Recent advances in molecular machines based on toehold-mediated strand displacement reaction

Yijun Guo , Bing Wei , Shiyan Xiao , Dongbao Yao , Hui Li , Huaguo Xu , Tingjie Song , Xiang Li , Haojun Liang

Quant. Biol. ›› 2017, Vol. 5 ›› Issue (1) : 25 -41.

PDF (4277KB)
Quant. Biol. ›› 2017, Vol. 5 ›› Issue (1) : 25 -41. DOI: 10.1007/s40484-017-0097-2
REVIEW
REVIEW

Recent advances in molecular machines based on toehold-mediated strand displacement reaction

Author information +
History +
PDF (4277KB)

Abstract

Background: The DNA strand displacement reaction, which uses flexible and programmable DNA molecules as reaction components, is the basis of dynamic DNA nanotechnology, and has been widely used in the design of complex autonomous behaviors.

Results: In this review, we first briefly introduce the concept of toehold-mediated strand displacement reaction and its kinetics regulation in pure solution. Thereafter, we review the recent progresses in DNA complex circuit, the assembly of AuNPs driven by DNA molecular machines, and the detection of single nucleotide polymorphism (SNP) using DNA toehold exchange probes in pure solution and in interface state. Lastly, the applications of toehold-mediated strand displacement in the genetic regulation and silencing through combining gene circuit with RNA interference systems are reviewed.

Conclusions: The toehold-mediated strand displacement reaction makes DNA an excellent material for the fabrication of molecular machines and complex circuit, and may potentially be used in the disease diagnosis and the regulation of gene silencing in the near future.

Graphical abstract

Keywords

toehold-mediated strand displacement / DNA molecular machines / SNP / gene expression regulation

Cite this article

Download citation ▾
Yijun Guo, Bing Wei, Shiyan Xiao, Dongbao Yao, Hui Li, Huaguo Xu, Tingjie Song, Xiang Li, Haojun Liang. Recent advances in molecular machines based on toehold-mediated strand displacement reaction. Quant. Biol., 2017, 5(1): 25-41 DOI:10.1007/s40484-017-0097-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yurke, B., Turberfield, A. J., Mills, A. P. Jr, Simmel, F. C. and Neumann, J. L. (2000) A DNA-fuelled molecular machine made of DNA. Nature, 406, 605–608

[2]

Zhang, D. Y. and Seelig, G. (2011) Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem., 3, 103–113

[3]

Pan, J., Li, F., Cha, T. G., Chen, H. and Choi, J. H. (2015) Recent progress on DNA based walkers. Curr. Opin. Biotechnol., 34, 56–64

[4]

You, M., Peng, L., Shao, N., Zhang, L., Qiu, L., Cui, C. and Tan, W. (2014) DNA “nano-claw”: logic-based autonomous cancer targeting and therapy. J. Am. Chem. Soc., 136, 1256–1259

[5]

Rudchenko, M., Taylor, S., Pallavi, P., Dechkovskaia, A., Khan, S., Butler, V. P. Jr, Rudchenko, S. and Stojanovic, M. N. (2013) Autonomous molecular cascades for evaluation of cell surfaces. Nat. Nanotechnol., 8, 580–586

[6]

Andersen, E. S., Dong, M., Nielsen, M. M., Jahn, K., Subramani, R., Mamdouh, W., Golas, M. M., Sander, B., Stark, H., Oliveira, C. L. P., (2009) Self-assembly of a nanoscale DNA box with a controllable lid. Nature, 459, 73–76

[7]

Parolini, L., Kotar, J., Di Michele, L. and Mognetti, B. M. (2016) Controlling self-assembly kinetics of DNA-functionalized liposomes using toehold exchange mechanism. ACS Nano, 10, 2392–2398

[8]

Hellyer, T. J. and Nadeau, J. G. (2004) Strand displacement amplification: a versatile tool for molecular diagnostics. Expert Rev. Mol. Diagn., 4, 251–261

[9]

Kushwaha, M., Rostain, W., Prakash, S., Duncan, J. N. and Jaramillo, A. (2016) Using RNA as molecular code for programming cellular function. ACS Synth. Biol., 5, 795–809

