A survey on biomarker identification based on molecular networks
Guanghui Zhu, Xing-Ming Zhao, Jun Wu
A survey on biomarker identification based on molecular networks
Background: Identifying biomarkers for accurate diagnosis and prognosis of diseases is important for the prevention of disease development. The molecular networks that describe the functional relationships among molecules provide a global view of the complex biological systems. With the molecular networks, the molecular mechanisms underlying diseases can be unveiled, which helps identify biomarkers in a systematic way.
Results: In this survey, we report the recent progress on identifying biomarkers based on the topology of molecular networks, and we categorize those biomarkers into three groups, including node biomarkers, edge biomarkers and network biomarkers. These distinct types of biomarkers can be detected under different conditions depending on the data available.
Conclusions: The biomarkers identified based on molecular networks can provide more accurate diagnosis and prognosis. The pros and cons of different types of biomarkers as well as future directions to improve the methods for identifying biomarkers are also discussed.
biomarker / molecular network / module / pathway
[1] |
Akbani, R., Ng, P. K., Werner, H. M., Shahmoradgoli, M., Zhang, F., Ju, Z., Liu, W., Yang, J. Y., Yoshihara, K., Li, J.,
CrossRef
Pubmed
Google scholar
|
[2] |
Bell, D., Berchuck, A., Birrer, M., Chien, J., Cramer, D. W., Dao, F., Dhir, R., DiSaia, P., Gabra, H., Glenn, P.,
CrossRef
Pubmed
Google scholar
|
[3] |
Verhaak, R. G., Tamayo, P., Yang, J. Y., Hubbard, D., Zhang, H., Creighton, C. J., Fereday, S., Lawrence, M., Carter, S. L., Mermel, C. H.,
Pubmed
|
[4] |
Wu, G. and Stein, L. (2012) A network module-based method for identifying cancer prognostic signatures. Genome Biol., 13, R112
CrossRef
Pubmed
Google scholar
|
[5] |
Zhang, W., Zang, J., Jing, X., Sun, Z., Yan, W., Yang, D., Shen, B. and Guo, F. (2014) Identification of candidate miRNA biomarkers from miRNA regulatory network with application to prostate cancer. J. Transl. Med., 12, 66
CrossRef
Pubmed
Google scholar
|
[6] |
Li, Y., Vongsangnak, W., Chen, L. and Shen, B.(2014) Integrative analysis reveals disease-associated genes and biomarkers for prostate cancer progression. BMC Med. Genomics, 7, S3
CrossRef
Pubmed
Google scholar
|
[7] |
Santiago, J. A. and Potashkin, J. A. (2015) Network-based metaanalysis identifies HNF4A and PTBP1 as longitudinally dynamic biomarkers for Parkinson’s disease. Proc. Natl. Acad. Sci. USA, 112, 2257–2262
CrossRef
Pubmed
Google scholar
|
[8] |
Li, Y., Xu, J., Chen, H., Bai, J., Li, S., Zhao, Z., Shao, T., Jiang, T., Ren, H., Kang, C.,
CrossRef
Pubmed
Google scholar
|
[9] |
Ozgür, A., Vu, T., Erkan, G. and Radev, D. R. (2008) Identifying gene-disease associations using centrality on a literature mined gene-interaction network. Bioinformatics, 24, i277–i285
CrossRef
Pubmed
Google scholar
|
[10] |
Bertrand, D., Chng, K. R., Sherbaf, F. G., Kiesel, A., Chia, B. K. H., Sia, Y. Y., Huang, S. K., Hoon, D. S. B., Liu, E. T., Hillmer, A.,
CrossRef
Pubmed
Google scholar
|
[11] |
Suo, C., Hrydziuszko, O., Lee, D., Pramana, S., Saputra, D., Joshi, H., Calza, S. and Pawitan, Y. (2015) Integration of somatic mutation, expression and functional data reveals potential driver genes predictive of breast cancer survival. Bioinformatics, 31, 2607–2613
