Quantum conformational transition in biological macromolecule

Liaofu Luo , Jun Lv

Quant. Biol. ›› 2017, Vol. 5 ›› Issue (2) : 143 -158.

PDF (584KB)
Quant. Biol. ›› 2017, Vol. 5 ›› Issue (2) : 143 -158. DOI: 10.1007/s40484-016-0087-9
REVIEW
REVIEW

Quantum conformational transition in biological macromolecule

Author information +
History +
PDF (584KB)

Abstract

Background: Recently we proposed a quantum theory on the conformational change of biomolecule, deduced several equations on protein folding rate from the first principles and discussed the experimental tests of the theory. The article is a review of these works.

Methods: Based on the general equation of the conformation-transitional rate several theoretical results are deduced and compared with experimental data through bioinformatics methods.

Results: The temperature dependence and the denaturant concentration dependence of the protein folding rate are deduced and compared with experimental data. The quantitative relation between protein folding rate and torsional mode number (or chain length) is deduced and the obtained formula can be applied to RNA folding as well. The quantum transition theory of two-state protein is successfully generalized to multi-state protein folding. Then, how to make direct experimental tests on the quantum property of the conformational transition of biomolecule is discussed, which includes the study of protein photo-folding and the observation of the fluctuation of the fluorescence intensity emitted from the protein folding/unfolding event. Finally, the potential applications of the present quantum folding theory to molecular biological problems are sketched in two examples: the glucose transport across membrane and the induced pluripotency in stem cell.

Conclusions: The above results show that the quantum mechanics provides a unifying and logically simple theoretical starting point in studying the conformational change of biological macromolecules. The far-reaching results in practical application of the theory are expected.

Graphical abstract

Keywords

conformational change / quantum transition / protein folding / RNA folding / temperature dependence

Cite this article

Download citation ▾
Liaofu Luo, Jun Lv. Quantum conformational transition in biological macromolecule. Quant. Biol., 2017, 5(2): 143-158 DOI:10.1007/s40484-016-0087-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Luo, L. F. (2014) Quantum theory on protein folding. Sci. China Phys. Mech. Astron., 57, 458–468

[2]

Luo, L. F. (2011) Protein Folding as a quantum transition between conformational states. Front. Phys.6, 133–140

[3]

Lv, J. and Luo,  L. (2014) Statistical analyses of protein folding rates from the view of quantum transition. Sci. China Life Sci.57, 1197–1212

[4]

Luo, L. F. and Lv, J. (2015)Quantitative relations in protein and RNA folding deduced from quantum theory. bioRxiv:

[5]

Luo, L. F. (2015) A model on avian genome evolution. bioRxiv: 160;arXiv: 1411.2205, 

[6]

Hameroff, S. and Penrose, R. (2014) Consciousness in the universe: a review of the ‘Orch OR’ theory. Phys. Life Rev.11, 39–78

[7]

Fisher, M. P. A.  (2015) Quantum cognition: The possibility of processing with nuclear spins in the brain. Ann. Phys.362, 593–602

[8]

Melkikh, A. V.  (2014) Congenital programs of the behavior and nontrivial quantum effects in the neurons work. Biosystems119, 10–19

[9]

Gauger, E. M. Rieper, E. Morton, J. J. L. Benjamin, S. C.  and  Vedral, V.  (2011) Sustained quantum coherence and entanglement in the avian compass. Phys. Rev. Lett.106, 040503

[10]

Eyring, H.Lin,  S. H. and Lin, M.  (1980) Basic Chemical Kinetics. New York: Wiley

[11]

Maxwell, K. L. Wildes, D. Zarrine-Afsar, A. De Los Rios, M. A. Brown, A. G. Friel, C. T. Hedberg, L. Horng, J. C. Bona, D. Miller, E. J.  (2005) Protein folding: defining a “standard” set of experimental conditions and a preliminary kinetic data set of two-state proteins. Protein Sci.14, 602–616

[12]

Nguyen, H.Jager,  M.Moretto, A. Gruebele, M.  and  Kelly, J. W.  (2003) Tuning the free-energy landscape of a WW domain by temperature, mutation, and truncation. Proc. Natl. Acad. Sci. USA100, 3948–3953

[13]

Ghosh, K.Ozkan,  S. B. and Dill, K. A.  (2007) The ultimate speed limit to protein folding is conformational searching. J. Am. Chem. Soc.129, 11920–11927

[14]

Dimitriadis, G.Drysdale,  A.Myers, J. K. Arora, P. Radford, S. E. Oas, T. G.  and  Smith, D. A.  (2004) Microsecond folding dynamics of the F13W G29A mutant of the B domain of staphylococcal protein A by laser-induced temperature jump. Proc. Natl. Acad. Sci. USA101, 3809–3814

