Applications of integrative OMICs approaches to gene regulation studies

Jing Qin, Bin Yan, Yaohua Hu, Panwen Wang, Junwen Wang

PDF(1231 KB)
PDF(1231 KB)
Quant. Biol. ›› 2016, Vol. 4 ›› Issue (4) : 283-301. DOI: 10.1007/s40484-016-0085-y
REVIEW
REVIEW

Applications of integrative OMICs approaches to gene regulation studies

Author information +
History +

Abstract

Background: Functional genomics employs dozens of OMICs technologies to explore the functions of DNA, RNA and protein regulators in gene regulation processes. Despite each of these technologies being powerful tools on their own, like the parable of blind men and an elephant, any one single technology has a limited ability to depict the complex regulatory system. Integrative OMICS approaches have emerged and become an important area in biology and medicine. It provides a precise and effective way to study gene regulations.

Results: This article reviews current popular OMICs technologies, OMICs data integration strategies, and bioinformatics tools used for multi-dimensional data integration. We highlight the advantages of these methods, particularly in elucidating molecular basis of biological regulatory mechanisms.

Conclusions: To better understand the complexity of biological processes, we need powerful bioinformatics tools to integrate these OMICs data. Integrating multi-dimensional OMICs data will generate novel insights into system-level gene regulations and serves as a foundation for further hypothesis-driven research.

Graphical abstract

Keywords

gene regulatory networks / integrative analysis / OMICs / ChIP-seq / RNA-seq

Cite this article

Download citation ▾
Jing Qin, Bin Yan, Yaohua Hu, Panwen Wang, Junwen Wang. Applications of integrative OMICs approaches to gene regulation studies. Quant. Biol., 2016, 4(4): 283‒301 https://doi.org/10.1007/s40484-016-0085-y

