |
Kang, D., Duan, R., Tan, Y., Hong, F., Wang, B., Chen, Z., Xu, S., Lou, X., Wei, W., Yurke, B. and Xia, F. (2014) Speeding up the self-assembly of a DNA nanodevice using a variety of polar solvents. Nanoscale, 6, 14153–14157
CrossRef
Google scholar
|
[42] |
Wu, L. R., Wang, J. S., Fang, J. Z., Evans, E. R., Pinto, A., Pekker, I., Boykin, R., Ngouenet, C., Webster, P. J., Beechem, J.,
CrossRef
Pubmed
Google scholar
|
[43] |
Mirkin, C. A., Letsinger, R. L., Mucic, R. C. and Storhoff, J. J. (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 382, 607–609
CrossRef
Pubmed
Google scholar
|
[44] |
Alivisatos, A. P., Johnsson, K. P., Peng, X., Wilson, T. E., Loweth, C. J., Bruchez, M. P. Jr and Schultz, P. G. (1996) Organization of “nanocrystal molecules” using DNA. Nature, 382, 609–611
CrossRef
Pubmed
Google scholar
|
[45] |
Nykypanchuk, D., Maye, M. M., van der Lelie, D. and Gang, O. (2008) DNA-guided crystallization of colloidal nanoparticles. Nature, 451, 549–552
CrossRef
Pubmed
Google scholar
|
[46] |
Park, S. Y., Lytton-Jean, A. K. R., Lee, B., Weigand, S., Schatz, G. C. and Mirkin, C. A. (2008) DNA-programmable nanoparticle crystallization. Nature, 451, 553–556
CrossRef
Pubmed
Google scholar
|
[47] |
Macfarlane, R. J., Jones, M. R., Senesi, A. J., Young, K. L., Lee, B., Wu, J. and Mirkin, C. A. (2010) Establishing the design rules for DNA-mediated programmable colloidal crystallization. Angew. Chem. Int. Ed. Engl., 49, 4589–4592
CrossRef
Pubmed
Google scholar
|
[48] |
O’Brien, M. N., Jones, M. R., Lee, B. and Mirkin, C. A. (2015) Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization. Nat. Mater., 14, 833–839
CrossRef
Pubmed
Google scholar
|
[49] |
Jones, M. R., Seeman, N. C. and Mirkin, C. A. (2015) Programmable materials and the nature of the DNA bond. Science, 347, 1260901
CrossRef
Pubmed
Google scholar
|
[50] |
Sharma, J., Chhabra, R., Cheng, A., Brownell, J., Liu, Y. and Yan, H. (2009) Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science, 323, 112–116
CrossRef
Pubmed
Google scholar
|
[51] |
Shen, X., Song, C., Wang, J., Shi, D., Wang, Z., Liu, N. and Ding, B. (2012) Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. J. Am. Chem. Soc., 134, 146–149
CrossRef
Pubmed
Google scholar
|
[52] |
Lan, X., Lu, X., Shen, C., Ke, Y., Ni, W. and Wang, Q. (2015) Au nanorod helical superstructures with designed chirality. J. Am. Chem. Soc., 137, 457–462
CrossRef
Pubmed
Google scholar
|
[53] |
Tian, Y., Wang, T., Liu, W., Xin, H. L., Li, H., Ke, Y., Shih, W. M. and Gang, O. (2015) Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames. Nat. Nanotechnol., 10, 637–644
CrossRef
Pubmed
Google scholar
|
[54] |
Liu, W., Halverson, J., Tian, Y., Tkachenko, A. V. and Gang, O. (2016) Self-organized architectures from assorted DNA-framed nanoparticles. Nat. Chem., 8, 867–873
CrossRef
Pubmed
Google scholar
|
[55] |
Rogers, W. B., Shih, W. M. and Manoharan, V. N. (2016) Using DNA to program the self-assembly of colloidal nanoparticles and microparticles. Nat Rev Mater., 1, 16008
CrossRef
Google scholar
|
[56] |
Saha, K., Agasti, S. S., Kim, C., Li, X. and Rotello, V. M. (2012) Gold nanoparticles in chemical and biological sensing. Chem. Rev., 112, 2739–2779
CrossRef
Pubmed
Google scholar
|
[57] |
Wilner, O. I. and Willner, I. (2012) Functionalized DNA nanostructures. Chem. Rev., 112, 2528–2556
CrossRef
Pubmed
Google scholar
|
[58] |
Zhao, Y., Chen, F., Li, Q., Wang, L. and Fan, C. (2015) Isothermal amplification of nucleic acids. Chem. Rev., 115, 12491–12545.