[10]

Green, A. A., Silver, P. A., Collins, J. J. and Yin, P. (2014) Toehold switches: de-novo-designed regulators of gene expression. Cell, 159, 925–939

[11]

Qian, L. and Winfree, E. (2011) Scaling up digital circuit computation with DNA strand displacement cascades. Science, 332, 1196–1201

[12]

Song, T. and Liang, H. (2012) Synchronized assembly of gold nanoparticles driven by a dynamic DNA-fueled molecular machine. J. Am. Chem. Soc., 134, 10803–10806

[13]

Xu, H., Deng, W., Huang, F., Xiao, S., Liu, G. and Liang, H. (2014) Enhanced DNA toehold exchange reaction on a chip surface to discriminate single-base changes. Chem. Commun. (Camb.), 50, 14171–14174

[14]

Yao, D., Song, T., Sun, X., Xiao, S., Huang, F. and Liang, H. (2015) Integrating DNA-strand-displacement circuitry with self-assembly of spherical nucleic acids. J. Am. Chem. Soc., 137, 14107–14113

[15]

Song, T., Xiao, S., Yao, D., Huang, F., Hu, M. and Liang, H. (2014) An efficient DNA-fueled molecular machine for the discrimination of single-base changes. Adv. Mater., 26, 6181–6185

[16]

Zhang, D. Y., Turberfield, A. J., Yurke, B. and Winfree, E. (2007) Engineering entropy-driven reactions and networks catalyzed by DNA. Science, 318, 1121–1125

[17]

Zhang, D. Y. and Winfree, E. (2009) Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc., 131, 17303–17314

[18]

Srinivas, N., Ouldridge, T. E., Šulc, P., Schaeffer, J. M., Yurke, B., Louis, A. A., Doye, J. P. K. and Winfree, E. (2013) On the biophysics and kinetics of toehold-mediated DNA strand displacement. Nucleic Acids Res., 41, 10641–10658

[19]

Machinek, R. R. F., Ouldridge, T. E., Haley, N. E. C., Bath, J. and Turberfield, A. J. (2014) Programmable energy landscapes for kinetic control of DNA strand displacement. Nat. Commun., 5, 5324

[20]

Nakayama, S., Yan, L. and Sintim, H. O. (2008) Junction probes- sequence specific detection of nucleic acids via template enhanced hybridization processes. J. Am. Chem. Soc., 130, 12560–12561

[21]

Xing, Y., Yang, Z. and Liu, D. (2011) A responsive hidden toehold to enable controllable DNA strand displacement reactions. Angew. Chem. Int. Ed. Engl., 50, 11934–11936

[22]

Huang, F., You, M., Han, D., Xiong, X., Liang, H. and Tan, W. (2013) DNA branch migration reactions through photocontrollable toehold formation. J. Am. Chem. Soc., 135, 7967–7973

[23]

Hemphill, J. and Deiters, A. (2013) DNA computation in mammalian cells: microRNA logic operations. J. Am. Chem. Soc., 135, 10512–10518

[24]

Prokup, A., Hemphill, J., Liu, Q. and Deiters, A. (2015) Optically controlled signal amplification for DNA computation. ACS Synth. Biol., 4, 1064–1069

[25]

Amodio, A., Zhao, B., Porchetta, A., Idili, A., Castronovo, M., Fan, C. and Ricci, F. (2014) Rational design of pH-controlled DNA strand displacement. J. Am. Chem. Soc., 136, 16469–16472

[26]

Chen, X. (2012) Expanding the rule set of DNA circuitry with associative toehold activation. J. Am. Chem. Soc., 134, 263–271

[27]

Zhu, J., Zhang, L., Zhou, Z., Dong, S. and Wang, E. (2014) Aptamer-based sensing platform using three-way DNA junction-driven strand displacement and its application in DNA logic circuit. Anal. Chem., 86, 312–316

[28]

Zhu, J., Zhang, L., Dong, S. and Wang, E. (2013) Four-way junction-driven DNA strand displacement and its application in building majority logic circuit. ACS Nano, 7, 10211–10217

[29]