References

[1]
Lee, K. L., Lim, S. K., Orlov, Y. L., Yit, Y., Yang, H., Ang, L. T., Poellinger, L. and Lim, B. (2011) Graded Nodal/Activin signaling titrates conversion of quantitative phospho-Smad2 levels into qualitative embryonic stem cell fate decisions. PLoS Genet., 7, e1002130
CrossRef Pubmed Google scholar
[2]
Newman, R. H., Hu, J., Rho, H. S., Xie, Z., Woodard, C., Neiswinger, J., Cooper, C., Shirley, M., Clark, H. M., Hu, S., (2013) Construction of human activity-based phosphorylation networks. Mol. Syst. Biol., 9, 655
CrossRef Pubmed Google scholar
[3]
Gavin, A. C., Bösche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J. M., Michon, A. M., Cruciat, C. M., (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 415, 141–147
CrossRef Pubmed Google scholar
[4]
Fields, S. and Song, O. (1989) A novel genetic system to detect protein-protein interactions. Nature, 340, 245–246
CrossRef Pubmed Google scholar
[5]
Chen, T. and Dent, S. Y. (2014) Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat. Rev. Genet., 15, 93–106
CrossRef Pubmed Google scholar
[6]
Dekker, J., Marti-Renom, M. A. and Mirny, L. A. (2013) Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet., 14, 390–403
CrossRef Pubmed Google scholar
[7]
Witten, J. T. and Ule, J. (2011) Understanding splicing regulation through RNA splicing maps. Trends Genet., 27, 89–97
CrossRef Pubmed Google scholar
[8]
Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. and Weissman, J. S. (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science, 324, 218–223
CrossRef Pubmed Google scholar
[9]
Geisler, S. and Coller, J. (2013) RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat. Rev. Mol. Cell Biol., 14, 699–712
CrossRef Pubmed Google scholar
[10]
Chen, L. L. (2016) The biogenesis and emerging roles of circular RNAs. Nat. Rev. Mol. Cell Biol., 17, 205–211
CrossRef Pubmed Google scholar
[11]
Quinn, J. J., Ilik, I. A., Qu, K., Georgiev, P., Chu, C., Akhtar, A. and Chang, H. Y. (2014) Revealing long noncoding RNA architecture and functions using domain-specific chromatin isolation by RNA purification. Nat. Biotechnol., 32, 933–940
CrossRef Pubmed Google scholar
[12]
Di Ruscio, A., Ebralidze, A. K., Benoukraf, T., Amabile, G., Goff, L. A., Terragni, J., Figueroa, M. E., De Figueiredo Pontes, L. L., Alberich-Jorda, M., Zhang, P., (2013) DNMT1-interacting RNAs block gene-specific DNA methylation. Nature, 503, 371–376
CrossRef Pubmed Google scholar
[13]
Gómez-Orte, E., Sáenz-Narciso, B., Moreno, S. and Cabello, J. (2013) Multiple functions of the noncanonical Wnt pathway. Trends Genet., 29, 545–553
CrossRef Pubmed Google scholar
[14]
Liang, J., Wan, M., Zhang, Y., Gu, P., Xin, H., Jung, S. Y., Qin, J., Wong, J., Cooney, A. J., Liu, D., (2008) Nanog and Oct4 associate with unique transcriptional repression complexes in embryonic stem cells. Nat. Cell Biol., 10, 731–739
CrossRef Pubmed Google scholar
[15]
Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M. and Sakaki, Y. (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA, 98, 4569–4574
CrossRef Pubmed Google scholar
[16]
Jain, M., Nilsson, R., Sharma, S., Madhusudhan, N., Kitami, T., Souza, A. L., Kafri, R., Kirschner, M. W., Clish, C. B. and Mootha, V. K. (2012) Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science, 336, 1040–1044
CrossRef Pubmed Google scholar
[17]
Park, P. J. (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet., 10, 669–680
CrossRef Pubmed Google scholar
[18]
Rhee, H. S. and Pugh, B. F. (2012) ChIP-exo method for identifying genomic location of DNA-binding proteins with near-single-nucleotide accuracy. In Current Protocols In Molecular Biology, Chapter 21, Unit 21–24. Wiley
[19]
Lister, R., Pelizzola, M., Dowen, R. H., Hawkins, R. D., Hon, G., Tonti-Filippini, J., Nery, J. R., Lee, L., Ye, Z., Ngo, Q. M., (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462, 315–322
CrossRef Pubmed Google scholar
[20]
Ball, M. P., Li, J. B., Gao, Y., Lee, J. H., LeProust, E. M., Park, I. H., Xie, B., Daley, G. Q. and Church, G. M. (2009) Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nat. Biotechnol., 27, 361–368
CrossRef Pubmed Google scholar
[21]
Pelizzola, M., Koga, Y., Urban, A. E., Krauthammer, M., Weissman, S., Halaban, R. and Molinaro, A. M. (2008) MEDME: an experimental and analytical methodology for the estimation of DNA methylation levels based on microarray derived MeDIP-enrichment. Genome Res., 18, 1652–1659
CrossRef Pubmed Google scholar
[22]
Meissner, A., Gnirke, A., Bell, G. W., Ramsahoye, B., Lander, E. S. and Jaenisch, R. (2005) Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res., 33, 5868–5877
CrossRef Pubmed Google scholar
[23]
Edwards, J. R., O’Donnell, A. H., Rollins, R. A., Peckham, H. E., Lee, C., Milekic, M. H., Chanrion, B., Fu, Y., Su, T., Hibshoosh, H., (2010) Chromatin and sequence features that define the fine and gross structure of genomic methylation patterns. Genome Res., 20, 972–980
CrossRef Pubmed Google scholar
[24]
He, H. H., Meyer, C. A., Hu, S. S., Chen, M. W., Zang, C., Liu, Y., Rao, P. K., Fei, T., Xu, H., Long, H., (2014) Refined DNase-seq protocol and data analysis reveals intrinsic bias in transcription factor footprint identification. Nat. Methods, 11, 73–78
CrossRef Pubmed Google scholar
[25]
Auerbach, R. K., Euskirchen, G., Rozowsky, J., Lamarre-Vincent, N., Moqtaderi, Z., Lefrançois, P., Struhl, K., Gerstein, M. and Snyder, M. (2009) Mapping accessible chromatin regions using Sono-Seq. Proc. Natl. Acad. Sci. USA, 106, 14926–14931
CrossRef Pubmed Google scholar
[26]
