A survey on biomarker identification based on molecular networks

Guanghui Zhu, Xing-Ming Zhao, Jun Wu

PDF(424 KB)
PDF(424 KB)
Quant. Biol. ›› 2016, Vol. 4 ›› Issue (4) : 310-319. DOI: 10.1007/s40484-016-0084-z
REVIEW
REVIEW

A survey on biomarker identification based on molecular networks

Author information +
History +

Abstract

Background: Identifying biomarkers for accurate diagnosis and prognosis of diseases is important for the prevention of disease development. The molecular networks that describe the functional relationships among molecules provide a global view of the complex biological systems. With the molecular networks, the molecular mechanisms underlying diseases can be unveiled, which helps identify biomarkers in a systematic way.

Results: In this survey, we report the recent progress on identifying biomarkers based on the topology of molecular networks, and we categorize those biomarkers into three groups, including node biomarkers, edge biomarkers and network biomarkers. These distinct types of biomarkers can be detected under different conditions depending on the data available.

Conclusions: The biomarkers identified based on molecular networks can provide more accurate diagnosis and prognosis. The pros and cons of different types of biomarkers as well as future directions to improve the methods for identifying biomarkers are also discussed.

Graphical abstract

Keywords

biomarker / molecular network / module / pathway

Cite this article

Download citation ▾
Guanghui Zhu, Xing-Ming Zhao, Jun Wu. A survey on biomarker identification based on molecular networks. Quant. Biol., 2016, 4(4): 310‒319 https://doi.org/10.1007/s40484-016-0084-z