Genot, A. J., Zhang, D. Y., Bath, J. and Turberfield, A. J. (2011) Remote toehold: a mechanism for flexible control of DNA hybridization kinetics. J. Am. Chem. Soc., 133, 2177–2182

[30]

Bommarito, S., Peyret, N. and SantaLucia, J. Jr (2000) Thermodynamic parameters for DNA sequences with dangling ends. Nucleic Acids Res., 28, 1929–1934

[31]

SantaLucia, J. Jr and Hicks, D. (2004) The thermodynamics of DNA structural motifs. Annu. Rev. Biophys. Biomol. Struct., 33, 415–440

[32]

Wang, C., Bae, J. H. and Zhang, D. Y. (2016) Native characterization of nucleic acid motif thermodynamics via non-covalent catalysis. Nat. Commun., 7, 10319

[33]

Protozanova, E., Yakovchuk, P. and Frank-Kamenetskii, M. D. (2004) Stacked-unstacked equilibrium at the nick site of DNA. J. Mol. Biol., 342, 775–785

[34]

Pyshnyi, D. V. and Ivanova, E. M. (2002) Thermodynamic parameters of coaxial stacking on stacking hybridization of oligodeoxyribonucleotides. Russ. Chem. Bull., 51, 1145–1155

[35]

Yurke, B. and Mills, A. P. (2003) Using DNA to power nanostructures. Genet. Program. Evolvable Mach., 4, 111–122

[36]

Yang, X., Tang, Y., Traynor, S. M. and Li, F. (2016) Regulation of DNA strand displacement using allosteric DNA toehold. J. Am. Chem. Soc., 138, 14076–14082

[37]

Khimji, I., Shin, J. and Liu, J. (2013) DNA duplex stabilization in crowded polyanion solutions. Chem. Commun. (Camb.), 49, 1306–1308

[38]

Smith, B. D. and Liu, J. (2010) Assembly of DNA-functionalized nanoparticles in alcoholic solvents reveals opposite thermodynamic and kinetic trends for DNA hybridization. J. Am. Chem. Soc., 132, 6300–6301

[39]

Zhang, T., Shang, C., Duan, R., Hakeem, A., Zhang, Z., Lou, X. and Xia, F. (2015) Polar organic solvents accelerate the rate of DNA strand replacement reaction. Analyst, 140, 2023–2028

[40]

Dave, N. and Liu, J. (2010) Fast molecular beacon hybridization in organic solvents with improved target specificity. J. Phys. Chem. B, 114, 15694–15699

[41]

Kang, D., Duan, R., Tan, Y., Hong, F., Wang, B., Chen, Z., Xu, S., Lou, X., Wei, W., Yurke, B. and Xia, F. (2014) Speeding up the self-assembly of a DNA nanodevice using a variety of polar solvents. Nanoscale, 6, 14153–14157

[42]

Wu, L. R., Wang, J. S., Fang, J. Z., Evans, E. R., Pinto, A., Pekker, I., Boykin, R., Ngouenet, C., Webster, P. J., Beechem, J., (2015) Continuously tunable nucleic acid hybridization probes. Nat. Methods, 12, 1191–1196

[43]

Mirkin, C. A., Letsinger, R. L., Mucic, R. C. and Storhoff, J. J. (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, 382, 607–609

[44]

Alivisatos, A. P., Johnsson, K. P., Peng, X., Wilson, T. E., Loweth, C. J., Bruchez, M. P. Jr and Schultz, P. G. (1996) Organization of “nanocrystal molecules” using DNA. Nature, 382, 609–611

[45]

Nykypanchuk, D., Maye, M. M., van der Lelie, D. and Gang, O. (2008) DNA-guided crystallization of colloidal nanoparticles. Nature, 451, 549–552

[46]

Park, S. Y., Lytton-Jean, A. K. R., Lee, B., Weigand, S., Schatz, G. C. and Mirkin, C. A. (2008) DNA-programmable nanoparticle crystallization. Nature, 451, 553–556

[47]

