Quantum conformational transition in biological macromolecule
Liaofu Luo, Jun Lv
Quantum conformational transition in biological macromolecule
Background: Recently we proposed a quantum theory on the conformational change of biomolecule, deduced several equations on protein folding rate from the first principles and discussed the experimental tests of the theory. The article is a review of these works.
Methods: Based on the general equation of the conformation-transitional rate several theoretical results are deduced and compared with experimental data through bioinformatics methods.
Results: The temperature dependence and the denaturant concentration dependence of the protein folding rate are deduced and compared with experimental data. The quantitative relation between protein folding rate and torsional mode number (or chain length) is deduced and the obtained formula can be applied to RNA folding as well. The quantum transition theory of two-state protein is successfully generalized to multi-state protein folding. Then, how to make direct experimental tests on the quantum property of the conformational transition of biomolecule is discussed, which includes the study of protein photo-folding and the observation of the fluctuation of the fluorescence intensity emitted from the protein folding/unfolding event. Finally, the potential applications of the present quantum folding theory to molecular biological problems are sketched in two examples: the glucose transport across membrane and the induced pluripotency in stem cell.
Conclusions: The above results show that the quantum mechanics provides a unifying and logically simple theoretical starting point in studying the conformational change of biological macromolecules. The far-reaching results in practical application of the theory are expected.
conformational change / quantum transition / protein folding / RNA folding / temperature dependence
[1] |
Luo, L. F. (2014) Quantum theory on protein folding. Sci. China Phys. Mech. Astron., 57, 458–468
CrossRef
Google scholar
|
[2] |
Luo, L. F. (2011) Protein Folding as a quantum transition between conformational states. Front. Phys., 6, 133–140
CrossRef
Google scholar
|
[3] |
Lv, J. and Luo, L. (2014) Statistical analyses of protein folding rates from the view of quantum transition. Sci. China Life Sci., 57, 1197–1212
CrossRef
Pubmed
Google scholar
|
[4] |
Luo, L. F. and Lv, J. (2015)Quantitative relations in protein and RNA folding deduced from quantum theory. bioRxiv: http://dx.doi.org/10.1101/021782
|
[5] |
Luo, L. F. (2015) A model on avian genome evolution. bioRxiv: http://dx.doi.org/10.1101/034710; arXiv: 1411.2205, http://arxiv.org/abs/1411.2205
|
[6] |
Hameroff, S. and Penrose, R. (2014) Consciousness in the universe: a review of the ‘Orch OR’ theory. Phys. Life Rev., 11, 39–78
CrossRef
Pubmed
Google scholar
|
[7] |
Fisher, M. P. A. (2015) Quantum cognition: The possibility of processing with nuclear spins in the brain. Ann. Phys., 362, 593–602
CrossRef
Google scholar
|
[8] |
Melkikh, A. V. (2014) Congenital programs of the behavior and nontrivial quantum effects in the neurons work. Biosystems, 119, 10–19
CrossRef
Pubmed
Google scholar
|
[9] |
Gauger, E. M. , Rieper, E. , Morton, J. J. L. , Benjamin, S. C. and Vedral, V. (2011) Sustained quantum coherence and entanglement in the avian compass. Phys. Rev. Lett., 106, 040503
CrossRef
Pubmed
Google scholar
|
[10] |
Eyring, H., Lin, S. H. and Lin, M. (1980) Basic Chemical Kinetics. New York: Wiley
|
[11] |
