Phage engineering: how advances in molecular biology and synthetic biology are being utilized to enhance the therapeutic potential of bacteriophages

Russell Brown, Andreas Lengeling, Baojun Wang

PDF(1627 KB)
PDF(1627 KB)
Quant. Biol. ›› 2017, Vol. 5 ›› Issue (1) : 42-54. DOI: 10.1007/s40484-017-0094-5
REVIEW
REVIEW

Phage engineering: how advances in molecular biology and synthetic biology are being utilized to enhance the therapeutic potential of bacteriophages

Author information +
History +

Abstract

Background: The therapeutic potential of bacteriophages has been debated since their first isolation and characterisation in the early 20th century. However, a lack of consistency in application and observed efficacy during their early use meant that upon the discovery of antibiotic compounds research in the field of phage therapy quickly slowed. The rise of antibiotic resistance in bacteria and improvements in our abilities to modify and manipulate DNA, especially in the context of small viral genomes, has led to a recent resurgence of interest in utilising phage as antimicrobial therapeutics.

Results: In this article a number of results from the literature that have aimed to address key issues regarding the utility and efficacy of phage as antimicrobial therapeutics utilising molecular biology and synthetic biology approaches will be introduced and discussed, giving a general view of the recent progress in the field.

Conclusions: Advances in molecular biology and synthetic biology have enabled rapid progress in the field of phage engineering, with this article highlighting a number of promising strategies developed to optimise phages for the treatment of bacterial disease. Whilst many of the same issues that have historically limited the use of phages as therapeutics still exist, these modifications, or combinations thereof, may form a basis upon which future advances can be built. A focus on rigorous in vivo testing and investment in clinical trials for promising candidate phages may be required for the field to truly mature, but there is renewed hope that the potential benefits of phage therapy may finally be realised.

Graphical abstract

Keywords

bacteriophage / phage therapy / phage engineering / synthetic biology

Cite this article

Download citation ▾
Russell Brown, Andreas Lengeling, Baojun Wang. Phage engineering: how advances in molecular biology and synthetic biology are being utilized to enhance the therapeutic potential of bacteriophages. Quant. Biol., 2017, 5(1): 42‒54 https://doi.org/10.1007/s40484-017-0094-5