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. and Greenleaf, W. J. (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods, 10, 1213–1218
CrossRef Pubmed Google scholar
[27]
Gaulton, K. J., Nammo, T., Pasquali, L., Simon, J. M., Giresi, P. G., Fogarty, M. P., Panhuis, T. M., Mieczkowski, P., Secchi, A., Bosco, D., (2010) A map of open chromatin in human pancreatic islets. Nat. Genet., 42, 255–259
CrossRef Pubmed Google scholar
[28]
You, J. S., Kelly, T. K., De Carvalho, D. D., Taberlay, P. C., Liang, G. and Jones, P. A. (2011) OCT4 establishes and maintains nucleosome-depleted regions that provide additional layers of epigenetic regulation of its target genes. Proc. Natl. Acad. Sci. USA, 108, 14497–14502
CrossRef Pubmed Google scholar
[29]
Schones, D. E., Cui, K., Cuddapah, S., Roh, T. Y., Barski, A., Wang, Z., Wei, G. and Zhao, K. (2008) Dynamic regulation of nucleosome positioning in the human genome. Cell, 132, 887–898
CrossRef Pubmed Google scholar
[30]
Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. and Wold, B. (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods, 5, 621–628
CrossRef Pubmed Google scholar
[31]
Schena, M., Shalon, D., Davis, R. W. and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270, 467–470
CrossRef Pubmed Google scholar
[32]
Core, L. J., Waterfall, J. J. and Lis, J. T. (2008) Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science, 322, 1845–1848
CrossRef Pubmed Google scholar
[33]
Chi, S. W., Zang, J. B., Mele, A. and Darnell, R. B. (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature, 460, 479–486
Pubmed
[34]
German, M. A., Pillay, M., Jeong, D. H., Hetawal, A., Luo, S., Janardhanan, P., Kannan, V., Rymarquis, L. A., Nobuta, K., German, R., (2008) Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat. Biotechnol., 26, 941–946
CrossRef Pubmed Google scholar
[35]
Helwak, A., Kudla, G., Dudnakova, T. and Tollervey, D. (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell, 153, 654–665
CrossRef Pubmed Google scholar
[36]
Ding, Y., Tang, Y., Kwok, C. K., Zhang, Y., Bevilacqua, P. C. and Assmann, S. M. (2014)In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features. Nature, 505, 696–700
CrossRef Pubmed Google scholar
[37]
Pinkel, D., Segraves, R., Sudar, D., Clark, S., Poole, I., Kowbel, D., Collins, C., Kuo, W. L., Chen, C., Zhai, Y., (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat. Genet., 20, 207–211
CrossRef Pubmed Google scholar
[38]
Bentley, D. R., Balasubramanian, S., Swerdlow, H. P., Smith, G. P., Milton, J., Brown, C. G., Hall, K. P., Evers, D. J., Barnes, C. L., Bignell, H. R., (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature, 456, 53–59
CrossRef Pubmed Google scholar
[39]
Ng, S. B., Turner, E. H., Robertson, P. D., Flygare, S. D., Bigham, A. W., Lee, C., Shaffer, T., Wong, M., Bhattacharjee, A., Eichler, E. E., (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature, 461, 272–276
CrossRef Pubmed Google scholar
[40]
Krüger, M., Moser, M., Ussar, S., Thievessen, I., Luber, C. A., Forner, F., Schmidt, S., Zanivan, S., Füssler, R. and Mann, M. (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell, 134, 353–364
CrossRef Pubmed Google scholar
[41]
Kislinger, T., Rahman, K., Radulovic, D., Cox, B., Rossant, J. and Emili, A. (2003) PRISM, a generic large scale proteomic investigation strategy for mammals. Mol. Cell. Proteomics, 2, 96–106
CrossRef Pubmed Google scholar
[42]
Zhou, F., Lu, Y., Ficarro, S. B., Adelmant, G., Jiang, W., Luckey, C. J. and Marto, J. A. (2013) Genome-scale proteome quantification by DEEP SEQ mass spectrometry. Nat. Commun., 4, 2171
CrossRef Pubmed Google scholar
[43]
Jewison, T., Su, Y., Disfany, F. M., Liang, Y., Knox, C., Maciejewski, A., Poelzer, J., Huynh, J., Zhou, Y., Arndt, D., (2014) SMPDB 2.0: big improvements to the Small Molecule Pathway Database. Nucleic Acids Res., 42, D478–D484
CrossRef Pubmed Google scholar
[44]
Song, C., Ye, M., Liu, Z., Cheng, H., Jiang, X., Han, G., Songyang, Z., Tan, Y., Wang, H., Ren, J., (2012) Systematic analysis of protein phosphorylation networks from phosphoproteomic data. Mol. Cell. Proteomics, 11, 1070–1083
CrossRef Pubmed Google scholar
[45]
Meissner, A., Mikkelsen, T. S., Gu, H., Wernig, M., Hanna, J., Sivachenko, A., Zhang, X., Bernstein, B. E., Nusbaum, C., Jaffe, D. B., (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature, 454, 766–770
Pubmed
[46]
Neph, S., Vierstra, J., Stergachis, A. B., Reynolds, A. P., Haugen, E., Vernot, B., Thurman, R. E., John, S., Sandstrom, R., Johnson, A. K., (2012) An expansive human regulatory lexicon encoded in transcription factor footprints. Nature, 489, 83–90
CrossRef Pubmed Google scholar
[47]
Dunham, I., Kundaje, A., Aldred, S. F., Collins, P. J., Davis, C. A., Doyle, F., Epstein, C. B., Frietze, S., Harrow, J., Kaul, R., (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57–74
CrossRef Pubmed Google scholar
[48]
Ramaswami, G., Zhang, R., Piskol, R., Keegan, L. P., Deng, P., O’Connell, M. A. and Li, J. B. (2013) Identifying RNA editing sites using RNA sequencing data alone. Nat. Methods, 10, 128–132
CrossRef Pubmed Google scholar
[49]
Ramaswami, G., Lin, W., Piskol, R., Tan, M. H., Davis, C. and Li, J. B. (2012) Accurate identification of human Alu and non-Alu RNA editing sites. Nat. Methods, 9, 579–581
CrossRef Pubmed Google scholar
[50]
Fu, X. D. and Ares, M. Jr. (2014) Context-dependent control of alternative splicing by RNA-binding proteins. Nat. Rev. Genet., 15, 689–701
CrossRef Pubmed Google scholar
[51]
Wang, Z., Gerstein, M. and Snyder, M. (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet., 10, 57–63
CrossRef Pubmed Google scholar
[52]
