Modeling information exchange between living and artificial cells

Keith C. Heyde, MaryJoe K. Rice, Sung-Ho Paek, Felicia Y. Scott, Ruihua Zhang, Warren C. Ruder

PDF(1886 KB)
PDF(1886 KB)
Quant. Biol. ›› 2017, Vol. 5 ›› Issue (1) : 76-89. DOI: 10.1007/s40484-017-0095-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Modeling information exchange between living and artificial cells

Author information +
History +

Abstract

Background: The tools of synthetic biology have enabled researchers to explore multiple scientific phenomena by directly engineering signaling pathways within living cells and artificial protocells. Here, we explored the potential for engineered living cells themselves to assemble signaling pathways for non-living protocells. This analysis serves as a preliminary investigation into a potential origin of processes that may be utilized by complex living systems. Specifically, we suggest that if living cells can be engineered to direct the assembly of genetic signaling pathways from genetic biomaterials in their environment, then insight can be gained into how naturally occurring living systems might behave similarly.

Methods: To this end, we have modeled and simulated a system consisting of engineered cells that control the assembly of DNA monomers on microparticle scaffolds. These DNA monomers encode genetic circuits, and therefore, these microparticles can then be encapsulated with minimal transcription and translation systems to direct protocell phenotype. The modeled system relies on multiple previously established synthetic systems and then links these together to demonstrate system feasibility.

Results: In this specific model, engineered cells are induced to synthesize biotin, which competes with biotinylated, circuit-encoding DNA monomers for an avidinized-microparticle scaffold. We demonstrate that multiple synthetic motifs can be controlled in this way and can be tuned by manipulating parameters such as inducer and DNA concentrations.

Conclusions: We expect that this system will provide insight into the origin of living systems as well as serve as a tool for engineering living cells that assemble complex biomaterials in their environment.

Graphical abstract

Keywords

synthetic biology / artificial cells / biotin / microparticles

Cite this article

Download citation ▾
Keith C. Heyde, MaryJoe K. Rice, Sung-Ho Paek, Felicia Y. Scott, Ruihua Zhang, Warren C. Ruder. Modeling information exchange between living and artificial cells. Quant. Biol., 2017, 5(1): 76‒89 https://doi.org/10.1007/s40484-017-0095-4