Maxwell, K. L. , Wildes, D. , Zarrine-Afsar, A. , De Los Rios, M. A. , Brown, A. G. , Friel, C. T. , Hedberg, L. , Horng, J. C. , Bona, D. , Miller, E. J. ,
CrossRef
Pubmed
Google scholar
|
[12] |
Nguyen, H., Jager, M., Moretto, A. , Gruebele, M. and Kelly, J. W. (2003) Tuning the free-energy landscape of a WW domain by temperature, mutation, and truncation. Proc. Natl. Acad. Sci. USA, 100, 3948–3953
CrossRef
Pubmed
Google scholar
|
[13] |
Ghosh, K., Ozkan, S. B. and Dill, K. A. (2007) The ultimate speed limit to protein folding is conformational searching. J. Am. Chem. Soc., 129, 11920–11927
CrossRef
Pubmed
Google scholar
|
[14] |
Dimitriadis, G., Drysdale, A., Myers, J. K. , Arora, P. , Radford, S. E. , Oas, T. G. and Smith, D. A. (2004) Microsecond folding dynamics of the F13W G29A mutant of the B domain of staphylococcal protein A by laser-induced temperature jump. Proc. Natl. Acad. Sci. USA, 101, 3809–3814
CrossRef
Pubmed
Google scholar
|
[15] |
Kuhlman, B., Luisi, D. L., Evans, P. A. and Raleigh, D. P. (1998) Global analysis of the effects of temperature and denaturant on the folding and unfolding kinetics of the N-terminal domain of the protein L9. J. Mol. Biol., 284, 1661–1670
CrossRef
Pubmed
Google scholar
|
[16] |
Mayor, U., Johnson, C. M., Daggett, V. and Fersht, A. R. (2000) Protein folding and unfolding in microseconds to nanoseconds by experiment and simulation. Proc. Natl. Acad. Sci. USA, 97, 13518–13522
CrossRef
Pubmed
Google scholar
|
[17] |
Manyusa, S. and Whitford, D. (1999) Defining folding and unfolding reactions of apocytochrome b5 using equilibrium and kinetic fluorescence measurements. Biochemistry, 38, 9533–9540
CrossRef
Pubmed
Google scholar
|
[18] |
Bunagan, M. R. , Yang, X. , Saven, J. G. and Gai, F. (2006) Ultrafast folding of a computationally designed Trp-cage mutant: Trp2-cage. J. Phys. Chem. B, 110, 3759–3763
CrossRef
Pubmed
Google scholar
|
[19] |
Qiu, L., Pabit, S. A., Roitberg, A. E. and Hagen, S. J. (2002) Smaller and faster: the 20-residue Trp-cage protein folds in 4 micros. J. Am. Chem. Soc., 124, 12952–12953
CrossRef
Pubmed
Google scholar
|
[20] |
Yang, W. Y. and Gruebele, M. (2004) Rate-temperature relationships in l-repressor fragment l 6-85 folding. Biochemistry, 43, 13018–13025
CrossRef
Pubmed
Google scholar
|
[21] |
Jäger, M., Nguyen, H., Crane, J. C. , Kelly, J. W. and Gruebele, M. (2001) The folding mechanism of a beta-sheet: the WW domain. J. Mol. Biol., 311, 373–393
CrossRef
Pubmed
Google scholar
|
[22] |
Wang, T., Zhu, Y. J. and Gai, F. (2004) Folding of a three-helix bundle at the folding speed limit. J. Phys. Chem. B, 108, 3694–3697
CrossRef
Google scholar
|
[23] |
Zhu, Y., Alonso, D. O., Maki, K. , Huang, C. Y. , Lahr, S. J. , Daggett, V. , Roder, H. , DeGrado, W. F. and Gai, F. (2003) Ultrafast folding of α3D: a de novo designed three-helix bundle protein. Proc. Natl. Acad. Sci. USA, 100, 15486–15491
CrossRef
Pubmed
Google scholar
|
[24] |
Spector, S. and Raleigh, D. P. (1999) Submillisecond folding of the peripheral subunit-binding domain. J. Mol. Biol., 293, 763–768
CrossRef
Pubmed
Google scholar
|
[25] |
Uversky, V. N. (2013) Unusual biophysics of intrinsically disordered proteins. Biochim. Biophys. Acta, 1834, 932–951
CrossRef
Pubmed
Google scholar
|
[26] |
Bonetti, D., Toto, A., Giri, R. , Morrone, A. , Sanfelice, D. , Pastore, A. , Temussi, P. , Gianni, S. and Brunori, M. (2014) The kinetics of folding of frataxin. Phys. Chem. Chem. Phys., 16, 6391–6397
CrossRef
Pubmed
Google scholar
|
[27] |