Yang, L., Duff, M. O., Graveley, B. R., Carmichael, G. G. and Chen, L. L. (2011) Genomewide characterization of non-polyadenylated RNAs. Genome Biol., 12, R16
CrossRef Pubmed Google scholar
[53]
Yang, J. H., Li, J. H., Shao, P., Zhou, H., Chen, Y. Q. and Qu, L. H. (2011) starBase: a database for exploring microRNA–mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res., 39, D202–D209
CrossRef Pubmed Google scholar
[54]
Lau, E. (2014) Non-coding RNA: zooming in on lncRNA functions. Nat. Rev. Genet., 15, 574–575
CrossRef Pubmed Google scholar
[55]
Venø, M. T., Hansen, T. B., Venø, S. T., Clausen, B. H., Grebing, M., Finsen, B., Holm, I. E. and Kjems, J. (2015) Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development. Genome Biol., 16, 245
CrossRef Pubmed Google scholar
[56]
Gao, Y., Wang, J. and Zhao, F. (2015) CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol., 16, 4
CrossRef Pubmed Google scholar
[57]
Salzman, J., Gawad, C., Wang, P. L., Lacayo, N. and Brown, P. O. (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One, 7, e30733
CrossRef Pubmed Google scholar
[58]
Qin, Y., Yalamanchili, H.K., Qin, J., Yan, B. and Wang, J. (2015) The current status and challenges in computational analysis of genomic big data. Big data research, 2, 12–18
[59]
Kluger, Y., Yu, H., Qian, J. and Gerstein, M. (2003) Relationship between gene co-expression and probe localization on microarray slides. BMC Genomics, 4, 49
CrossRef Pubmed Google scholar
[60]
Robasky, K., Lewis, N. E. and Church, G. M. (2014) The role of replicates for error mitigation in next-generation sequencing. Nat. Rev. Genet., 15, 56–62
CrossRef Pubmed Google scholar
[61]
Teytelman, L., Thurtle, D. M., Rine, J. and van Oudenaarden, A. (2013) Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins. Proc. Natl. Acad. Sci. USA, 110, 18602–18607
CrossRef Pubmed Google scholar
[62]
von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S. G., Fields, S. and Bork, P. (2002) Comparative assessment of large-scale data sets of protein-protein interactions. Nature, 417, 399–403
CrossRef Pubmed Google scholar
[63]
El Gazzar, M. and McCall, C. E. (2012) MicroRNAs regulatory networks in myeloid lineage development and differentiation: regulators of the regulators. Immunol. Cell Biol., 90, 587–593
CrossRef Pubmed Google scholar
[64]
Hudson, W. H. and Ortlund, E. A. (2014) The structure, function and evolution of proteins that bind DNA and RNA. Nat. Rev. Mol. Cell Biol., 15, 749–760
CrossRef Pubmed Google scholar
[65]
Poliseno, L., Salmena, L., Zhang, J., Carver, B., Haveman, W. J. and Pandolfi, P. P. (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature, 465, 1033–1038
CrossRef Pubmed Google scholar
[66]
Hansen, T. B., Jensen, T. I., Clausen, B. H., Bramsen, J. B., Finsen, B., Damgaard, C. K. and Kjems, J. (2013) Natural RNA circles function as efficient microRNA sponges. Nature, 495, 384–388
CrossRef Pubmed Google scholar
[67]
modEncode Consortium, Roy, S., Ernst, J.J., Kharchenko, P.V., Kheradpour, P., Negre, N., Eaton, M.L., Landolin, J.M., Bristow, C.A., Ma, L. (2010) Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science, 330, 1787–1797
CrossRef Google scholar
[68]
Nègre, N., Brown, C. D., Ma, L., Bristow, C. A., Miller, S. W., Wagner, U., Kheradpour, P., Eaton, M. L., Loriaux, P., Sealfon, R., (2011) A cis-regulatory map of the Drosophila genome. Nature, 471, 527–531
CrossRef Pubmed Google scholar
[69]
Gerstein, M. B., Lu, Z. J., Van Nostrand, E. L., Cheng, C., Arshinoff, B. I., Liu, T., Yip, K. Y., Robilotto, R., Rechtsteiner, A., Ikegami, K., (2010) Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science, 330, 1775–1787
CrossRef Pubmed Google scholar
[70]
Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Heravi-Moussavi, A., Kheradpour, P., Zhang, Z., Wang, J., Ziller, M. J., (2015) Integrative analysis of 111 reference human epigenomes. Nature, 518, 317–330
CrossRef Pubmed Google scholar
[71]
Bell, D., Berchuck, A., Birrer, M., Chien, J., Cramer, D. W., Dao, F., Dhir, R., DiSaia, P., Gabra, H., Glenn, P., (2011) Integrated genomic analyses of ovarian carcinoma. Nature, 474, 609–615
CrossRef Pubmed Google scholar
[72]
Bass, A. J., Thorsson, V., Shmulevich, I., Reynolds, S. M., Miller, M., Bernard, B., Hinoue, T., Laird, P. W., Curtis, C., Shen, H., (2014) Comprehensive molecular characterization of gastric adenocarcinoma. Nature, 513, 202–209
CrossRef Pubmed Google scholar
[73]
Xu, H., Baroukh, C., Dannenfelser, R., Chen, E.Y., Tan, C. M., Kou, Y., Kim, Y. E., Lemischka, I. R. and Ma’ayan, A. (2013) ESCAPE: database for integrating high-content published data collected from human and mouse embryonic stem cells. Database, 2013, bat045
CrossRef Google scholar
[74]
Marygold, S. J., Leyland, P. C., Seal, R. L., Goodman, J. L., Thurmond, J., Strelets, V. B. and Wilson, R. J., and the FlyBase consortium. (2013) FlyBase: improvements to the bibliography. Nucleic Acids Res., 41, D751–D757
CrossRef Pubmed Google scholar
[75]
Costanzo, M. C., Engel, S. R., Wong, E. D., Lloyd, P., Karra, K., Chan, E. T., Weng, S., Paskov, K. M., Roe, G. R., Binkley, G., (2014) Saccharomyces genome database provides new regulation data. Nucleic Acids Res., 42, D717–D725
CrossRef Pubmed Google scholar
[76]
Phanstiel, D. H., Brumbaugh, J., Wenger, C. D., Tian, S., Probasco, M. D., Bailey, D. J., Swaney, D. L., Tervo, M. A., Bolin, J. M., Ruotti, V., (2011) Proteomic and phosphoproteomic comparison of human ES and iPS cells. Nat. Methods, 8, 821–827
CrossRef Pubmed Google scholar
[77]
Swarbreck, D., Wilks, C., Lamesch, P., Berardini, T. Z., Garcia-Hernandez, M., Foerster, H., Li, D., Meyer, T., Muller, R., Ploetz, L., (2008) The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Res., 36, D1009–D1014