References

[1]
Ricardo, A. and Szostak, J. W. (2009) Origin of life on earth. Sci. Am., 301, 54–61
CrossRef Pubmed Google scholar
[2]
Szostak, J. W. (2009) Origins of life: systems chemistry on early Earth. Nature, 459, 171–172
CrossRef Pubmed Google scholar
[3]
Szostak, J. W., Bartel, D. P. and Luisi, P. L. (2001) Synthesizing life. Nature, 409, 387–390
CrossRef Pubmed Google scholar
[4]
Adamala, K. P., Engelhart, A. E. and Szostak, J. W. (2016) Collaboration between primitive cell membranes and soluble catalysts. Nat. Commun., 7, 11041
CrossRef Pubmed Google scholar
[5]
Engelhart, A. E., Adamala, K. P. and Szostak, J. W. (2016) A simple physical mechanism enables homeostasis in primitive cells. Nat. Chem., 8, 448–453
CrossRef Pubmed Google scholar
[6]
Gibson, D. G., Glass, J. I., Lartigue, C., Noskov, V. N., Chuang, R. Y., Algire, M. A., Benders, G. A., Montague, M. G., Ma, L., Moodie, M. M., (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 329, 52–56
CrossRef Pubmed Google scholar
[7]
Hutchison, C. A. III, Chuang, R. Y., Noskov, V. N., Assad-Garcia, N., Deerinck, T. J., Ellisman, M. H., Gill, J., Kannan, K., Karas, B. J., Ma, L., (2016) Design and synthesis of a minimal bacterial genome. Science, 351, aad6253
CrossRef Pubmed Google scholar
[8]
Glass, J. I., Assad-Garcia, N., Alperovich, N., Yooseph, S., Lewis, M. R., Maruf, M., Hutchison C. A. III , Smith, H. O. and Venter, J. C. (2006) Essential genes of a minimal bacterium. Proc. Natl. Acad. Sci. USA, 103, 425–430
CrossRef Pubmed Google scholar
[9]
Zhang, R., Heyde, K. C., Scott, F. Y., Paek, S.-H.and Ruder, W. C. (2016) Programming surface chemistry with engineered cells. ACS Synth. Biol., 5, 936–941
CrossRef Pubmed Google scholar
[10]
Chen, A. Y., Deng, Z., Billings, A. N., Seker, U. O. S., Lu, M. Y., Citorik, R. J., Zakeri, B. and Lu, T. K. (2014) Synthesis and patterning of tunable multiscale materials with engineered cells. Nat. Mater., 13, 515–523
CrossRef Pubmed Google scholar
[11]
Botyanszki, Z., Tay, P. K. R., Nguyen, P. Q., Nussbaumer, M. G. and Joshi, N. S. (2015) Engineered catalytic biofilms: site-specific enzyme immobilization onto E. coli curli nanofibers. Biotechnol. Bioeng., 112, 2016–2024
CrossRef Pubmed Google scholar
[12]
Chen, A. Y., Zhong, C. and Lu, T. K. (2015) Engineering living functional materials. ACS Synth. Biol., 4, 8–11
CrossRef Pubmed Google scholar
[13]
Ridgley, D. M., Freedman, B. G., Lee, P. W. and Barone, J. R. (2014) Genetically encoded self-assembly of large amyloid fibers. Biomater. Sci., 2, 560–566
CrossRef Google scholar
[14]
Gardner, T. S., Cantor, C. R. and Collins, J. J. (2000) Construction of a genetic toggle switch in Escherichia coli. Nature, 403, 339–342
CrossRef Pubmed Google scholar
[15]
Elowitz, M. B. and Leibler, S. (2000) A synthetic oscillatory network of transcriptional regulators. Nature, 403, 335–338
CrossRef Pubmed Google scholar
[16]
Friedland, A. E., Lu, T. K., Wang, X., Shi, D., Church, G. and Collins, J. J. ( 2009) Synthetic gene networks that count. Science, 324, 1199–1202
CrossRef Pubmed Google scholar
[17]
Anderson, J. C., Voigt, C. A. and Arkin, A. P. (2007) Environmental signal integration by a modular AND gate. Mol. Syst. Biol., 3, 133
CrossRef Pubmed Google scholar
[18]
Ellis, T., Wang, X. and Collins, J. J. (2009) Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat. Biotechnol., 27, 465–471
CrossRef Pubmed Google scholar
[19]
Levskaya, A., Chevalier, A. A., Tabor, J. J., Simpson, Z. B., Lavery, L. A., Levy, M., Davidson, E. A., Scouras, A., Ellington, A. D., Marcotte, E. M., (2005) Synthetic biology: engineering Escherichia coli to see light. Nature, 438, 441–442
CrossRef Pubmed Google scholar
[20]
Bashor, C. J., Helman, N. C., Yan, S. and Lim, W. A. (2008) Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics. Science, 319, 1539–1543
CrossRef Pubmed Google scholar
[21]
Kramer, B. P., Viretta, A. U., Baba, M. D. -E., Aubel, D., Weber, W. and Fussenegger, M. (2004) An engineered epigenetic transgene switch in mammalian cells. Nat. Biotechnol., 22, 867–870
CrossRef Pubmed Google scholar
[22]
Blake, W. J., Balázsi, G., Kohanski, M. A., Isaacs, F. J., Murphy, K. F., Kuang, Y., Cantor, C. R., Walt, D. R. and Collins, J. J. (2006) Phenotypic consequences of promoter-mediated transcriptional noise. Mol. Cell, 24, 853–865