[15]

Kuhlman, B.Luisi,  D. L.Evans, P. A.  and  Raleigh, D. P.  (1998) Global analysis of the effects of temperature and denaturant on the folding and unfolding kinetics of the N-terminal domain of the protein L9. J. Mol. Biol.284, 1661–1670

[16]

Mayor, U.Johnson,  C. M.Daggett, V.  and  Fersht, A. R.  (2000) Protein folding and unfolding in microseconds to nanoseconds by experiment and simulation. Proc. Natl. Acad. Sci. USA97, 13518–13522

[17]

Manyusa, S. and Whitford, D. (1999) Defining folding and unfolding reactions of apocytochrome b5 using equilibrium and kinetic fluorescence measurements. Biochemistry38, 9533–9540

[18]

Bunagan, M. R. Yang, X. Saven, J. G.  and  Gai, F.  (2006) Ultrafast folding of a computationally designed Trp-cage mutant: Trp2-cage. J. Phys. Chem. B110, 3759–3763

[19]

Qiu, L.Pabit,  S. A.Roitberg, A. E.  and  Hagen, S. J.  (2002) Smaller and faster: the 20-residue Trp-cage protein folds in 4 micros. J. Am. Chem. Soc.124, 12952–12953

[20]

Yang, W. Y. and Gruebele, M. (2004) Rate-temperature relationships in l-repressor  fragment  l  6-85  folding. Biochemistry43, 13018–13025

[21]

Jäger, M.Nguyen,  H.Crane, J. C. Kelly, J. W.  and  Gruebele, M.  (2001) The folding mechanism of a beta-sheet: the WW domain. J. Mol. Biol.311, 373–393

[22]

Wang, T.Zhu,  Y. J. and Gai, F.  (2004) Folding of a three-helix bundle at the folding speed limit. J. Phys. Chem. B108, 3694–3697

[23]

Zhu, Y.Alonso,  D. O.Maki, K. Huang, C. Y. Lahr, S. J. Daggett, V. Roder, H. DeGrado, W. F.  and  Gai, F.  (2003) Ultrafast folding of α3D: a de novo designed three-helix bundle protein. Proc. Natl. Acad. Sci. USA100, 15486–15491

[24]

Spector, S. and Raleigh, D. P.  (1999) Submillisecond folding of the peripheral subunit-binding domain. J. Mol. Biol.293, 763–768

[25]

Uversky, V. N.  (2013) Unusual biophysics of intrinsically disordered proteins. Biochim. Biophys. Acta1834, 932–951

[26]

Bonetti, D.Toto,  A.Giri, R. Morrone, A. Sanfelice, D. Pastore, A. Temussi, P. Gianni, S.  and  Brunori, M.  (2014) The kinetics of folding of frataxin. Phys. Chem. Chem. Phys.16, 6391–6397

[27]

Garbuzynskiy, S. O. Ivankov, D. N. Bogatyreva, N. S.  and  Finkelstein, A. V.  (2013) Golden triangle for folding rates of globular proteins. Proc. Natl. Acad. Sci. USA110, 147–150

[28]

Thirumalai, D. and Hyeon, C. (2005) RNA and protein folding: common themes and variations. Biochemistry44, 4957–4970

[29]

Woodson, S. A.  (2010) Compact intermediates in RNA folding. Annu. Rev. Biophys.39, 61–77

[30]

Hyeon, C. and Thirumalai,  D. (2012) Chain length determines the folding rates of RNA. Biophys. J.102, L11–L13

[31]

Kamagata, K.Arai,  M. and Kuwajima, K.  (2004) Unification of the folding mechanisms of non-two-state and two-state proteins. J. Mol. Biol.339, 951–965

[32]

Zhang, Y. and Luo,  L. (2011) The dynamical contact order: protein folding rate parameters based on quantum conformational transitions. Sci. China Life Sci.54, 386–392

[33]

Cavagnero, S.Dyson,  H. J. and Wright, P. E.  (1999) Effect of H helix destabilizing mutations on the kinetic and equilibrium folding of apomyoglobin. J. Mol. Biol.285, 269–282

[34]

Golbik, R.Zahn,  R.Harding, S. E.  and  Fersht, A. R.  (1998) Thermodynamic stability and folding of GroEL minichaperones. J. Mol. Biol.276, 505–515

[35]

Banachewicz, W.Johnson,  C. M. and Fersht, A. R.  (2011) Folding of the Pit1 homeodomain near the speed limit. Proc. Natl. Acad. Sci. USA108, 569–573

[36]

Marianayagam, N. J. Khan, F. Male, L.  and  Jackson, S. E.  (2002) Fast folding of a four-helical bundle protein. J. Am. Chem. Soc.124, 9744–9750