CrossRef Pubmed Google scholar
[78]
Suzuki, A., Wakaguri, H., Yamashita, R., Kawano, S., Tsuchihara, K., Sugano, S., Suzuki, Y. and Nakai, K. (2015) DBTSS as an integrative platform for transcriptome, epigenome and genome sequence variation data. Nucleic Acids Res., 43, D87–D91
CrossRef Pubmed Google scholar
[79]
Sun, H., Wang, H., Zhu, R., Tang, K., Gong, Q., Cui, J., Cao, Z. and Liu, Q. (2014) iPEAP: integrating multiple omics and genetic data for pathway enrichment analysis. Bioinformatics, 30, 737–739
CrossRef Pubmed Google scholar
[80]
Bebek, G. and Yang, J. (2007) PathFinder: mining signal transduction pathway segments from protein-protein interaction networks. BMC Bioinformatics, 8, 335
CrossRef Pubmed Google scholar
[81]
Myers, C. L., Robson, D., Wible, A., Hibbs, M. A., Chiriac, C., Theesfeld, C. L., Dolinski, K. and Troyanskaya, O. G. (2005) Discovery of biological networks from diverse functional genomic data. Genome Biol., 6, R114
CrossRef Pubmed Google scholar
[82]
Ourfali, O., Shlomi, T., Ideker, T., Ruppin, E. and Sharan, R. (2007) SPINE: a framework for signaling-regulatory pathway inference from cause-effect experiments. Bioinformatics, 23, i359–i366
CrossRef Pubmed Google scholar
[83]
Basha, O., Tirman, S., Eluk, A. and Yeger-Lotem, E. (2013) ResponseNet2.0: revealing signaling and regulatory pathways connecting your proteins and genes—now with human data. Nucleic Acids Res., 41, W198–W203
CrossRef Pubmed Google scholar
[84]
Lan, A., Smoly, I. Y., Rapaport, G., Lindquist, S., Fraenkel, E. and Yeger-Lotem, E. (2011) ResponseNet: revealing signaling and regulatory networks linking genetic and transcriptomic screening data. Nucleic Acids Res., 39, W424–W429
CrossRef Pubmed Google scholar
[85]
Wang, K., Saito, M., Bisikirska, B. C., Alvarez, M. J., Lim, W. K., Rajbhandari, P., Shen, Q., Nemenman, I., Basso, K., Margolin, A. A., (2009) Genome-wide identification of post-translational modulators of transcription factor activity in human B cells. Nat. Biotechnol., 27, 829–837
CrossRef Pubmed Google scholar
[86]
Zhu, F. and Guan, Y. (2014) Predicting dynamic signaling network response under unseen perturbations. Bioinformatics, 30, 2772–2778
CrossRef Pubmed Google scholar
[87]
Chen, J. and Zhang, S. (2016) Integrative analysis for identifying joint modular patterns of gene-expression and drug-response data. Bioinformatics, 32, 1724–1732
CrossRef Pubmed Google scholar
[88]
Qin, J., Li, M. J., Wang, P., Zhang, M. Q. and Wang, J. (2011) ChIP-Array: combinatory analysis of ChIP-seq/chip and microarray gene expression data to discover direct/indirect targets of a transcription factor. Nucleic Acids Res., 39, W430–W436
CrossRef Pubmed Google scholar
[89]
Wang, P., Qin, J., Qin, Y., Zhu, Y., Wang, L. Y., Li, M. J., Zhang, M. Q. and Wang, J. (2015) ChIP-Array 2: integrating multiple omics data to construct gene regulatory networks. Nucleic Acids Res., 43, W264–W269
Pubmed
[90]
Wang, S., Sun, H., Ma, J., Zang, C., Wang, C., Wang, J., Tang, Q., Meyer, C. A., Zhang, Y. and Liu, X. S. (2013) Target analysis by integration of transcriptome and ChIP-seq data with BETA. Nat. Protoc., 8, 2502–2515
CrossRef Pubmed Google scholar
[91]
Qin, J., Hu, Y., Xu, F., Yalamanchili, H. K. and Wang, J. (2014) Inferring gene regulatory networks by integrating ChIP-seq/chip and transcriptome data via LASSO-type regularization methods. Methods, 67, 294–303
CrossRef Pubmed Google scholar
[92]
Maienschein-Cline, M., Zhou, J., White, K. P., Sciammas, R. and Dinner, A. R. (2012) Discovering transcription factor regulatory targets using gene expression and binding data. Bioinformatics, 28, 206–213
CrossRef Pubmed Google scholar
[93]
Wu, G. and Ji, H. (2013) ChIPXpress: using publicly available gene expression data to improve ChIP-seq and ChIP-chip target gene ranking. BMC Bioinformatics, 14, 188
CrossRef Pubmed Google scholar
[94]
Tang, B., Hsu, H. K., Hsu, P. Y., Bonneville, R., Chen, S. S., Huang, T. H. and Jin, V. X. (2012) Hierarchical modularity in ERα transcriptional network is associated with distinct functions and implicates clinical outcomes. Sci. Rep., 2, 875
CrossRef Pubmed Google scholar
[95]
Yan, B., Li, H., Yang, X., Shao, J., Jang, M., Guan, D., Zou, S., Van Waes, C., Chen, Z. and Zhan, M. (2013) Unraveling regulatory programs for NF-kappaB, p53 and microRNAs in head and neck squamous cell carcinoma. PLoS One, 8, e73656
CrossRef Pubmed Google scholar
[96]
Pique-Regi, R., Degner, J. F., Pai, A. A., Gaffney, D. J., Gilad, Y. and Pritchard, J. K. (2011) Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data. Genome Res., 21, 447–455
CrossRef Pubmed Google scholar
[97]
Huang, J. C., Babak, T., Corson, T. W., Chua, G., Khan, S., Gallie, B. L., Hughes, T. R., Blencowe, B. J., Frey, B. J. and Morris, Q. D. (2007) Using expression profiling data to identify human microRNA targets. Nat. Methods, 4, 1045–1049
CrossRef Pubmed Google scholar
[98]
Liang, Z., Zhou, H., He, Z., Zheng, H. and Wu, J. (2011) mirAct: a web tool for evaluating microRNA activity based on gene expression data. Nucleic Acids Res., 39, W139–144
CrossRef Pubmed Google scholar
[99]
Nam, S., Li, M., Choi, K., Balch, C., Kim, S. and Nephew, K. P. (2009) MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microRNA expression. Nucleic Acids Res., 37, W356–362
CrossRef Pubmed Google scholar
[100]
Sales, G., Coppe, A., Bisognin, A., Biasiolo, M., Bortoluzzi, S. and Romualdi, C. (2010) MAGIA, a web-based tool for miRNA and Genes Integrated Analysis. Nucleic Acids Res., 38W352–W359