CrossRef
Pubmed
Google scholar
|
[59] |
Rosi, N. L. and Mirkin, C. A. (2005) Nanostructures in biodiagnostics. Chem. Rev., 105, 1547–1562
CrossRef
Pubmed
Google scholar
|
[60] |
Liu, J., Cao, Z. and Lu, Y. (2009) Functional nucleic acid sensors. Chem. Rev., 109, 1948–1998
CrossRef
Pubmed
Google scholar
|
[61] |
Wu, P., Hwang, K., Lan, T. and Lu, Y. (2013) A DNAzyme-gold nanoparticle probe for uranyl ion in living cells. J. Am. Chem. Soc., 135, 5254–5257
CrossRef
Pubmed
Google scholar
|
[62] |
Liang, H., Zhang, X.-B., Lv, Y., Gong, L., Wang, R., Zhu, X., Yang, R. and Tan, W. (2014) Functional DNA-containing nanomaterials: cellular applications in biosensing, imaging, and targeted therapy. Acc. Chem. Res., 47, 1891–1901
CrossRef
Pubmed
Google scholar
|
[63] |
Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B. and Erlich, H. A. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 239, 487–491
CrossRef
Pubmed
Google scholar
|
[64] |
Gunderson, K. L., Steemers, F. J., Lee, G., Mendoza, L. G. and Chee, M. S. (2005) A genome-wide scalable SNP genotyping assay using microarray technology. Nat. Genet., 37, 549–554
CrossRef
Pubmed
Google scholar
|
[65] |
Schena, M., Shalon, D., Davis, R. W. and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270, 467–470
CrossRef
Pubmed
Google scholar
|
[66] |
Mardis, E. R. (2008) Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet., 9, 387–402
CrossRef
Pubmed
Google scholar
|
[67] |
Zhang, D. Y., Chen, S. X. and Yin, P. (2012) Optimizing the specificity of nucleic acid hybridization. Nat. Chem., 4, 208–214
CrossRef
Pubmed
Google scholar
|
[68] |
Chen, S. X., Zhang, D. Y. and Seelig, G. (2013) Conditionally fluorescent molecular probes for detecting single base changes in double-stranded DNA. Nat. Chem., 5, 782–789
CrossRef
Pubmed
Google scholar
|
[69] |
Wang, J. S. and Zhang, D. Y. (2015) Simulation-guided DNA probe design for consistently ultraspecific hybridization. Nat. Chem., 7, 545–553
CrossRef
Pubmed
Google scholar
|
[70] |
Chen, S. X. and Seelig, G. (2016) An engineered kinetic amplification mechanism for single nucleotide variant discrimination by DNA hybridization probes. J. Am. Chem. Soc., 138, 5076–5086
CrossRef
Pubmed
Google scholar
|
[71] |
Karim, K., Taylor, J. D., Cullen, D. C., Swann, M. J. and Freeman, N. J. (2007) Measurement of conformational changes in the structure of transglutaminase on binding calcium ions using optical evanescent dual polarisation interferometry. Anal. Chem., 79, 3023–3031
CrossRef
Pubmed
Google scholar
|
[72] |
Mashaghi, A., Swann, M., Popplewell, J., Textor, M. and Reimhult, E. (2008) Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics. Anal. Chem., 80, 3666–3676
CrossRef
Pubmed
Google scholar
|
[73] |
Xu, P., Huang, F. and Liang, H. (2013) Real-time study of a DNA strand displacement reaction using dual polarization interferometry. Biosens. Bioelectron., 41, 505–510
CrossRef
Pubmed
Google scholar
|
[74] |
Tang, W., Wang, D., Xu, Y., Li, N. and Liu, F. (2012) A self-assembled DNA nanostructure-amplified quartz crystal microbalance with dissipation biosensing platform for nucleic acids. Chem. Commun. (Camb.), 48, 6678–6680
CrossRef