References

[1]
Akbani, R., Ng, P. K., Werner, H. M., Shahmoradgoli, M., Zhang, F., Ju, Z., Liu, W., Yang, J. Y., Yoshihara, K., Li, J., (2014) A pan-cancer proteomic perspective on The Cancer Genome Atlas. Nat. Commun., 5, 3887
CrossRef Pubmed Google scholar
[2]
Bell, D., Berchuck, A., Birrer, M., Chien, J., Cramer, D. W., Dao, F., Dhir, R., DiSaia, P., Gabra, H., Glenn, P., (2011) Integrated genomic analyses of ovarian carcinoma. Nature, 474, 609–615
CrossRef Pubmed Google scholar
[3]
Verhaak, R. G., Tamayo, P., Yang, J. Y., Hubbard, D., Zhang, H., Creighton, C. J., Fereday, S., Lawrence, M., Carter, S. L., Mermel, C. H., (2013) Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. J. Clin. Invest., 123, 517–525
Pubmed
[4]
Wu, G. and Stein, L. (2012) A network module-based method for identifying cancer prognostic signatures. Genome Biol., 13, R112
CrossRef Pubmed Google scholar
[5]
Zhang, W., Zang, J., Jing, X., Sun, Z., Yan, W., Yang, D., Shen, B. and Guo, F. (2014) Identification of candidate miRNA biomarkers from miRNA regulatory network with application to prostate cancer. J. Transl. Med., 12, 66
CrossRef Pubmed Google scholar
[6]
Li, Y., Vongsangnak, W., Chen, L. and Shen, B.(2014) Integrative analysis reveals disease-associated genes and biomarkers for prostate cancer progression. BMC Med. Genomics, 7, S3
CrossRef Pubmed Google scholar
[7]
Santiago, J. A. and Potashkin, J. A. (2015) Network-based metaanalysis identifies HNF4A and PTBP1 as longitudinally dynamic biomarkers for Parkinson’s disease. Proc. Natl. Acad. Sci. USA, 112, 2257–2262
CrossRef Pubmed Google scholar
[8]
Li, Y., Xu, J., Chen, H., Bai, J., Li, S., Zhao, Z., Shao, T., Jiang, T., Ren, H., Kang, C., (2013) Comprehensive analysis of the functional microRNA-mRNA regulatory network identifies miRNA signatures associated with glioma malignant progression. Nucleic Acids Res., 41, e203
CrossRef Pubmed Google scholar
[9]
Ozgür, A., Vu, T., Erkan, G. and Radev, D. R. (2008) Identifying gene-disease associations using centrality on a literature mined gene-interaction network. Bioinformatics, 24, i277–i285
CrossRef Pubmed Google scholar
[10]
Bertrand, D., Chng, K. R., Sherbaf, F. G., Kiesel, A., Chia, B. K. H., Sia, Y. Y., Huang, S. K., Hoon, D. S. B., Liu, E. T., Hillmer, A., (2015) Patient-specific driver gene prediction and risk assessment through integrated network analysis of cancer omics profiles. Nucleic Acids Res., 43, e44
CrossRef Pubmed Google scholar
[11]
Suo, C., Hrydziuszko, O., Lee, D., Pramana, S., Saputra, D., Joshi, H., Calza, S. and Pawitan, Y. (2015) Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival. Bioinformatics, 31, 2607–2613
CrossRef Pubmed Google scholar
[12]
Gao, C., Dang, X., Chen, Y. and Wilkins, D. ( 2009) Graph ranking for exploratory gene data analysis. BMC Bioinformatics, 10, S19
CrossRef Pubmed Google scholar
[13]
Cun, Y. and Fröhlich, H. (2013) Network and data integration for biomarker signature discovery via network smoothed T-statistics. PLoS One, 8, e73074
CrossRef Pubmed Google scholar
[14]
Hofree, M., Shen, J. P., Carter, H., Gross, A. and Ideker, T. (2013) Network-based stratification of tumor mutations. Nat. Methods, 10, 1108–1115
CrossRef Pubmed Google scholar
[15]
Qin, G. M. Li, R. Y. and Zhao X. M. (2016) Identifying disease associated miRNAs based on protein domains. IEEE/ACM Trans. Comput. Biol. Bioinform
CrossRef Google scholar
[16]
Zhang, W., Zeng, T. and Chen, L. (2014) EdgeMarker: identifying differentially correlated molecule pairs as edge-biomarkers. J. Theor. Biol., 362, 35–43
CrossRef Pubmed Google scholar
[17]
Liu, X., Liu, Z. P., Zhao, X. M. and Chen, L. (2012) Identifying disease genes and module biomarkers by differential interactions. J. Am. Med. Inform. Assoc., 19, 241–248
CrossRef Pubmed Google scholar
[18]
Ben-Hamo, R., Gidoni, M. and Efroni, S. (2014) PhenoNet: identification of key networks associated with disease phenotype. Bioinformatics, 30, 2399–2405
CrossRef Pubmed Google scholar
[19]
Ma, S., Jiang, T. and Jiang, R. (2015) Differential regulation enrichment analysis via the integration of transcriptional regulatory network and gene expression data. Bioinformatics, 31, 563–571
CrossRef Pubmed Google scholar
[20]
Li, Y., Liang, C., Wong, K. C., Jin, K.and Zhang, Z. (2014) Inferring probabilistic miRNA-mRNA interaction signatures in cancers: a role-switch approach. Nucleic Acids Res., 42, e76
CrossRef Pubmed Google scholar
[21]
Yu, X., Li, G. and Chen, L. (2014) Prediction and early diagnosis of complex diseases by edge-network. Bioinformatics, 30, 852–859
CrossRef Pubmed Google scholar
[22]
Liu, K. Q., Liu, Z. P., Hao, J. K., Chen, L. and Zhao, X. M. (2012) Identifying dysregulated pathways in cancers from pathway interaction networks. BMC Bioinformatics, 13, 126
CrossRef Pubmed Google scholar
[23]
Wang, Y., Chen, J., Li, Q., Wang, H., Liu, G., Jing, Q. and Shen, B. (2011) Identifying novel prostate cancer associated pathways based on integrative microarray data analysis. Comput. Biol. Chem., 35, 151–158