CrossRef Google scholar
[101]
Qin, J., Li, M. J., Wang, P., Wong, N. S., Wong, M. P., Xia, Z., Tsao, G. S., Zhang, M. Q. and Wang, J. (2013) ProteoMirExpress: inferring microRNA and protein-centered regulatory networks from high-throughput proteomic and mRNA expression data. Mol. Cell. Proteomics, 12, 3379–3387
CrossRef Pubmed Google scholar
[102]
Wang, L.Y., Wang, P., Li, M.J., Qin, J., Wang, X., Zhang, M.Q. and Wang, J. (2011) EpiRegNet: constructing epigenetic regulatory network from high throughput gene expression data for humans. Epigenetics, 6, 1505–1512
[103]
Guan, D., Shao, J., Deng, Y., Wang, P., Zhao, Z., Liang, Y., Wang, J. and Yan, B. (2014) CMGRN: a web server for constructing multilevel gene regulatory networks using ChIP-seq and gene expression data. Bioinformatics, 30, 1190–1192
CrossRef Pubmed Google scholar
[104]
Huang, G. T., Athanassiou, C. and Benos, P. V. (2011) mirConnX: condition-specific mRNA-microRNA network integrator. Nucleic Acids Res., 39, W416–W423
CrossRef Pubmed Google scholar
[105]
Zhang, S., Li, Q., Liu, J. and Zhou, X. J. (2011) A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules. Bioinformatics, 27, i401–i409
CrossRef Pubmed Google scholar
[106]
Zhang, S., Liu, C. C., Li, W., Shen, H., Laird, P. W. and Zhou, X. J. (2012) Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Res., 40, 9379–9391
CrossRef Pubmed Google scholar
[107]
Li, W., Zhang, S., Liu, C. C. and Zhou, X. J. (2012) Identifying multi-layer gene regulatory modules from multi-dimensional genomic data. Bioinformatics, 28, 2458–2466
CrossRef Pubmed Google scholar
[108]
Guan, D., Shao, J., Zhao, Z., Wang, P., Qin, J., Deng, Y., Boheler, K. R., Wang, J. and Yan, B. (2014) PTHGRN: unraveling post-translational hierarchical gene regulatory networks using PPI, ChIP-seq and gene expression data. Nucleic Acids Res., 42, W130–136
CrossRef Pubmed Google scholar
[109]
Wu, D., Wang, D., Zhang, M. Q. and Gu, J. (2015) Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: application to cancer molecular classification. BMC Genomics, 16, 1022
CrossRef Pubmed Google scholar
[110]
Oyama, M., Kozuka-Hata, H., Tasaki, S., Semba, K., Hattori, S., Sugano, S., Inoue, J. and Yamamoto, T. (2009) Temporal perturbation of tyrosine phosphoproteome dynamics reveals the system-wide regulatory networks. Mol. Cell. Proteomics, 8, 226–231
CrossRef Pubmed Google scholar
[111]
Bodenmiller, B., Wanka, S., Kraft, C., Urban, J., Campbell, D., Pedrioli, P. G., Gerrits, B., Picotti, P., Lam, H., Vitek, O., (2010) Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast. Sci. Signal., 3, rs4
CrossRef Pubmed Google scholar
[112]
Caldana, C., Fernie, A. R., Willmitzer, L. and Steinhauser, D. (2012) Unraveling retrograde signaling pathways: finding candidate signaling molecules via metabolomics and systems biology driven approaches. Front. Plant Sci., 3, 267
CrossRef Pubmed Google scholar
[113]
Zhu, J., Sova, P., Xu, Q., Dombek, K. M., Xu, E. Y., Vu, H., Tu, Z., Brem, R. B., Bumgarner, R. E. and Schadt, E. E. (2012) Stitching together multiple data dimensions reveals interacting metabolomic and transcriptomic networks that modulate cell regulation. PLoS Biol., 10, e1001301
CrossRef Pubmed Google scholar
[114]
Jha, A. K., Huang, S. C., Sergushichev, A., Lampropoulou, V., Ivanova, Y., Loginicheva, E., Chmielewski, K., Stewart, K. M., Ashall, J., Everts, B., (2015) Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity, 42, 419–430
CrossRef Pubmed Google scholar
[115]
Marbach, D., Costello, J. C., Küffner, R., Vega, N. M., Prill, R. J., Camacho, D. M., Allison, K. R., The DREAM5 Consortium, Kellis, M., Collins, J. J. (2012) Wisdom of crowds for robust gene network inference. Nat. Methods, 9, 796–804
CrossRef Pubmed Google scholar
[116]
Hu, Z., Killion, P. J. and Iyer, V. R. (2007) Genetic reconstruction of a functional transcriptional regulatory network. Nat. Genet., 39, 683–687
CrossRef Pubmed Google scholar
[117]
Song, L., Zhang, Z., Grasfeder, L. L., Boyle, A. P., Giresi, P. G., Lee, B. K., Sheffield, N. C., Gräf, S., Huss, M., Keefe, D., (2011) Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res., 21, 1757–1767
CrossRef Pubmed Google scholar
[118]
Kelly, T. K., Liu, Y., Lay, F. D., Liang, G., Berman, B. P. and Jones, P. A. (2012) Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res., 22, 2497–2506
CrossRef Pubmed Google scholar
[119]
Natarajan, A., Yardimci, G. G., Sheffield, N. C., Crawford, G. E. and Ohler, U. (2012) Predicting cell-type-specific gene expression from regions of open chromatin. Genome Res., 22, 1711–1722
CrossRef Pubmed Google scholar
[120]
Lan, X., Witt, H., Katsumura, K., Ye, Z., Wang, Q., Bresnick, E. H., Farnham, P. J. and Jin, V. X. (2012) Integration of Hi-C and ChIP-seq data reveals distinct types of chromatin linkages. Nucleic Acids Res., 40, 7690–7704
CrossRef Pubmed Google scholar
[121]
Doench, J. G. and Sharp, P. A. (2004) Specificity of microRNA target selection in translational repression. Genes Dev., 18, 504–511
CrossRef Pubmed Google scholar
[122]
Chen, X. (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science, 303, 2022–2025
CrossRef Pubmed Google scholar
[123]
Wightman, B., Ha, I. and Ruvkun, G. (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell, 75, 855–862
CrossRef Pubmed Google scholar
[124]
Vasudevan, S., Tong, Y. and Steitz, J. A. (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science, 318, 1931–1934
CrossRef Pubmed Google scholar
[125]
Vasudevan, S. and Steitz, J. A. (2007) AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell, 128, 1105–1118
CrossRef Pubmed Google scholar
[126]