Pubmed
Google scholar
|
[75] |
Zhao, Y., Wang, H., Tang, W., Hu, S., Li, N. and Liu, F. (2015) An in situ assembly of a DNA-streptavidin dendrimer nanostructure: a new amplified quartz crystal microbalance platform for nucleic acid sensing. Chem. Commun. (Camb.), 51, 10660–10663
CrossRef
Pubmed
Google scholar
|
[76] |
Tang, W., Hu, S., Wang, H., Zhao, Y., Li, N. and Liu, F. (2014) A universal molecular translator for non-nucleic acid targets that enables dynamic DNA assemblies and logic operations. Chem. Commun. (Camb.), 50, 14352–14355
CrossRef
Pubmed
Google scholar
|
[77] |
Wang, D., Chen, G., Wang, H., Tang, W., Pan, W., Li, N. and Liu, F. (2013) A reusable quartz crystal microbalance biosensor for highly specific detection of single-base DNA mutation. Biosens. Bioelectron., 48, 276–280
CrossRef
Pubmed
Google scholar
|
[78] |
Li, H., Xiao, S., Yao, D., Lam, M. H.-W. and Liang, H. (2015) A smart DNA-gold nanoparticle probe for detecting single-base changes on the platform of a quartz crystal microbalance. Chem. Commun. (Camb.), 51, 4670–4673
CrossRef
Pubmed
Google scholar
|
[79] |
Tyagi, S. and Kramer, F. R. (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol., 14, 303–308
CrossRef
Pubmed
Google scholar
|
[80] |
Papadopoulou, E. and Bell, S. E. J. (2011) Label-free detection of single-base mismatches in DNA by surface-enhanced Raman spectroscopy. Angew. Chem. Int. Ed. Engl., 50, 9058–9061
CrossRef
Pubmed
Google scholar
|
[81] |
Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L. and Mirkin, C. A. (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, 277, 1078–1081
CrossRef
Pubmed
Google scholar
|
[82] |
Taton, T. A., Mirkin, C. A. and Letsinger, R. L. (2000) Scanometric DNA array detection with nanoparticle probes. Science, 289, 1757–1760
CrossRef
Pubmed
Google scholar
|
[83] |
Yao, D., Song, T., Zheng, B., Xiao, S., Huang, F. and Liang, H. (2015) The combination of gold nanorods and nanoparticles with DNA nanodevices for logic gates construction. Nanotechnology, 26, 425601
CrossRef
Pubmed
Google scholar
|
[84] |
Yao, D., Li, H., Guo, Y., Zhou, X., Xiao, S. and Liang, H. (2016) A pH-responsive DNA nanomachine-controlled catalytic assembly of gold nanoparticles. Chem. Commun. (Camb.), 52, 7556–7559
CrossRef
Pubmed
Google scholar
|
[85] |
Hobom, B. (1980) Surgery of genes — at the doorstep of synthetic biology. Med. Klin., 75, 14–21
|
[86] |
Gardner, T. S., Cantor, C. R. and Collins, J. J. (2000) Construction of a genetic toggle switch in Escherichia coli. Nature, 403, 339–342
CrossRef
Pubmed
Google scholar
|
[87] |
Elowitz, M. B. and Leibler, S. (2000) A synthetic oscillatory network of transcriptional regulators. Nature, 403, 335–338
CrossRef
Pubmed
Google scholar
|
[88] |
Friedland, A. E., Lu, T. K., Wang, X., Shi, D., Church, G. and Collins, J. J. (2009) Synthetic gene networks that count. Science, 324, 1199–1202
CrossRef
Pubmed
Google scholar
|
[89] |
Ausländer, S., Ausländer, D., Müller, M., Wieland, M. and Fussenegger, M. (2012) Programmable single-cell mammalian biocomputers. Nature, 487, 123–127
Pubmed
|
[90] |
Moon, T. S., Lou, C., Tamsir, A., Stanton, B. C. and Voigt, C. A. (2012) Genetic programs constructed from layered logic gates in single cells. Nature, 491, 249–253