CrossRef Pubmed Google scholar
[23]
Eldar, A. and Elowitz, M. B. (2010) Functional roles for noise in genetic circuits. Nature, 467, 167–173
CrossRef Pubmed Google scholar
[24]
Guet, C. C., Elowitz, M. B., Hsing, W. and Leibler, S. (2002) Combinatorial synthesis of genetic networks. Science, 296, 1466–1470
CrossRef Pubmed Google scholar
[25]
Kærn, M., Elston, T. C., Blake, W. J. and Collins, J. J. (2005) Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Genet., 6, 451–464
CrossRef Pubmed Google scholar
[26]
Murphy, K. F., Adams, R. M., Wang, X., Balázsi, G. and Collins, J. J. (2010) Tuning and controlling gene expression noise in synthetic gene networks. Nucleic Acids Res., 38, 2712–2726
CrossRef Pubmed Google scholar
[27]
Balázsi, G., van Oudenaarden, A. and Collins, J. J. (2011) Cellular decision making and biological noise: from microbes to mammals. Cell, 144, 910–925
CrossRef Pubmed Google scholar
[28]
Elowitz, M. B., Levine, A. J., Siggia, E. D. and Swain, P. S. (2002) Stochastic gene expression in a single cell. Science, 297, 1183–1186
CrossRef Pubmed Google scholar
[29]
Karzbrun, E., Tayar, A. M., Noireaux, V. and Bar-Ziv, R. H. (2014) Programmable on-chip DNA compartments as artificial cells. Science, 345, 829–832
CrossRef Pubmed Google scholar
[30]
Noireaux, V., Maeda, Y. T. and Libchaber, A. (2011) Development of an artificial cell, from self-organization to computation and self-reproduction. Proc. Natl. Acad. Sci. USA, 108, 3473–3480
CrossRef Pubmed Google scholar
[31]
Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K. and Ueda, T. (2001) Cell-free translation reconstituted with purified components. Nat. Biotechnol., 19, 751–755
CrossRef Pubmed Google scholar
[32]
Tan, C., Saurabh, S., Bruchez, M. P., Schwartz, R. and Leduc, P. (2013) Molecular crowding shapes gene expression in synthetic cellular nanosystems. Nat. Nanotechnol., 8, 602–608
CrossRef Pubmed Google scholar
[33]
Weber, P. C., Ohlendorf, D. H., Wendoloski, J. J. and Salemme, F. R. (1989) Structural origins of high-affinity biotin binding to streptavidin. Science, 243, 85–88
CrossRef Pubmed Google scholar
[34]
Green, N. M. (1963) Avidin. 3. The nature of the biotin-binding site. Biochem. J., 89, 599–609
CrossRef Pubmed Google scholar
[35]
Huang, S. -C., Stump, M. D., Weiss, R. and Caldwell, K. D. (1996) Binding of biotinylated DNA to streptavidin-coated polystyrene latex: effects of chain length and particle size. Anal. Biochem., 237, 115–122
CrossRef Pubmed Google scholar
[36]
Noireaux, V., Bar-Ziv, R. and Libchaber, A. (2003) Principles of cell-free genetic circuit assembly. Proc. Natl. Acad. Sci. USA, 100, 12672–12677
CrossRef Pubmed Google scholar
[37]
Daube, S. S. and Bar-Ziv, R. H. (2013) Protein nanomachines assembly modes: cell-free expression and biochip perspectives. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 5, 613–628
CrossRef Pubmed Google scholar
[38]
Groisman, A., Lobo, C., Cho, H., Campbell, J. K., Dufour, Y. S., Stevens, A. M. and Levchenko, A. (2005) A microfluidic chemostat for experiments with bacterial and yeast cells. Nat. Methods, 2, 685–689
CrossRef Pubmed Google scholar
[39]
Hol, F. J. H. and Dekker, C. (2014) Zooming in to see the bigger picture: microfluidic and nanofabrication tools to study bacteria. Science, 346, 1251821
CrossRef Pubmed Google scholar
[40]
Sun, Z. Z., Hayes, C. A., Shin, J., Caschera, F., Murray, R. M. and Noireaux, V. (2013) Protocols for implementing an Escherichia coli based TX-TL cell-free expression system for synthetic biology. J. Vis. Exp., doi: 10.3791/50762
CrossRef Google scholar
[41]
Lutz, R. and Bujard, H. (1997) Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res., 25, 1203–1210
CrossRef Pubmed Google scholar
[42]
Sanyal, I., Cohen, G. and Flint, D. H. (1994) Biotin synthase: purification, characterization as a [2Fe-2S]cluster protein, and in vitro activity of the Escherichia coli bioB gene product. Biochemistry, 33, 3625–3631
CrossRef Pubmed Google scholar
[43]
Brophy, J. A. N. and Voigt, C. A. (2014) Principles of genetic circuit design. Nat. Methods, 11, 508–520
CrossRef Pubmed Google scholar
[44]
Garcia-Ojalvo, J., Elowitz, M. B. and Strogatz, S. H. (2004) Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. Proc. Natl. Acad. Sci. USA, 101, 10955–10960