Macfarlane, R. J., Jones, M. R., Senesi, A. J., Young, K. L., Lee, B., Wu, J. and Mirkin, C. A. (2010) Establishing the design rules for DNA-mediated programmable colloidal crystallization. Angew. Chem. Int. Ed. Engl., 49, 4589–4592

[48]

O’Brien, M. N., Jones, M. R., Lee, B. and Mirkin, C. A. (2015) Anisotropic nanoparticle complementarity in DNA-mediated co-crystallization. Nat. Mater., 14, 833–839

[49]

Jones, M. R., Seeman, N. C. and Mirkin, C. A. (2015) Programmable materials and the nature of the DNA bond. Science, 347, 1260901

[50]

Sharma, J., Chhabra, R., Cheng, A., Brownell, J., Liu, Y. and Yan, H. (2009) Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science, 323, 112–116

[51]

Shen, X., Song, C., Wang, J., Shi, D., Wang, Z., Liu, N. and Ding, B. (2012) Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. J. Am. Chem. Soc., 134, 146–149

[52]

Lan, X., Lu, X., Shen, C., Ke, Y., Ni, W. and Wang, Q. (2015) Au nanorod helical superstructures with designed chirality. J. Am. Chem. Soc., 137, 457–462

[53]

Tian, Y., Wang, T., Liu, W., Xin, H. L., Li, H., Ke, Y., Shih, W. M. and Gang, O. (2015) Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames. Nat. Nanotechnol., 10, 637–644

[54]

Liu, W., Halverson, J., Tian, Y., Tkachenko, A. V. and Gang, O. (2016) Self-organized architectures from assorted DNA-framed nanoparticles. Nat. Chem., 8, 867–873

[55]

Rogers, W. B., Shih, W. M. and Manoharan, V. N. (2016) Using DNA to program the self-assembly of colloidal nanoparticles and microparticles. Nat Rev Mater., 1, 16008

[56]

Saha, K., Agasti, S. S., Kim, C., Li, X. and Rotello, V. M. (2012) Gold nanoparticles in chemical and biological sensing. Chem. Rev., 112, 2739–2779

[57]

Wilner, O. I. and Willner, I. (2012) Functionalized DNA nanostructures. Chem. Rev., 112, 2528–2556

[58]

Zhao, Y., Chen, F., Li, Q., Wang, L. and Fan, C. (2015) Isothermal amplification of nucleic acids. Chem. Rev., 115, 12491–12545.

[59]

Rosi, N. L. and Mirkin, C. A. (2005) Nanostructures in biodiagnostics. Chem. Rev., 105, 1547–1562

[60]

Liu, J., Cao, Z. and Lu, Y. (2009) Functional nucleic acid sensors. Chem. Rev., 109, 1948–1998

[61]

Wu, P., Hwang, K., Lan, T. and Lu, Y. (2013) A DNAzyme-gold nanoparticle probe for uranyl ion in living cells. J. Am. Chem. Soc., 135, 5254–5257

[62]

Liang, H., Zhang, X.-B., Lv, Y., Gong, L., Wang, R., Zhu, X., Yang, R. and Tan, W. (2014) Functional DNA-containing nanomaterials: cellular applications in biosensing, imaging, and targeted therapy. Acc. Chem. Res., 47, 1891–1901

[63]

Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. B. and Erlich, H. A. (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 239, 487–491

[64]

Gunderson, K. L., Steemers, F. J., Lee, G., Mendoza, L. G. and Chee, M. S. (2005) A genome-wide scalable SNP genotyping assay using microarray technology. Nat. Genet., 37, 549–554

[65]

Schena, M., Shalon, D., Davis, R. W. and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270, 467–470

[66]

Mardis, E. R. (2008) Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet., 9, 387–402

[67]

Zhang, D. Y., Chen, S. X. and Yin, P. (2012) Optimizing the specificity of nucleic acid hybridization. Nat. Chem., 4, 208–214

[68]

Chen, S. X., Zhang, D. Y. and Seelig, G. (2013) Conditionally fluorescent molecular probes for detecting single base changes in double-stranded DNA. Nat. Chem., 5, 782–789

[69]

Wang, J. S. and Zhang, D. Y. (2015) Simulation-guided DNA probe design for consistently ultraspecific hybridization. Nat. Chem., 7, 545–553