References

[1]
Summers, W. C. (2012) The strange history of phage therapy. Bacteriophage, 2, 130–133
CrossRef Pubmed Google scholar
[2]
Twort, F. W. (1915) An investigation on the nature of ultra-microscopic viruses. Lancet, 186, 1241–1243
CrossRef Google scholar
[3]
d’Herelle, F. (1917) On an invisible microbe antagonistic to dysentery bacili. CR Acad. Sci. Paris, 165, 373–375
[4]
Abedon, S. T., Kuhl, S. J., Blasdel, B. G. and Kutter, E. M. (2011) Phage treatment of human infections. Bacteriophage, 1, 66–85
CrossRef Pubmed Google scholar
[5]
Neu, H. C. (1992) The crisis in antibiotic resistance. Science, 257, 1064–1073
CrossRef Pubmed Google scholar
[6]
Davies, J. and Davies, D. (2010) Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 74, 417–433
CrossRef Pubmed Google scholar
[7]
Bradley, R. W., Buck, M. and Wang, B. (2016) Tools and principles for microbial gene circuit engineering. J. Mol. Biol., 428, 862–888
CrossRef Pubmed Google scholar
[8]
Wang, B. and Buck, M. (2012) Customizing cell signaling using engineered genetic logic circuits. Trends Microbiol., 20, 376–384
CrossRef Pubmed Google scholar
[9]
Wang, B., Kitney, R. I., Joly, N. and Buck, M. (2011) Engineering modular and orthogonal genetic logic gates for robust digital-like synthetic biology. Nat. Commun., 2, 508
CrossRef Pubmed Google scholar
[10]
Wang, B., Barahona, M. and Buck, M. (2013) A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals. Biosens. Bioelectron., 40, 368–376
CrossRef Pubmed Google scholar
[11]
Bradley, R. W. and Wang, B. (2015) Designer cell signal processing circuits for biotechnology. N. Biotechnol., 32, 635–643
CrossRef Pubmed Google scholar
[12]
Haellman, V. and Fussenegger, M. (2016) Synthetic biology—toward therapeutic solutions. J. Mol. Biol., 428, 945–962
CrossRef Pubmed Google scholar
[13]
Smith, H. O., Hutchison, C. A. III, Pfannkoch, C. and Venter, J. C. (2003) Generating a synthetic genome by whole genome assembly: ΦX174 bacteriophage from synthetic oligonucleotides. Proc. Natl. Acad. Sci. USA, 100, 15440–15445
CrossRef Pubmed Google scholar
[14]
Chan, L.Y., Kosuri, S., and Endy, D. (2005) Refactoring bacteriophage T7. Mol. Syst. Biol. 1, 2005. 0018
CrossRef Google scholar
[15]
Lu, T. K. and Koeris, M. S. (2011) The next generation of bacteriophage therapy. Curr. Opin. Microbiol., 14, 524–531
CrossRef Pubmed Google scholar
[16]
Pires, D. P., Cleto, S., Sillankorva, S., Azeredo, J. and Lu, T. K. (2016) Genetically engineered phages: a review of advances over the last decade. Microbiol. Mol. Biol. Rev., 80, 523–543
CrossRef Pubmed Google scholar
[17]
Rakhuba, D. V., Kolomiets, E. I., Dey, E. S. and Novik, G. I. (2010) Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Pol. J. Microbiol., 59, 145–155
Pubmed
[18]
Crawford, J. T. and Goldberg, E. B. (1977) The effect of baseplate mutations on the requirement for tail-fiber binding for irreversible adsorption of bacteriophage T4. J. Mol. Biol., 111, 305–313
CrossRef Pubmed Google scholar
[19]
Crawford, J. T. and Goldberg, E. B. (1980) The function of tail fibers in triggering baseplate expansion of bacteriophage T4. J. Mol. Biol., 139, 679–690
CrossRef Pubmed Google scholar
[20]
Arscott, P. G. and Goldberg, E. B. (1976) Cooperative action of the T4 tail fibers and baseplate in triggering conformational change and in determining host range. Virology, 69, 15–22
CrossRef Pubmed Google scholar
[21]
Molineux, I. J. (2001) No syringes please, ejection of phage T7 DNA from the virion is enzyme driven. Mol. Microbiol., 40, 1–8
CrossRef Pubmed Google scholar
[22]
Kemp, P., Garcia, L. R. and Molineux, I. J. (2005) Changes in bacteriophage T7 virion structure at the initiation of infection. Virology, 340, 307–317
CrossRef Pubmed Google scholar
[23]
Heller, K. and Braun, V. (1979) Accelerated adsorption of bacteriophage T5 to Escherichia coli F, resulting from reversible tail fiber-lipopolysaccharide binding. J. Bacteriol., 139, 32–38
Pubmed
[24]
Heller, K. and Braun, V. (1982) Polymannose O-antigens of Escherichia coli, the binding sites for the reversible adsorption of bacteriophage T5+ via the L-shaped tail fibers. J. Virol., 41, 222–227
Pubmed
[25]
Riede, I., Degen, M. and Henning, U. (1985) The receptor specificity of bacteriophages can be determined by a tail fiber modifying protein. EMBO J., 4, 2343–2346