CrossRef
Pubmed
Google scholar
|
[91] |
Siuti, P., Yazbek, J. and Lu, T. K. (2013) Synthetic circuits integrating logic and memory in living cells. Nat. Biotechnol., 31, 448–452
CrossRef
Pubmed
Google scholar
|
[92] |
Win, M. N. and Smolke, C. D. (2008) Higher-order cellular information processing with synthetic RNA devices. Science, 322, 456–460
CrossRef
Pubmed
Google scholar
|
[93] |
Hong, S. H., Ntai, I., Haimovich, A. D., Kelleher, N. L., Isaacs, F. J. and Jewett, M. C. (2014) Cell-free protein synthesis from a release factor 1 deficient Escherichia coli activates efficient and multiple site-specific nonstandard amino acid incorporation. ACS Synth. Biol., 3, 398–409
CrossRef
Pubmed
Google scholar
|
[94] |
Karzbrun, E., Tayar, A. M., Noireaux, V. and Bar-Ziv, R. H. (2014) Programmable on-chip DNA compartments as artificial cells. Science, 345, 829–832
CrossRef
Pubmed
Google scholar
|
[95] |
Sun, Z. Z., Yeung, E., Hayes, C. A., Noireaux, V. and Murray, R. M. (2014) Linear DNA for rapid prototyping of synthetic biological circuits in an Escherichia coli based TX-TL cell-free system. ACS Synth. Biol., 3, 387–397
CrossRef
Pubmed
Google scholar
|
[96] |
Takahashi, M. K., Chappell, J., Hayes, C. A., Sun, Z. Z., Kim, J., Singhal, V., Spring, K. J., Al-Khabouri, S., Fall, C. P., Noireaux, V.,
CrossRef
Pubmed
Google scholar
|
[97] |
Pardee, K., Green, A. A., Ferrante, T., Cameron, D. E., DaleyKeyser, A., Yin, P. and Collins, J. J. (2014) Paper-based synthetic gene networks. Cell, 159, 940–954
CrossRef
Pubmed
Google scholar
|
[98] |
Pardee, K., Green, A. A., Takahashi, M. K., Braff, D., Lambert, G., Lee, J. W., Ferrante, T., Ma, D., Donghia, N., Fan, M.,
CrossRef
Pubmed
Google scholar
|
[99] |
Hannon, G. J. and Rossi, J. J. (2004) Unlocking the potential of the human genome with RNA interference. Nature, 431, 371–378
CrossRef
Pubmed
Google scholar
|
[100] |
Wiznerowicz, M., Szulc, J. and Trono, D. (2006) Tuning silence: conditional systems for RNA interference. Nat. Methods, 3, 682–688
CrossRef
Pubmed
Google scholar
|
[101] |
Beisel, C. L., Bayer, T. S., Hoff, K. G. and Smolke, C. D. (2008) Model-guided design of ligand-regulated RNAi for programmable control of gene expression. Mol. Syst. Biol., 4, 224
CrossRef
Pubmed
Google scholar
|
[102] |
Masu, H., Narita, A., Tokunaga, T., Ohashi, M., Aoyama, Y. and Sando, S. (2009) An activatable siRNA probe: trigger-RNA-dependent activation of RNAi function. Angew. Chem. Int. Ed. Engl., 48, 9481–9483
CrossRef
Pubmed
Google scholar
|
[103] |
Kumar, D., Kim, S. H. and Yokobayashi, Y. (2011) Combinatorially inducible RNA interference triggered by chemically modified oligonucleotides. J. Am. Chem. Soc., 133, 2783–2788
CrossRef
Pubmed
Google scholar
|
[104] |
Kumar, D., An, C.-I. and Yokobayashi, Y. (2009) Conditional RNA interference mediated by allosteric ribozyme. J. Am. Chem. Soc., 131, 13906–13907
CrossRef
Pubmed
Google scholar
|
[105] |
Xie, Z., Liu, S. J., Bleris, L. and Benenson, Y. (2010) Logic integration of mRNA signals by an RNAi-based molecular computer. Nucleic Acids Res., 38,2692–2701
|
/
〈 | 〉 |