[70]

Chen, S. X. and Seelig, G. (2016) An engineered kinetic amplification mechanism for single nucleotide variant discrimination by DNA hybridization probes. J. Am. Chem. Soc., 138, 5076–5086

[71]

Karim, K., Taylor, J. D., Cullen, D. C., Swann, M. J. and Freeman, N. J. (2007) Measurement of conformational changes in the structure of transglutaminase on binding calcium ions using optical evanescent dual polarisation interferometry. Anal. Chem., 79, 3023–3031

[72]

Mashaghi, A., Swann, M., Popplewell, J., Textor, M. and Reimhult, E. (2008) Optical anisotropy of supported lipid structures probed by waveguide spectroscopy and its application to study of supported lipid bilayer formation kinetics. Anal. Chem., 80, 3666–3676

[73]

Xu, P., Huang, F. and Liang, H. (2013) Real-time study of a DNA strand displacement reaction using dual polarization interferometry. Biosens. Bioelectron., 41, 505–510

[74]

Tang, W., Wang, D., Xu, Y., Li, N. and Liu, F. (2012) A self-assembled DNA nanostructure-amplified quartz crystal microbalance with dissipation biosensing platform for nucleic acids. Chem. Commun. (Camb.), 48, 6678–6680

[75]

Zhao, Y., Wang, H., Tang, W., Hu, S., Li, N. and Liu, F. (2015) An in situ assembly of a DNA-streptavidin dendrimer nanostructure: a new amplified quartz crystal microbalance platform for nucleic acid sensing. Chem. Commun. (Camb.), 51, 10660–10663

[76]

Tang, W., Hu, S., Wang, H., Zhao, Y., Li, N. and Liu, F. (2014) A universal molecular translator for non-nucleic acid targets that enables dynamic DNA assemblies and logic operations. Chem. Commun. (Camb.), 50, 14352–14355

[77]

Wang, D., Chen, G., Wang, H., Tang, W., Pan, W., Li, N. and Liu, F. (2013) A reusable quartz crystal microbalance biosensor for highly specific detection of single-base DNA mutation. Biosens. Bioelectron., 48, 276–280

[78]

Li, H., Xiao, S., Yao, D., Lam, M. H.-W. and Liang, H. (2015) A smart DNA-gold nanoparticle probe for detecting single-base changes on the platform of a quartz crystal microbalance. Chem. Commun. (Camb.), 51, 4670–4673

[79]

Tyagi, S. and Kramer, F. R. (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat. Biotechnol., 14, 303–308

[80]

Papadopoulou, E. and Bell, S. E. J. (2011) Label-free detection of single-base mismatches in DNA by surface-enhanced Raman spectroscopy. Angew. Chem. Int. Ed. Engl., 50, 9058–9061

[81]

Elghanian, R., Storhoff, J. J., Mucic, R. C., Letsinger, R. L. and Mirkin, C. A. (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, 277, 1078–1081

[82]

Taton, T. A., Mirkin, C. A. and Letsinger, R. L. (2000) Scanometric DNA array detection with nanoparticle probes. Science, 289, 1757–1760

[83]

Yao, D., Song, T., Zheng, B., Xiao, S., Huang, F. and Liang, H. (2015) The combination of gold nanorods and nanoparticles with DNA nanodevices for logic gates construction. Nanotechnology, 26, 425601

[84]

Yao, D., Li, H., Guo, Y., Zhou, X., Xiao, S. and Liang, H. (2016) A pH-responsive DNA nanomachine-controlled catalytic assembly of gold nanoparticles. Chem. Commun. (Camb.), 52, 7556–7559

[85]

Hobom, B. (1980) Surgery of genes — at the doorstep of synthetic biology. Med. Klin., 75, 14–21

[86]

Gardner, T. S., Cantor, C. R. and Collins, J. J. (2000) Construction of a genetic toggle switch in Escherichia coli. Nature, 403, 339–342

[87]

Elowitz, M. B. and Leibler, S. (2000) A synthetic oscillatory network of transcriptional regulators. Nature, 403, 335–338

[88]