Chen, Y., Wang, Y., Xuan, Z., Chen, M. and Zhang, M. Q. (2016) De novo deciphering three-dimensional chromatin interaction and topological domains by wavelet transformation of epigenetic profiles. Nucleic Acids Res., 44, e106
CrossRef Pubmed Google scholar
[127]
Djekidel, M. N., Liang, Z., Wang, Q., Hu, Z., Li, G., Chen, Y. and Zhang, M. Q. (2015) 3CPET: finding co-factor complexes from ChIA-PET data using a hierarchical Dirichlet process. Genome Biol., 16, 288
CrossRef Pubmed Google scholar
[128]
Whalen, S., Truty, R. M. and Pollard, K. S. (2016) Enhancer-promoter interactions are encoded by complex genomic signatures on looping chromatin. Nat. Genet., 48, 488–496
CrossRef Pubmed Google scholar
[129]
Wang, Z., Zang, C., Rosenfeld, J. A., Schones, D. E., Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Peng, W., Zhang, M. Q., (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet., 40, 897–903
CrossRef Pubmed Google scholar
[130]
Karlić, R., Chung, H. R., Lasserre, J., Vlahovicek, K. and Vingron, M. (2010) Histone modification levels are predictive for gene expression. Proc. Natl. Acad. Sci. USA, 107, 2926–2931
CrossRef Pubmed Google scholar
[131]
Zhu, Y., Sun, L., Chen, Z., Whitaker, J. W., Wang, T. and Wang, W. (2013) Predicting enhancer transcription and activity from chromatin modifications. Nucleic Acids Res., 41, 10032–10043
CrossRef Pubmed Google scholar
[132]
Khalil, A. M., Guttman, M., Huarte, M., Garber, M., Raj, A., Rivea Morales, D., Thomas, K., Presser, A., Bernstein, B. E., van Oudenaarden, A., (2009) Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl. Acad. Sci. USA, 106, 11667–11672
CrossRef Pubmed Google scholar
[133]
Knouf, E. C., Garg, K., Arroyo, J. D., Correa, Y., Sarkar, D., Parkin, R. K., Wurz, K., O’Briant, K. C., Godwin, A. K., Urban, N. D., (2012) An integrative genomic approach identifies p73 and p63 as activators of miR-200 microRNA family transcription. Nucleic Acids Res., 40, 499–510
CrossRef Pubmed Google scholar
[134]
Ritchie, M. D., Holzinger, E. R., Li, R., Pendergrass, S. A. and Kim, D. (2015) Methods of integrating data to uncover genotype-phenotype interactions. Nat. Rev. Genet., 16, 85–97
CrossRef Pubmed Google scholar
[135]
Kristensen, V. N., Lingjærde, O. C., Russnes, H. G., Vollan, H. K., Frigessi, A. and Børresen-Dale, A. L. (2014) Principles and methods of integrative genomic analyses in cancer. Nat. Rev. Cancer, 14, 299–313
CrossRef Pubmed Google scholar
[136]
Marbach, D., Roy, S., Ay, F., Meyer, P. E., Candeias, R., Kahveci, T., Bristow, C. A. and Kellis, M. (2012) Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks. Genome Res., 22, 1334–1349
CrossRef Pubmed Google scholar
[137]
Sintupisut, N., Liu, P. L. and Yeang, C. H. (2013) An integrative characterization of recurrent molecular aberrations in glioblastoma genomes. Nucleic Acids Res., 41, 8803–8821
CrossRef Pubmed Google scholar
[138]
Palsson, B. and Zengler, K. (2010) The challenges of integrating multi-omic data sets. Nat. Chem. Biol., 6, 787–789
CrossRef Pubmed Google scholar
[139]
Boyer, L. A., Lee, T. I., Cole, M. F., Johnstone, S. E., Levine, S. S., Zucker, J. P., Guenther, M. G., Kumar, R. M., Murray, H. L., Jenner, R. G., (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 122, 947–956
CrossRef Pubmed Google scholar
[140]
Marson, A., Levine, S. S., Cole, M. F., Frampton, G. M., Brambrink, T., Johnstone, S., Guenther, M. G., Johnston, W. K., Wernig, M., Newman, J., (2008) Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell, 134, 521–533
CrossRef Pubmed Google scholar
[141]
Boyer, L. A., Plath, K., Zeitlinger, J., Brambrink, T., Medeiros, L. A., Lee, T. I., Levine, S. S., Wernig, M., Tajonar, A., Ray, M. K., (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature, 441, 349–353
CrossRef Pubmed Google scholar
[142]
Takahashi, K. and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676
CrossRef Pubmed Google scholar
[143]
Anokye-Danso, F., Trivedi, C. M., Juhr, D., Gupta, M., Cui, Z., Tian, Y., Zhang, Y., Yang, W., Gruber, P. J., Epstein, J. A., (2011) Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell, 8, 376–388
CrossRef Pubmed Google scholar
[144]
Wu, S. M. and Hochedlinger, K. (2011) Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat. Cell Biol., 13, 497–505
CrossRef Pubmed Google scholar
[145]
Buganim, Y., Faddah, D. A. and Jaenisch, R. (2013) Mechanisms and models of somatic cell reprogramming. Nat. Rev. Genet., 14, 427–439
CrossRef Pubmed Google scholar
[146]
Gifford, C. A., Ziller, M. J., Gu, H., Trapnell, C., Donaghey, J., Tsankov, A., Shalek, A. K., Kelley, D. R., Shishkin, A. A., Issner, R., (2013) Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell, 153, 1149–1163
CrossRef Pubmed Google scholar
[147]
Mohn, F., Weber, M., Rebhan, M., Roloff, T. C., Richter, J., Stadler, M. B., Bibel, M. and Schübeler, D. (2008) Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol. Cell, 30, 755–766
CrossRef Pubmed Google scholar
[148]
Tsankov, A. M., Gu, H., Akopian, V., Ziller, M. J., Donaghey, J., Amit, I., Gnirke, A. and Meissner, A. (2015) Transcription factor binding dynamics during human ES cell differentiation. Nature, 518, 344–349
CrossRef Pubmed Google scholar
[149]
Choukrallah, M. A., Song, S., Rolink, A. G., Burger, L. and Matthias, P. (2015) Enhancer repertoires are reshaped independently of early priming and heterochromatin dynamics during B cell differentiation. Nat. Commun., 6, 8324
CrossRef Pubmed Google scholar
[150]
Sancho-Martinez, I., Baek, S. H. and Izpisua Belmonte, J. C. (2012) Lineage conversion methodologies meet the reprogramming toolbox. Nat. Cell Biol., 14, 892–899