Garbuzynskiy, S. O. , Ivankov, D. N. , Bogatyreva, N. S. and Finkelstein, A. V. (2013) Golden triangle for folding rates of globular proteins. Proc. Natl. Acad. Sci. USA, 110, 147–150
CrossRef
Pubmed
Google scholar
|
[28] |
Thirumalai, D. and Hyeon, C. (2005) RNA and protein folding: common themes and variations. Biochemistry, 44, 4957–4970
CrossRef
Pubmed
Google scholar
|
[29] |
Woodson, S. A. (2010) Compact intermediates in RNA folding. Annu. Rev. Biophys., 39, 61–77
CrossRef
Pubmed
Google scholar
|
[30] |
Hyeon, C. and Thirumalai, D. (2012) Chain length determines the folding rates of RNA. Biophys. J., 102, L11–L13
CrossRef
Pubmed
Google scholar
|
[31] |
Kamagata, K., Arai, M. and Kuwajima, K. (2004) Unification of the folding mechanisms of non-two-state and two-state proteins. J. Mol. Biol., 339, 951–965
CrossRef
Pubmed
Google scholar
|
[32] |
Zhang, Y. and Luo, L. (2011) The dynamical contact order: protein folding rate parameters based on quantum conformational transitions. Sci. China Life Sci., 54, 386–392
CrossRef
Pubmed
Google scholar
|
[33] |
Cavagnero, S., Dyson, H. J. and Wright, P. E. (1999) Effect of H helix destabilizing mutations on the kinetic and equilibrium folding of apomyoglobin. J. Mol. Biol., 285, 269–282
CrossRef
Pubmed
Google scholar
|
[34] |
Golbik, R., Zahn, R., Harding, S. E. and Fersht, A. R. (1998) Thermodynamic stability and folding of GroEL minichaperones. J. Mol. Biol., 276, 505–515
CrossRef
Pubmed
Google scholar
|
[35] |
Banachewicz, W., Johnson, C. M. and Fersht, A. R. (2011) Folding of the Pit1 homeodomain near the speed limit. Proc. Natl. Acad. Sci. USA, 108, 569–573
CrossRef
Pubmed
Google scholar
|
[36] |
Marianayagam, N. J. , Khan, F. , Male, L. and Jackson, S. E. (2002) Fast folding of a four-helical bundle protein. J. Am. Chem. Soc., 124, 9744–9750
CrossRef
Pubmed
Google scholar
|
[37] |
Löw, C., Weininger, U., Zeeb, M. , Zhang, W. , Laue, E. D. , Schmid, F. X. and Balbach, J. (2007) Folding mechanism of an ankyrin repeat protein: scaffold and active site formation of human CDK inhibitor p19(INK4d). J. Mol. Biol., 373, 219–231
CrossRef
Pubmed
Google scholar
|
[38] |
Calosci, N., Chi, C. N., Richter, B. , Camilloni, C. , Engström, A. , Eklund, L. , Travaglini-Allocatelli, C. , Gianni, S. , Vendruscolo, M. and Jemth, P. (2008) Comparison of successive transition states for folding reveals alternative early folding pathways of two homologous proteins. Proc. Natl. Acad. Sci. USA, 105, 19241–19246
CrossRef
Pubmed
Google scholar
|
[39] |
Schreiber, G. and Fersht, A. R. (1993) The refolding of cis- and trans-peptidylprolyl isomers of barstar. Biochemistry, 32, 11195–11203
CrossRef
Pubmed
Google scholar
|
[40] |
Burns, L. L., Dalessio, P. M. and Ropson, I. J. (1998) Folding mechanism of three structurally similar beta-sheet proteins. Proteins, 33, 107–118
CrossRef
Pubmed
Google scholar
|
[41] |
Dalessio, P. M. and Ropson, I. J. (2000) Beta-sheet proteins with nearly identical structures have different folding intermediates. Biochemistry, 39, 860–871
CrossRef
Pubmed
Google scholar
|
[42] |
Gianni, S., Guydosh, N. R., Khan, F. , Caldas, T. D. , Mayor, U. , White, G. W. , DeMarco, M. L. , Daggett, V. and Fersht, A. R. (2003) Unifying features in protein-folding mechanisms. Proc. Natl. Acad. Sci. USA, 100, 13286–13291
CrossRef
Pubmed
Google scholar
|
[43] |
Gianni, S., Calosci, N., Aelen, J. M. , Vuister, G. W. , Brunori, M. and Travaglini-Allocatelli, C. (2005) Kinetic folding mechanism of PDZ2 from PTP-BL. Protein Eng. Des. Sel., 18, 389–395
CrossRef
Pubmed
Google scholar
|
[44] |