Friedland, A. E., Lu, T. K., Wang, X., Shi, D., Church, G. and Collins, J. J. (2009) Synthetic gene networks that count. Science, 324, 1199–1202

[89]

Ausländer, S., Ausländer, D., Müller, M., Wieland, M. and Fussenegger, M. (2012) Programmable single-cell mammalian biocomputers. Nature, 487, 123–127

[90]

Moon, T. S., Lou, C., Tamsir, A., Stanton, B. C. and Voigt, C. A. (2012) Genetic programs constructed from layered logic gates in single cells. Nature, 491, 249–253

[91]

Siuti, P., Yazbek, J. and Lu, T. K. (2013) Synthetic circuits integrating logic and memory in living cells. Nat. Biotechnol., 31, 448–452

[92]

Win, M. N. and Smolke, C. D. (2008) Higher-order cellular information processing with synthetic RNA devices. Science, 322, 456–460

[93]

Hong, S. H., Ntai, I., Haimovich, A. D., Kelleher, N. L., Isaacs, F. J. and Jewett, M. C. (2014) Cell-free protein synthesis from a release factor 1 deficient Escherichia coli activates efficient and multiple site-specific nonstandard amino acid incorporation. ACS Synth. Biol., 3, 398–409

[94]

Karzbrun, E., Tayar, A. M., Noireaux, V. and Bar-Ziv, R. H. (2014) Programmable on-chip DNA compartments as artificial cells. Science, 345, 829–832

[95]

Sun, Z. Z., Yeung, E., Hayes, C. A., Noireaux, V. and Murray, R. M. (2014) Linear DNA for rapid prototyping of synthetic biological circuits in an Escherichia coli based TX-TL cell-free system. ACS Synth. Biol., 3, 387–397

[96]

Takahashi, M. K., Chappell, J., Hayes, C. A., Sun, Z. Z., Kim, J., Singhal, V., Spring, K. J., Al-Khabouri, S., Fall, C. P., Noireaux, V., (2015) Rapidly characterizing the fast dynamics of RNA genetic circuitry with cell-free transcription-translation (TX-TL) systems. ACS Synth. Biol., 4, 503–515

[97]

Pardee, K., Green, A. A., Ferrante, T., Cameron, D. E., DaleyKeyser, A., Yin, P. and Collins, J. J. (2014) Paper-based synthetic gene networks. Cell, 159, 940–954

[98]

Pardee, K., Green, A. A., Takahashi, M. K., Braff, D., Lambert, G., Lee, J. W., Ferrante, T., Ma, D., Donghia, N., Fan, M., (2016) Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell, 165, 1255–1266

[99]

Hannon, G. J. and Rossi, J. J. (2004) Unlocking the potential of the human genome with RNA interference. Nature, 431, 371–378

[100]

Wiznerowicz, M., Szulc, J. and Trono, D. (2006) Tuning silence: conditional systems for RNA interference. Nat. Methods, 3, 682–688

[101]

Beisel, C. L., Bayer, T. S., Hoff, K. G. and Smolke, C. D. (2008) Model-guided design of ligand-regulated RNAi for programmable control of gene expression. Mol. Syst. Biol., 4, 224

[102]

Masu, H., Narita, A., Tokunaga, T., Ohashi, M., Aoyama, Y. and Sando, S. (2009) An activatable siRNA probe: trigger-RNA-dependent activation of RNAi function. Angew. Chem. Int. Ed. Engl., 48, 9481–9483

[103]

Kumar, D., Kim, S. H. and Yokobayashi, Y. (2011) Combinatorially inducible RNA interference triggered by chemically modified oligonucleotides. J. Am. Chem. Soc., 133, 2783–2788

[104]

Kumar, D., An, C.-I. and Yokobayashi, Y. (2009) Conditional RNA interference mediated by allosteric ribozyme. J. Am. Chem. Soc., 131, 13906–13907

[105]

Xie, Z., Liu, S. J., Bleris, L. and Benenson, Y. (2010) Logic integration of mRNA signals by an RNAi-based molecular computer. Nucleic Acids Res., 38,2692–2701

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (4277KB)

4432

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/