Pubmed
[26]
Montag, D., Riede, I., Eschbach, M.-L., Degen, M. and Henning, U. (1987) Receptor-recognizing proteins of T-even type bacteriophages: constant and hypervariable regions and an unusual case of evolution. J. Mol. Biol., 196, 165–174
CrossRef Pubmed Google scholar
[27]
Moody, M. F. (1973) Sheath of bacteriophage T4: III. contraction mechanism deduced from partially contracted sheaths. J. Mol. Biol., 80, 613–635
CrossRef Pubmed Google scholar
[28]
Wright, A., Hawkins, C. H., Änggård, E. E. and Harper, D. R. (2009) A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin. Otolaryngol., 34, 349–357
CrossRef Pubmed Google scholar
[29]
Gu, J., Liu, X., Li, Y., Han, W., Lei, L., Yang, Y., Zhao, H., Gao, Y., Song, J., Lu, R., (2012) A method for generation phage cocktail with great therapeutic potential. PLoS One, 7, e31698
CrossRef Pubmed Google scholar
[30]
Oliveira, A., Sereno, R. and Azeredo, J. (2010) In vivo efficiency evaluation of a phage cocktail in controlling severe colibacillosis in confined conditions and experimental poultry houses. Vet. Microbiol., 146, 303–308
CrossRef Pubmed Google scholar
[31]
Jaiswal, A., Koley, H., Ghosh, A., Palit, A. and Sarkar, B. (2013) Efficacy of cocktail phage therapy in treating Vibrio cholerae infection in rabbit model. Microbes Infect., 15, 152–156
CrossRef Pubmed Google scholar
[32]
Chan, B. K. and Abedon, S. T. (2012). Chapter 1 – Phage therapy pharmacology: phage cocktails. In Advances in Applied Microbiology, Laskin, A.I., Sariaslani, S. and Gadd, G.M. ed. 1–23. Massachusetts: Academic Press
[33]
Chan, B. K., Abedon, S. T. and Loc-Carrillo, C. (2013) Phage cocktails and the future of phage therapy. Future Microbiol., 8, 769–783
CrossRef Pubmed Google scholar
[34]
Gill, J. J. and Hyman, P. (2010) Phage choice, isolation, and preparation for phage therapy. Curr. Pharm. Biotechnol., 11, 2–14
CrossRef Pubmed Google scholar
[35]
Merabishvili, M., Pirnay, J.-P., Verbeken, G., Chanishvili, N., Tediashvili, M., Lashkhi, N., Glonti, T., Krylov, V., Mast, J., Van Parys, L., (2009) Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS One, 4, e4944
CrossRef Pubmed Google scholar
[36]
Kutter, E., De Vos, D., Gvasalia, G., Alavidze, Z., Gogokhia, L., Kuhl, S. and Abedon, S. T. (2010) Phage therapy in clinical practice: treatment of human infections. Curr. Pharm. Biotechnol., 11, 69–86
CrossRef Pubmed Google scholar
[37]
Mahichi, F., Synnott, A. J., Yamamichi, K., Osada, T. and Tanji, Y. (2009) Site-specific recombination of T2 phage using IP008 long tail fiber genes provides a targeted method for expanding host range while retaining lytic activity. FEMS Microbiol. Lett., 295, 211–217
CrossRef Pubmed Google scholar
[38]
Yoichi, M., Abe, M., Miyanaga, K., Unno, H. and Tanji, Y. (2005) Alteration of tail fiber protein gp38 enables T2 phage to infect Escherichia coli O157:H7. J. Biotechnol., 115, 101–107
CrossRef Pubmed Google scholar
[39]
Pouillot, F., Blois, H. and Iris, F. (2010) Genetically engineered virulent phage banks in the detection and control of emergent pathogenic bacteria. Biosecur. Bioterror., 8, 155–169
CrossRef Pubmed Google scholar
[40]
Krüger, D. H. and Schroeder, C. (1981) Bacteriophage T3 and bacteriophage T7 virus-host cell interactions. Microbiol. Rev., 45, 9–51
Pubmed
[41]
Lin, T. -Y., Lo, Y. -H., Tseng, P. -W., Chang, S. -F., Lin, Y. -T. and Chen, T. -S. (2012) A T3 and T7 recombinant phage acquires efficient adsorption and a broader host range. PLoS One, 7, e30954
CrossRef Pubmed Google scholar
[42]
Ando, H., Lemire, S., Pires, D. P. and Lu, T. K. (2015) Engineering modular viral scaffolds for targeted bacterial population editing. Cell Syst., 1, 187–196
CrossRef Pubmed Google scholar
[43]
Friedman, D. I. (1992) Interaction between bacteriophage l and its Escherichia coli host. Curr. Opin. Genet. Dev., 2, 727–738
CrossRef Pubmed Google scholar
[44]
Casjens, S. R., Gilcrease, E. B., Winn-Stapley, D. A., Schicklmaier, P., Schmieger, H., Pedulla, M. L., Ford, M. E., Houtz, J. M., Hatfull, G. F. and Hendrix, R. W. (2005) The generalized transducing Salmonella bacteriophage ES18: complete genome sequence and DNA packaging strategy. J. Bacteriol., 187, 1091–1104
CrossRef Pubmed Google scholar