CrossRef Pubmed Google scholar
[24]
Zhao, X. M., Liu, K. Q., Zhu, G., He, F., Duval, B., Richer, J. M., Huang, D. S., Jiang, C. J., Hao, J. K. and Chen, L. (2015) Identifying cancer-related microRNAs based on gene expression data. Bioinformatics, 31, 1226–1234
CrossRef Pubmed Google scholar
[25]
Bader, G. D. and Hogue, C. W. (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 4, 2
CrossRef Pubmed Google scholar
[26]
Nepusz, T., Yu, H. and Paccanaro, A. (2012) Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods, 9, 471–472
CrossRef Pubmed Google scholar
[27]
Zhang, X., Gao, L., Liu, Z. P. and Chen, L. (2015) Identifying module biomarker in type 2 diabetes mellitus by discriminative area of functional activity. BMC Bioinformatics, 16, 92
CrossRef Pubmed Google scholar
[28]
Chuang, H. Y., Lee, E., Liu, Y. T., Lee, D. and Ideker, T. (2007) Network-based classification of breast cancer metastasis. Mol. Syst. Biol., 3, 140
CrossRef Pubmed Google scholar
[29]
Zeng, T., Wang, D. C., Wang, X., Xu, F. and Chen, L. (2014) Prediction of dynamical drug sensitivity and resistance by module network rewiring-analysis based on transcriptional profiling. Drug Resist. Updat., 17, 64–76
CrossRef Pubmed Google scholar
[30]
Zeng, T., Zhang, W., Yu, X., Liu, X., Li, M. and Chen, L. (2015) Big-data-based edge biomarkers: study on dynamical drug sensitivity and resistance in individuals. Brief. Bioinform., 17, 576–592
Pubmed
[31]
Leung, A., Bader, G. D. and Reimand, J. (2014) HyperModules: identifying clinically and phenotypically significant network modules with disease mutations for biomarker discovery. Bioinformatics, 30, 2230–2232
CrossRef Pubmed Google scholar
[32]
Kim, Y. A., Cho, D. Y., Dao, P. and Przytycka, T. M. (2015) MEMCover: integrated analysis of mutual exclusivity and functional network reveals dysregulated pathways across multiple cancer types. Bioinformatics, 31, i284–i292
CrossRef Pubmed Google scholar
[33]
Kim, Y. A., Salari, R., Wuchty, S. and Przytycka, T. M. (2013) Module cover—a new approach to genotype-phenotype studies, In Proceedings of the Pacific Symposium, Biocomputing, 135–146, Singapore: World Scientific
Pubmed
[34]
Chen, L., Liu, R., Liu, Z. P., Li, M.and Aihara, K. (2012) Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci. Rep., 2, 342
CrossRef Pubmed Google scholar
[35]
Liu, R., Li, M., Liu, Z. P., Wu, J. , Chen, L. and Aihara, K. (2012) Identifying critical transitions and their leading biomolecular networks in complex diseases. Sci. Rep., 2, 813
CrossRef Pubmed Google scholar
[36]
Li, Y., Jin, S., Lei, L., Pan, Z. and Zou, X. (2015) Deciphering deterioration mechanisms of complex diseases based on the construction of dynamic networks and systems analysis. Sci. Rep., 5, 9283
CrossRef Pubmed Google scholar
[37]
Zeng, T., Zhang, C. C., Zhang, W., Liu, R., Liu, J. and Chen, L. (2014) Deciphering early development of complex diseases by progressive module network. Methods, 67, 334–343
CrossRef Pubmed Google scholar
[38]
Allahyar, A. and de Ridder, J. (2015) FERAL: network-based classifier with application to breast cancer outcome prediction. Bioinformatics, 31, i311–i319
CrossRef Pubmed Google scholar
[39]
de Gramont, A., Watson, S., Ellis, L. M., Rodón, J. , Tabernero, J., de Gramont, A. and Hamilton, S. R. (2015) Pragmatic issues in biomarker evaluation for targeted therapies in cancer. Nat. Rev. Clin. Oncol., 12, 197–212
CrossRef Pubmed Google scholar
[40]
Qin, G. and Zhao, X. M. (2014) A survey on computational approaches to identifying disease biomarkers based on molecular networks. J. Theor. Biol., 362, 9–16
CrossRef Pubmed Google scholar
[41]
Liu, R., Wang, X., Aihara, K. and Chen, L. (2014) Early diagnosis of complex diseases by molecular biomarkers, network biomarkers, and dynamical network biomarkers. Med. Res. Rev., 34, 455–478
CrossRef Pubmed Google scholar
[42]
Zeng, T., Zhang, W., Yu, X., Liu, X., Li, M., Liu, R. and Chen, L. (2014) Edge biomarkers for classification and prediction of phenotypes. Sci. China Life Sci., 57, 1103–1114
CrossRef Pubmed Google scholar
[43]
Zeng, T., Sun, S. Y., Wang, Y., Zhu, H. and Chen, L. (2013) Network biomarkers reveal dysfunctional gene regulations during disease progression. FEBS J., 280, 5682–5695
CrossRef Pubmed Google scholar
[44]
Liu, X., Liu, R., Zhao, X. M. and Chen, L. ( 2013) Detecting early-warning signals of type 1 diabetes and its leading biomolecular networks by dynamical network biomarkers. BMC Med Genomics, 6, S8
Pubmed

ACKNOWLEDGEMENTS

This work was partly supported by the National Nature Science Foundation of China (Nos. 91530321, 61390513, 61602347 and 61572363), and the Fundamental Research Funds for the Central Universities.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Guanghui Zhu, Xing-Ming Zhao, and Jun Wu declare that they have no conflict of interests.
This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(424 KB)

Accesses

Citations

Detail

Sections
Recommended

/