[37]

Löw, C.Weininger,  U.Zeeb, M. Zhang, W. Laue, E. D. Schmid, F. X.  and  Balbach, J.  (2007) Folding mechanism of an ankyrin repeat protein: scaffold and active site formation of human CDK inhibitor p19(INK4d). J. Mol. Biol.373, 219–231

[38]

Calosci, N.Chi,  C. N.Richter, B. Camilloni, C. Engström, A. Eklund, L. Travaglini-Allocatelli, C. Gianni, S. Vendruscolo, M.  and  Jemth, P.  (2008) Comparison of successive transition states for folding reveals alternative early folding pathways of two homologous proteins. Proc. Natl. Acad. Sci. USA105, 19241–19246

[39]

Schreiber, G. and Fersht, A. R.  (1993) The refolding of cis- and trans-peptidylprolyl isomers of barstar. Biochemistry32, 11195–11203

[40]

Burns, L. L.Dalessio,  P. M. and Ropson, I. J.  (1998) Folding mechanism of three structurally similar beta-sheet proteins. Proteins33, 107–118

[41]

Dalessio, P. M.  and  Ropson, I. J.  (2000) Beta-sheet proteins with nearly identical structures have different folding intermediates. Biochemistry39, 860–871

[42]

Gianni, S.Guydosh,  N. R.Khan, F. Caldas, T. D. Mayor, U. White, G. W. DeMarco, M. L. Daggett, V.  and  Fersht, A. R.  (2003) Unifying features in protein-folding mechanisms. Proc. Natl. Acad. Sci. USA100, 13286–13291

[43]

Gianni, S.Calosci,  N.Aelen, J. M. Vuister, G. W. Brunori, M.  and  Travaglini-Allocatelli, C.  (2005) Kinetic folding mechanism of PDZ2 from PTP-BL. Protein Eng. Des. Sel.18, 389–395

[44]

Calloni, G.Taddei,  N.Plaxco, K. W. Ramponi, G. Stefani, M.  and  Chiti, F.  (2003) Comparison of the folding processes of distantly related proteins. Importance of hydrophobic content in folding. J. Mol. Biol.330, 577–591

[45]

Liu, C.Gaspar,  J. A.Wong, H. J.  and  Meiering, E. M.  (2002) Conserved and nonconserved features of the folding pathway of hisactophilin, a beta-trefoil protein. Protein Sci.11, 669–679

[46]

Parker, M. J. Dempsey, C. E. Lorch, M.  and  Clarke, A. R.  (1997) Acquisition of native beta-strand topology during the rapid collapse phase of protein folding. Biochemistry36, 13396–13405

[47]

Forsyth, W. R.  and  Matthews, C. R.  (2002) Folding mechanism of indole-3-glycerol phosphate synthase from Sulfolobus solfataricus: a test of the conservation of folding mechanisms hypothesis in (beta(alpha))(8) barrels. J. Mol. Biol.320, 1119–1133

[48]

Maki, K.Cheng,  H.Dolgikh, D. A. Shastry, M. C.  and  Roder, H.  (2004) Early events during folding of wild-type staphylococcal nuclease and a single-tryptophan variant studied by ultrarapid mixing. J. Mol. Biol.338, 383–400

[49]

Parker, M. J. Spencer, J. Jackson, G. S. Burston, S. G. Hosszu, L. L. Craven, C. J. Waltho, J. P.  and  Clarke, A. R.  (1996) Domain behavior during the folding of a thermostable phosphoglycerate kinase. Biochemistry35, 15740–15752

[50]

Parker, M. J. Spencer, J.  and  Clarke, A. R.  (1995) An integrated kinetic analysis of intermediates and transition states in protein folding reactions. J. Mol. Biol.253, 771–786

[51]

Ogasahara, K. and Yutani, K. (1994) Unfolding-refolding kinetics of the tryptophan synthase alpha subunit by CD and fluorescence measurements. J. Mol. Biol.236, 1227–1240

[52]

Jennings, P. A. Finn, B. E. Jones, B. E.  and  Matthews, C. R.  (1993) A reexamination of the folding mechanism of dihydrofolate reductase from Escherichia coli: verification and refinement of a four-channel model. Biochemistry32, 3783–3789

[53]

Matouschek, A.Kellis,  J. T. JrSerrano,  L.Bycroft, M.  and  Fersht, A. R.  (1990) Transient folding intermediates characterized by protein engineering. Nature346, 440–445

[54]

Schymkowitz, J. W. Rousseau, F. Irvine, L. R.  and  Itzhaki, L. S.  (2000) The folding pathway of the cell-cycle regulatory protein p13suc1: clues for the mechanism of domain swapping. Structure8, 89–100