[45]
Casjens, S. (2003) Prophages and bacterial genomics: what have we learned so far? Mol. Microbiol., 49, 277–300
CrossRef Pubmed Google scholar
[46]
Esvelt, K. M., Carlson, J. C. and Liu, D. R. (2011) A system for the continuous directed evolution of biomolecules. Nature, 472, 499–503
CrossRef Pubmed Google scholar
[47]
Bassalo, M. C., Liu, R. and Gill, R. T. (2016) Directed evolution and synthetic biology applications to microbial systems. Curr. Opin. Biotechnol., 39, 126–133
CrossRef Pubmed Google scholar
[48]
Prins, J. M., van Deventer, S. J., Kuijper, E. J. and Speelman, P. (1994) Clinical relevance of antibiotic-induced endotoxin release. Antimicrob. Agents Chemother., 38, 1211–1218
CrossRef Pubmed Google scholar
[49]
Slopek, S., Durlakowa, I., Weber-Dabrowska, B., Kucharewicz-Krukowska, A., Dabrowski, M. and Bisikiewicz, R. (1983) Results of bacteriophage treatment of suppurative bacterial infections. I. General evaluation of the results. Arch. Immunol. Ther. Exp. (Warsz.), 31, 267–291
Pubmed
[50]
Gamage, S. D., Patton, A. K., Hanson, J. F. and Weiss, A. A. (2004) Diversity and host range of Shiga toxin-encoding phage. Infect. Immun., 72, 7131–7139
CrossRef Pubmed Google scholar
[51]
Krylov, V. N. (2001) Phagotherapy in terms of bacteriophage genetics: hopes, perspectives, safety, limitations. Genetika, 37, 869–887
Pubmed
[52]
Jerne, N. K. and Avegno, P. (1956) The development of the phage-inactivating properties of serum during the course of specific immunization of an animal: reversible and irreversible inactivation. J. Immunol., 76, 200–208
Pubmed
[53]
Hodyra-Stefaniak, K., Miernikiewicz, P., Drapała, J., Drab, M., Jończyk-Matysiak, E., Lecion, D., Kaźmierczak, Z., Beta, W., Majewska, J., Harhala, M., (2015) Mammalian Host-Versus-Phage immune response determines phage fate in vivo. Sci. Rep., 5, 14802
CrossRef Pubmed Google scholar
[54]
Sokoloff, A. V., Zhang, G., Sebestyén, M. G. and Wolff, J. A. (2000) The interactions of peptides with the innate immune system studied with use of T7 phage peptide display. Mol. Ther., 2, 131–139
CrossRef Pubmed Google scholar
[55]
Merril, C. R., Biswas, B., Carlton, R., Jensen, N. C., Creed, G. J., Zullo, S. and Adhya, S. (1996) Long-circulating bacteriophage as antibacterial agents. Proc. Natl. Acad. Sci. USA, 93, 3188–3192
CrossRef Pubmed Google scholar
[56]
Vitiello, C. L., Merril, C. R. and Adhya, S. (2005) An amino acid substitution in a capsid protein enhances phage survival in mouse circulatory system more than a 1000-fold. Virus Res., 114, 101–103
CrossRef Pubmed Google scholar
[57]
Capparelli, R., Ventimiglia, I., Roperto, S., Fenizia, D. and Iannelli, D. (2006) Selection of an Escherichia coli O157:H7 bacteriophage for persistence in the circulatory system of mice infected experimentally. Clin. Microbiol. Infect., 12, 248–253
CrossRef Pubmed Google scholar
[58]
Capparelli, R., Parlato, M., Borriello, G., Salvatore, P. and Iannelli, D. (2007) Experimental phage therapy against Staphylococcus aureus in mice. Antimicrob. Agents Chemother., 51, 2765–2773
CrossRef Pubmed Google scholar
[59]
Łusiak-Szelachowska, M., Żaczek, M., Weber-Dąbrowska, B., Międzybrodzki, R., Kłak, M., Fortuna, W., Letkiewicz, S., Rogóż, P., Szufnarowski, K., Jończyk-Matysiak, E., (2014) Phage neutralization by sera of patients receiving phage therapy. Viral Immunol., 27, 295–304
CrossRef Pubmed Google scholar
[60]
Loc-Carrillo, C. and Abedon, S. T. (2011) Pros and cons of phage therapy. Bacteriophage, 1, 111–114
CrossRef Pubmed Google scholar
[61]
Hagens, S. and Bläsi, U. (2003) Genetically modified filamentous phage as bactericidal agents: a pilot study. Lett. Appl. Microbiol., 37, 318–323
CrossRef Pubmed Google scholar
[62]
Hagens, S., Habel, A., von Ahsen, U., von Gabain, A. and Bläsi, U. (2004) Therapy of experimental pseudomonas infections with a nonreplicating genetically modified phage. Antimicrob. Agents Chemother., 48, 3817–3822
CrossRef Pubmed Google scholar
[63]
Matsuda, T., Freeman, T. A., Hilbert, D. W., Duff, M., Fuortes, M., Stapleton, P. P. and Daly, J. M. (2005) Lysis-deficient bacteriophage therapy decreases endotoxin and inflammatory mediator release and improves survival in a murine peritonitis model. Surgery, 137, 639–646
CrossRef Pubmed Google scholar