CrossRef Pubmed Google scholar
[151]
Heinäniemi, M., Nykter, M., Kramer, R., Wienecke-Baldacchino, A., Sinkkonen, L., Zhou, J. X., Kreisberg, R., Kauffman, S. A., Huang, S. and Shmulevich, I. (2013) Gene-pair expression signatures reveal lineage control. Nat. Methods, 10, 577–583
CrossRef Pubmed Google scholar
[152]
Cahan, P., Li, H., Morris, S. A., Lummertz da Rocha, E., Daley, G. Q. and Collins, J. J. (2014) CellNet: network biology applied to stem cell engineering. Cell, 158, 903–915
CrossRef Pubmed Google scholar
[153]
Rackham, O. J., Firas, J., Fang, H., Oates, M. E., Holmes, M. L., Knaupp, A. S., Suzuki, H., Nefzger, C. M., Daub, C. O., Shin, J. W., (2016) A predictive computational framework for direct reprogramming between human cell types. Nat. Genet., 48, 331–335
CrossRef Pubmed Google scholar
[154]
Li, M. J., Wang, P., Liu, X., Lim, E. L., Wang, Z., Yeager, M., Wong, M. P., Sham, P. C., Chanock, S. J. and Wang, J. (2012) GWASdb: a database for human genetic variants identified by genome-wide association studies. Nucleic Acids Res., 40, D1047–D1054
CrossRef Pubmed Google scholar
[155]
Li, M. J., Sham, P. C. and Wang, J. (2012) Genetic variant representation, annotation and prioritization in the post-GWAS era. Cell Res., 22, 1505–1508
CrossRef Pubmed Google scholar
[156]
Li, M. J., Yan, B., Sham, P. C. and Wang, J. (2015) Exploring the function of genetic variants in the non-coding genomic regions: approaches for identifying human regulatory variants affecting gene expression. Brief. Bioinform.16, 393–412
CrossRef Pubmed Google scholar
[157]
Alfaro, J. A., Sinha, A., Kislinger, T. and Boutros, P. C. (2014) Onco-proteogenomics: cancer proteomics joins forces with genomics. Nat. Methods, 11, 1107–1113
CrossRef Pubmed Google scholar
[158]
The Cancer Genome Atlas Research Network (2013) Integrated genomic characterization of endometrial carcinoma. Nature, 497, 67–73
CrossRef Pubmed Google scholar
[159]
Wang, B., Mezlini, A. M., Demir, F., Fiume, M., Tu, Z., Brudno, M., Haibe-Kains, B. and Goldenberg, A. (2014) Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods, 11, 333–337
CrossRef Pubmed Google scholar
[160]
Yuan, Y., Van Allen, E. M., Omberg, L., Wagle, N., Amin-Mansour, A., Sokolov, A., Byers, L. A., Xu, Y., Hess, K. R., Diao, L., (2014) Assessing the clinical utility of cancer genomic and proteomic data across tumor types. Nat. Biotechnol., 32, 644–652
CrossRef Pubmed Google scholar
[161]
Ernst, J. and Kellis, M. (2015) Large-scale imputation of epigenomic datasets for systematic annotation of diverse human tissues. Nat. Biotechnol., 33, 364–376
CrossRef Pubmed Google scholar
[162]
Marchini, J. and Howie, B. (2010) Genotype imputation for genome-wide association studies. Nat. Rev. Genet., 11, 499–511
CrossRef Pubmed Google scholar
[163]
Gusev, A., Ko, A., Shi, H., Bhatia, G., Chung, W., Penninx, B. W., Jansen, R., de Geus, E. J., Boomsma, D. I., Wright, F. A., (2016) Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet., 48, 245–252
CrossRef Pubmed Google scholar
[164]
Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W. and Smyth, G. K. (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 43, e47
CrossRef Pubmed Google scholar
[165]
Orlando, D. A., Chen, M. W., Brown, V. E., Solanki, S., Choi, Y. J., Olson, E. R., Fritz, C. C., Bradner, J. E. and Guenther, M. G. (2014) Quantitative ChIP-Seq normalization reveals global modulation of the epigenome. Cell Reports, 9, 1163–1170
CrossRef Pubmed Google scholar
[166]
Diaz, A., Park, K., Lim, D.A. and Song, J.S. (2012) Normalization, bias correction, and peak calling for ChIP-seq. Stat. Appl. Genet. Mol. Biol. 11, Article 9
CrossRef Google scholar
[167]
Sysi-Aho, M., Katajamaa, M., Yetukuri, L. and Oresic, M. (2007) Normalization method for metabolomics data using optimal selection of multiple internal standards. BMC Bioinformatics, 8, 93
CrossRef Pubmed Google scholar
[168]
Johnson, W. E., Li, C. and Rabinovic, A. (2007) Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics, 8, 118–127
CrossRef Pubmed Google scholar
[169]
Leek, J. T. and Storey, J. D. (2007) Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet., 3, e161
CrossRef Pubmed Google scholar
[170]
Thompson, J.A., Tan, J. and Greene, C.S. (2016) Cross-platform normalization of microarray and RNA-seq data for machine learning applications. PeerJ, 4, e1621
[171]
Zang, C., Wang, T., Deng, K., Li, B., Hu, S., Qin, Q., Xiao, T., Zhang, S., Meyer, C. A., He, H. H., (2016) High-dimensional genomic data bias correction and data integration using MANCIE. Nat. Commun., 7, 11305
CrossRef Pubmed Google scholar
[172]
Rudy, J. and Valafar, F. (2011) Empirical comparison of cross-platform normalization methods for gene expression data. BMC Bioinformatics, 12, 467
CrossRef Pubmed Google scholar

ACKNOWLEDGEMENTS

Our work was supported by a Direct Grant for Research from The Chinese University of Hong Kong, Hong Kong SAR, China (No. 4053150) to JQ, research grants from Research Grants Council, Hong Kong SAR, China (No. 17121414M), the National Natural Science Foundation of China (Nos. 81572786 and 91529303), startup funds from Mayo Clinic (Mayo Clinic Arizona and Center for Individualized Medicine) to JW, and the National Natural Science Foundation of China (No. 11526144) and the Natural Science Foundation of Guangdong (No. 2016A030310038) to YH.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Jing Qin, Bin Yan, Yaohua Hu, Panwen Wang and Junwen Wang declare that they have no conflict of interests.ƒThis article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1231 KB)

Accesses

Citations

Detail

Sections
Recommended

/