CrossRef Pubmed Google scholar
[45]
Heyde, K. C. and Ruder, W. C. (2015) Exploring host-microbiome interactions using an in silico model of biomimetic robots and engineered living cells. Sci. Rep., 5, 11988
CrossRef Pubmed Google scholar
[46]
Anderson, J. C., Voigt, C. A. and Arkin, A. P. (2007) Environmental signal integration by a modular AND gate. Mol. Syst. Biol., 3, 133
CrossRef Pubmed Google scholar
[47]
Cameron, D. E. and Collins, J. J. (2014) Tunable protein degradation in bacteria. Nat. Biotechnol., 32, 1276–1281
CrossRef Pubmed Google scholar
[48]
Gardner, T. S., Cantor, C. R. and Collins, J. J. (2000) Construction of a genetic toggle switch in Escherichia coli. Nature, 403, 339–342
CrossRef Pubmed Google scholar
[49]
Johnson, K. A. and Goody, R. S. (2011) The original Michaelis constant: translation of the 1913 Michaelis-Menten paper. Biochemistry, 50, 8264–8269
CrossRef Pubmed Google scholar
[50]
González, M., Bagatolli, L. A., Echabe, I., Arrondo, J. L. R., Argaraña, C. E., Cantor, C. R. and Fidelio, G. D. (1997) Interaction of biotin with streptavidin. Thermostability and conformational changes upon binding. J. Biol. Chem., 272, 11288–11294
CrossRef Pubmed Google scholar
[51]
Schwarz-Schilling, M., Aufinger, L., Mückl, A. and Simmel, F. C. (2016) Chemical communication between bacteria and cell-free gene expression systems within linear chains of emulsion droplets. Integr. Biol., 8, 564–570
CrossRef Pubmed Google scholar
[52]
Stögbauer, T., Windhager, L., Zimmer, R. and Rädler, J. O. (2012) Experiment and mathematical modeling of gene expression dynamics in a cell-free system. Integr. Biol., 4, 494–501
CrossRef Pubmed Google scholar
[53]
Brenner, K., You, L. and Arnold, F. H. (2008) Engineering microbial consortia: a new frontier in synthetic biology. Trends Biotechnol., 26, 483–489
CrossRef Pubmed Google scholar
[54]
Hays, S. G., Patrick, W. G., Ziesack, M., Oxman, N.and Silver, P. A. (2015) Better together: engineering and application of microbial symbioses. Curr. Opin. Biotechnol., 36, 40–49
CrossRef Pubmed Google scholar
[55]
Wintermute, E. H. and Silver, P. A. (2010) Dynamics in the mixed microbial concourse. Genes Dev., 24, 2603–2614
CrossRef Pubmed Google scholar
[56]
Balagaddé, F. K., Song, H., Ozaki, J., Collins, C. H., Barnet, M. , Arnold, F. H., Quake, S. R.and You, L. (2008) A synthetic Escherichia coli predator-prey ecosystem. Mol. Syst. Biol., 4, 187
CrossRef Pubmed Google scholar
[57]
Heyde, K. C., Gallagher, P. W. and Ruder, W. C. (2016) Bioinspired decision architectures containing host and microbiome processing units. Bioinspir. Biomim., 11, 056017
CrossRef Pubmed Google scholar
[58]
Tran, H., Oliveira, S. M. D., Goncalves, N. and Ribeiro, A. S. (2015) Kinetics of the cellular intake of a gene expression inducer at high concentrations. Mol. Biosyst., 11, 2579–2587
CrossRef Pubmed Google scholar
[59]
Xu, H., Moraitis, M., Reedstrom, R. J. and Matthews, K. S. (1998) Kinetic and thermodynamic studies of purine repressor binding to corepressor and operator DNA. J. Biol. Chem., 273, 8958–8964
CrossRef Pubmed Google scholar
[60]
Politi, N., Pasotti, L., Zucca, S., Casanova, M., Micoli, G., Cusella De Angelis, M. G. and Magni, P. (2014) Half-life measurements of chemical inducers for recombinant gene expression. J. Biol. Eng., 8, 5
CrossRef Pubmed Google scholar

ACKNOWLEDGMENTS

The authors gratefully acknowledge support from award FA9550-13-1-0108 from the Air Force Office of Scientific Research of the USA and award N00014-15-1-2502 from the Office of Naval Research of the USA. The authors additionally acknowledge support from the Institute for Critical Technology and Applied Science at Virginia Polytechnic Institute and State University, from the National Science Foundation Graduate Research Fellowship Program, award number 1607310, and from the Virginia Sea Grant Graduate Research Fellowship Program.

COMPLIANCE WITH ETHICS GUIDELINES

Keith C. Heyde, MaryJoe K. Rice, Sung-Ho Paek, Felicia Y. Scott, Ruihua Zhang and Warren C. Ruder declare that they have no conflict of interest.‚‚This article does not contain any studies with human or animal subjects performed by any of the authors.
Funding
 

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1886 KB)

Accesses

Citations

Detail

Sections
Recommended

/