Calloni, G., Taddei, N., Plaxco, K. W. , Ramponi, G. , Stefani, M. and Chiti, F. (2003) Comparison of the folding processes of distantly related proteins. Importance of hydrophobic content in folding. J. Mol. Biol., 330, 577–591
CrossRef
Pubmed
Google scholar
|
[45] |
Liu, C., Gaspar, J. A., Wong, H. J. and Meiering, E. M. (2002) Conserved and nonconserved features of the folding pathway of hisactophilin, a beta-trefoil protein. Protein Sci., 11, 669–679
CrossRef
Pubmed
Google scholar
|
[46] |
Parker, M. J. , Dempsey, C. E. , Lorch, M. and Clarke, A. R. (1997) Acquisition of native beta-strand topology during the rapid collapse phase of protein folding. Biochemistry, 36, 13396–13405
CrossRef
Pubmed
Google scholar
|
[47] |
Forsyth, W. R. and Matthews, C. R. (2002) Folding mechanism of indole-3-glycerol phosphate synthase from Sulfolobus solfataricus: a test of the conservation of folding mechanisms hypothesis in (beta(alpha))(8) barrels. J. Mol. Biol., 320, 1119–1133
CrossRef
Pubmed
Google scholar
|
[48] |
Maki, K., Cheng, H., Dolgikh, D. A. , Shastry, M. C. and Roder, H. (2004) Early events during folding of wild-type staphylococcal nuclease and a single-tryptophan variant studied by ultrarapid mixing. J. Mol. Biol., 338, 383–400
CrossRef
Pubmed
Google scholar
|
[49] |
Parker, M. J. , Spencer, J. , Jackson, G. S. , Burston, S. G. , Hosszu, L. L. , Craven, C. J. , Waltho, J. P. and Clarke, A. R. (1996) Domain behavior during the folding of a thermostable phosphoglycerate kinase. Biochemistry, 35, 15740–15752
CrossRef
Pubmed
Google scholar
|
[50] |
Parker, M. J. , Spencer, J. and Clarke, A. R. (1995) An integrated kinetic analysis of intermediates and transition states in protein folding reactions. J. Mol. Biol., 253, 771–786
CrossRef
Pubmed
Google scholar
|
[51] |
Ogasahara, K. and Yutani, K. (1994) Unfolding-refolding kinetics of the tryptophan synthase alpha subunit by CD and fluorescence measurements. J. Mol. Biol., 236, 1227–1240
CrossRef
Pubmed
Google scholar
|
[52] |
Jennings, P. A. , Finn, B. E. , Jones, B. E. and Matthews, C. R. (1993) A reexamination of the folding mechanism of dihydrofolate reductase from Escherichia coli: verification and refinement of a four-channel model. Biochemistry, 32, 3783–3789
CrossRef
Pubmed
Google scholar
|
[53] |
Matouschek, A., Kellis, J. T. Jr, Serrano, L., Bycroft, M. and Fersht, A. R. (1990) Transient folding intermediates characterized by protein engineering. Nature, 346, 440–445
CrossRef
Pubmed
Google scholar
|
[54] |
Schymkowitz, J. W. , Rousseau, F. , Irvine, L. R. and Itzhaki, L. S. (2000) The folding pathway of the cell-cycle regulatory protein p13suc1: clues for the mechanism of domain swapping. Structure, 8, 89–100
CrossRef
Pubmed
Google scholar
|
[55] |
Teilum, K., Thormann, T., Caterer, N. R. , Poulsen, H. I. , Jensen, P. H. , Knudsen, J. , Kragelund, B. B. and Poulsen, F. M. (2005) Different secondary structure elements as scaffolds for protein folding transition states of two homologous four-helix bundles. Proteins, 59, 80–90
CrossRef
Pubmed
Google scholar
|
[56] |
Fowler, S. B. and Clarke, J. (2001) Mapping the folding pathway of an immunoglobulin domain: structural detail from Phi value analysis and movement of the transition state. Structure, 9, 355–366
CrossRef
Pubmed
Google scholar
|
[57] |
Cota, E. and Clarke, J. (2000) Folding of beta-sandwich proteins: three-state transition of a fibronectin type III module. Protein Sci., 9, 112–120
CrossRef
Pubmed
Google scholar
|
[58] |