[55]

Teilum, K.Thormann,  T.Caterer, N. R. Poulsen, H. I. Jensen, P. H. Knudsen, J. Kragelund, B. B.  and  Poulsen, F. M.  (2005) Different secondary structure elements as scaffolds for protein folding transition states of two homologous four-helix bundles. Proteins59, 80–90

[56]

Fowler, S. B.  and  Clarke, J.  (2001) Mapping the folding pathway of an immunoglobulin domain: structural detail from Phi value analysis and movement of the transition state. Structure9, 355–366

[57]

Cota, E. and Clarke,  J. (2000) Folding of beta-sandwich proteins: three-state  transition of  a  fibronectin  type  III  module.  Protein Sci.9, 112–120

[58]

Jemth, P.Day,  R.Gianni, S. Khan, F. Allen, M. Daggett, V.  and  Fersht, A. R.  (2005) The structure of the major transition state for folding of an FF domain from experiment and simulation. J. Mol. Biol.350, 363–378

[59]

Melnik, B. S. Marchenkov, V. V. Evdokimov, S. R. Samatova, E. N.  and  Kotova, N. V.  (2008) Multy-state protein: determination of carbonic anhydrase free-energy landscape. Biochem. Biophys. Res. Commun.369, 701–706

[60]

Tang, K. S.Guralnick,  B. J.Wang, W. K. Fersht, A. R.  and  Itzhaki, L. S.  (1999) Stability and folding of the tumour suppressor protein p16. J. Mol. Biol.285, 1869–1886

[61]

Laurents, D. V. Corrales, S. Elías-Arnanz, M. Sevilla, P. Rico, M.  and  Padmanabhan, S.  (2000) Folding kinetics of phage 434 Cro protein. Biochemistry39, 13963–13973

[62]

Parker, M. J.  and  Marqusee, S.  (1999) The cooperativity of burst phase reactions explored. J. Mol. Biol.293, 1195–1210

[63]

Lowe, A. R. and Itzhaki, L. S.  (2007) Rational redesign of the folding pathway of a modular protein. Proc. Natl. Acad. Sci. USA104, 2679–2684

[64]

Choe, S. E.Matsudaira,  P. T.Osterhout, J. Wagner, G.  and  Shakhnovich, E. I.  (1998) Folding kinetics of villin 14T, a protein domain with a central beta-sheet and two hydrophobic cores. Biochemistry37, 14508–14518

[65]

Muñoz, V.Lopez,  E. M.Jager, M.  and  Serrano, L.  (1994) Kinetic characterization of the chemotactic protein from Escherichia coli, CheY. kinetic analysis of the inverse hydrophobic effect. Biochemistry33, 5858–5866

[66]

Stagg, L.Samiotakis,  A.Homouz, D. Cheung, M. S.  and  Wittung-Stafshede, P.  (2010) Residue-specific analysis of frustration in the folding landscape of repeat beta/alpha protein apoflavodoxin. J. Mol. Biol.396, 75–89

[67]

Ratcliff, K.Corn,  J. and Marqusee, S.  (2009) Structure, stability, and folding of ribonuclease H1 from the moderately thermophilic Chlorobium tepidum: comparison with thermophilic and mesophilic homologues. Biochemistry48, 5890–5898

[68]

Luo, L. (2012) Protein photo-folding and quantum folding theory. Sci. China Life Sci.55, 533–541

[69]

Fang, C.Frontiera,  R. R.Tran, R. Mathies, R. A.  and  Mathies, R. A.  (2009) Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy. Nature462, 200–204

[70]

Zurek, W. H. (2002) Decoherence and the transition from quantum to classical – Revisited. In Quantum Decoherence. 16–31. Birkhäuser Basel, Doi:10.1007/978-3-7643-7808-0_1.

[71]

Tegmark, M. (2000) Importance of quantum decoherence in brain processes. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics61, 4194–4206

[72]

Deng, D.Xu,  C.Sun, P. Wu, J.Yan,  C.Hu, M.  and  Yan, N.  (2014) Crystal structure of the human glucose transporter GLUT1. Nature510, 121–125

[73]

Luo, L. F. (2014) Quantum theory on glucose transport across membrane. arXiv: 1407.7198 at 

[74]

Hou, P.Li,  Y.Zhang, X. Liu, C. Guan, J. Li, H.Zhao,  T.Ye, J. Yang, W. Liu, K. (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science341, 651–654

[75]

Luo, L. F. (2015) From chemically to physically induced pluripotency in stem cell. arXiv: 1506.02053 at 

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (584KB)

Supplementary files

Supplementary Material

1971

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/