[64]
Westwater, C., Kasman, L. M., Schofield, D. A., Werner, P. A., Dolan, J. W., Schmidt, M. G. and Norris, J. S. (2003) Use of genetically engineered phage to deliver antimicrobial agents to bacteria: an alternative therapy for treatment of bacterial infections. Antimicrob. Agents Chemother., 47, 1301–1307
CrossRef Pubmed Google scholar
[65]
Moradpour, Z., Sepehrizadeh, Z., Rahbarizadeh, F., Ghasemian, A., Yazdi, M. T. and Shahverdi, A. R. (2009) Genetically engineered phage harbouring the lethal catabolite gene activator protein gene with an inducer-independent promoter for biocontrol of Escherichia coli. FEMS Microbiol. Lett., 296, 67–71
CrossRef Pubmed Google scholar
[66]
Kasman, L. M., Kasman, A., Westwater, C., Dolan, J., Schmidt, M. G. and Norris, J. S. (2002) Overcoming the phage replication threshold: a mathematical model with implications for phage therapy. J. Virol., 76, 5557–5564
CrossRef Pubmed Google scholar
[67]
Krom, R. J., Bhargava, P., Lobritz, M. A. and Collins, J. J. (2015) Engineered phagemids for nonlytic, targeted antibacterial therapies. Nano Lett., 15, 4808–4813
CrossRef Pubmed Google scholar
[68]
Tamma, P. D., Cosgrove, S. E. and Maragakis, L. L. (2012) Combination therapy for treatment of infections with gram-negative bacteria. Clin. Microbiol. Rev., 25, 450–470
CrossRef Pubmed Google scholar
[69]
Gaj, T., Gersbach, C. A. and Barbas, C. F. III (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol., 31, 397–405
CrossRef Pubmed Google scholar
[70]
Citorik, R. J., Mimee, M. and Lu, T. K. (2014) Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol., 32, 1141–1145
CrossRef Pubmed Google scholar
[71]
Bikard, D., Euler, C., Jiang, W., Nussenzweig, P. M., Goldberg, G. W., Duportet, X., Fischetti, V. A. and Marraffini,L. A. (2014) Development of sequence-specific antimicrobials based on programmable CRISPR-Cas nucleases. Nat. Biotechnol., 32, 1146–1150
CrossRef Pubmed Google scholar
[72]
Yosef, I., Manor, M., Kiro, R. and Qimron, U. (2015) Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc. Natl. Acad. Sci. USA, 112, 7267–7272
CrossRef Pubmed Google scholar
[73]
Yacoby, I., Bar, H. and Benhar, I. (2007) Targeted drug-carrying bacteriophages as antibacterial nanomedicines. Antimicrob. Agents Chemother., 51, 2156–2163
CrossRef Pubmed Google scholar
[74]
Lu, T. K. and Collins, J. J. (2009) Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc. Natl. Acad. Sci. USA, 106, 4629–4634
CrossRef Pubmed Google scholar
[75]
Edgar, R., Friedman, N., Molshanski-Mor, S. and Qimron, U. (2012) Reversing bacterial resistance to antibiotics by phage-mediated delivery of dominant sensitive genes. Appl. Environ. Microbiol., 78, 744–751
CrossRef Pubmed Google scholar
[76]
Libis, V. K., Bernheim, A. G., Basier, C., Jaramillo-Riveri, S., Deyell, M., Aghoghogbe, I., Atanaskovic, I., Bencherif, A. C., Benony, M., Koutsoubelis, N., (2014) Silencing of antibiotic resistance in E. coli with engineered phage bearing small regulatory RNAs. ACS Synth. Biol., 3, 1003–1006
CrossRef Pubmed Google scholar
[77]
Bárdy, P., Pantůček, R., Benešík, M. and Doškař, J. (2016) Genetically modified bacteriophages in applied microbiology. J. Appl. Microbiol., 121, 618–633
CrossRef Pubmed Google scholar
[78]
Frey, J. (2007) Biological safety concepts of genetically modified live bacterial vaccines. Vaccine, 25, 5598–5605
CrossRef Pubmed Google scholar
[79]
http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm293952.htm
[80]
http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Public_assessment_report/human/002617/WC500158413.pdf

ACKNOWLEDGMENTS

This work was supported by the Bill and Melinda Gates Foundation under the Grand Challenges Explorations grant (OPP1139488).

COMPLIANCE WITH ETHICS GUIDELINES

The authors Russell Brown, Andreas Lengeling and Baojun Wang declare that they have no conflict of interests.
This article does not contain any studies with human or animal subjects performed by any of the authors.

OPEN ACCESS

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Funding
 

RIGHTS & PERMISSIONS

2017 The Author(s) 2017. This article is published with open access at link.springer.com and journal.hep.com.cn
AI Summary AI Mindmap
PDF(1627 KB)

Accesses

Citations

Detail

Sections
Recommended

/