Jemth, P., Day, R., Gianni, S. , Khan, F. , Allen, M. , Daggett, V. and Fersht, A. R. (2005) The structure of the major transition state for folding of an FF domain from experiment and simulation. J. Mol. Biol., 350, 363–378
CrossRef
Pubmed
Google scholar
|
[59] |
Melnik, B. S. , Marchenkov, V. V. , Evdokimov, S. R. , Samatova, E. N. and Kotova, N. V. (2008) Multy-state protein: determination of carbonic anhydrase free-energy landscape. Biochem. Biophys. Res. Commun., 369, 701–706
CrossRef
Pubmed
Google scholar
|
[60] |
Tang, K. S., Guralnick, B. J., Wang, W. K. , Fersht, A. R. and Itzhaki, L. S. (1999) Stability and folding of the tumour suppressor protein p16. J. Mol. Biol., 285, 1869–1886
CrossRef
Pubmed
Google scholar
|
[61] |
Laurents, D. V. , Corrales, S. , Elías-Arnanz, M. , Sevilla, P. , Rico, M. and Padmanabhan, S. (2000) Folding kinetics of phage 434 Cro protein. Biochemistry, 39, 13963–13973
CrossRef
Pubmed
Google scholar
|
[62] |
Parker, M. J. and Marqusee, S. (1999) The cooperativity of burst phase reactions explored. J. Mol. Biol., 293, 1195–1210
CrossRef
Pubmed
Google scholar
|
[63] |
Lowe, A. R. and Itzhaki, L. S. (2007) Rational redesign of the folding pathway of a modular protein. Proc. Natl. Acad. Sci. USA, 104, 2679–2684
CrossRef
Pubmed
Google scholar
|
[64] |
Choe, S. E., Matsudaira, P. T., Osterhout, J. , Wagner, G. and Shakhnovich, E. I. (1998) Folding kinetics of villin 14T, a protein domain with a central beta-sheet and two hydrophobic cores. Biochemistry, 37, 14508–14518
CrossRef
Pubmed
Google scholar
|
[65] |
Muñoz, V., Lopez, E. M., Jager, M. and Serrano, L. (1994) Kinetic characterization of the chemotactic protein from Escherichia coli, CheY. kinetic analysis of the inverse hydrophobic effect. Biochemistry, 33, 5858–5866
CrossRef
Pubmed
Google scholar
|
[66] |
Stagg, L., Samiotakis, A., Homouz, D. , Cheung, M. S. and Wittung-Stafshede, P. (2010) Residue-specific analysis of frustration in the folding landscape of repeat beta/alpha protein apoflavodoxin. J. Mol. Biol., 396, 75–89
CrossRef
Pubmed
Google scholar
|
[67] |
Ratcliff, K., Corn, J. and Marqusee, S. (2009) Structure, stability, and folding of ribonuclease H1 from the moderately thermophilic Chlorobium tepidum: comparison with thermophilic and mesophilic homologues. Biochemistry, 48, 5890–5898
CrossRef
Pubmed
Google scholar
|
[68] |
Luo, L. (2012) Protein photo-folding and quantum folding theory. Sci. China Life Sci., 55, 533–541
CrossRef
Pubmed
Google scholar
|
[69] |
Fang, C., Frontiera, R. R., Tran, R. , Mathies, R. A. and Mathies, R. A. (2009) Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy. Nature, 462, 200–204
CrossRef
Pubmed
Google scholar
|
[70] |
Zurek, W. H. (2002) Decoherence and the transition from quantum to classical – Revisited. In Quantum Decoherence. 16–31. Birkhäuser Basel, Doi:10.1007/978-3-7643-7808-0_1.
|
[75] |
Tegmark, M. (2000) Importance of quantum decoherence in brain processes. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 61, 4194–4206
CrossRef
Pubmed
Google scholar
|
[71] |
Deng, D., Xu, C., Sun, P. , Wu, J., Yan, C., Hu, M. and Yan, N. (2014) Crystal structure of the human glucose transporter GLUT1. Nature, 510, 121–125
CrossRef
Pubmed
Google scholar
|
[72] |
Luo, L. F. (2014) Quantum theory on glucose transport across membrane. arXiv: 1407.7198 at http://arxiv.org/abs/1407.7198.
|
[73] |
Hou, P., Li, Y., Zhang, X. , Liu, C. , Guan, J. , Li, H., Zhao, T., Ye, J. , Yang, W. , Liu, K. ,
CrossRef
Pubmed
Google scholar
|
[74] |
Luo, L. F. (2015) From chemically to physically induced pluripotency in stem cell. arXiv: 1506.02053 at http://arxiv.org/abs/1506.02053.
|
/
〈 | 〉 |