CrossRef
Pubmed
Google scholar
|
[12] |
Gao, C., Dang, X., Chen, Y. and Wilkins, D. ( 2009) Graph ranking for exploratory gene data analysis. BMC Bioinformatics, 10, S19
CrossRef
Pubmed
Google scholar
|
[13] |
Cun, Y. and Fröhlich, H. (2013) Network and data integration for biomarker signature discovery via network smoothed T-statistics. PLoS One, 8, e73074
CrossRef
Pubmed
Google scholar
|
[14] |
Hofree, M., Shen, J. P., Carter, H., Gross, A. and Ideker, T. (2013) Network-based stratification of tumor mutations. Nat. Methods, 10, 1108–1115
CrossRef
Pubmed
Google scholar
|
[15] |
Qin, G. M. Li, R. Y. and Zhao X. M. (2016) Identifying disease associated miRNAs based on protein domains. IEEE/ACM Trans. Comput. Biol. Bioinform
CrossRef
Google scholar
|
[16] |
Zhang, W., Zeng, T. and Chen, L. (2014) EdgeMarker: identifying differentially correlated molecule pairs as edge-biomarkers. J. Theor. Biol., 362, 35–43
CrossRef
Pubmed
Google scholar
|
[17] |
Liu, X., Liu, Z. P., Zhao, X. M. and Chen, L. (2012) Identifying disease genes and module biomarkers by differential interactions. J. Am. Med. Inform. Assoc., 19, 241–248
CrossRef
Pubmed
Google scholar
|
[18] |
Ben-Hamo, R., Gidoni, M. and Efroni, S. (2014) PhenoNet: identification of key networks associated with disease phenotype. Bioinformatics, 30, 2399–2405
CrossRef
Pubmed
Google scholar
|
[19] |
Ma, S., Jiang, T. and Jiang, R. (2015) Differential regulation enrichment analysis via the integration of transcriptional regulatory network and gene expression data. Bioinformatics, 31, 563–571
CrossRef
Pubmed
Google scholar
|
[20] |
Li, Y., Liang, C., Wong, K. C., Jin, K.and Zhang, Z. (2014) Inferring probabilistic miRNA-mRNA interaction signatures in cancers: a role-switch approach. Nucleic Acids Res., 42, e76
CrossRef
Pubmed
Google scholar
|
[21] |
Yu, X., Li, G. and Chen, L. (2014) Prediction and early diagnosis of complex diseases by edge-network. Bioinformatics, 30, 852–859
CrossRef
Pubmed
Google scholar
|
[22] |
Liu, K. Q., Liu, Z. P., Hao, J. K., Chen, L. and Zhao, X. M. (2012) Identifying dysregulated pathways in cancers from pathway interaction networks. BMC Bioinformatics, 13, 126
CrossRef
Pubmed
Google scholar
|
[23] |
Wang, Y., Chen, J., Li, Q., Wang, H., Liu, G., Jing, Q. and Shen, B. (2011) Identifying novel prostate cancer associated pathways based on integrative microarray data analysis. Comput. Biol. Chem., 35, 151–158
CrossRef
Pubmed
Google scholar
|
[24] |
Zhao, X. M., Liu, K. Q., Zhu, G., He, F., Duval, B., Richer, J. M., Huang, D. S., Jiang, C. J., Hao, J. K. and Chen, L. (2015) Identifying cancer-related microRNAs based on gene expression data. Bioinformatics, 31, 1226–1234
CrossRef
Pubmed
Google scholar
|
[25] |
Bader, G. D. and Hogue, C. W. (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 4, 2
CrossRef
Pubmed
Google scholar
|
[26] |
Nepusz, T., Yu, H. and Paccanaro, A. (2012) Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods, 9, 471–472
CrossRef
Pubmed
Google scholar
|
[27] |
Zhang, X., Gao, L., Liu, Z. P. and Chen, L. (2015) Identifying module biomarker in type 2 diabetes mellitus by discriminative area of functional activity. BMC Bioinformatics, 16, 92
CrossRef
Pubmed
Google scholar
|
[28] |
Chuang, H. Y., Lee, E., Liu, Y. T., Lee, D. and Ideker, T. (2007) Network-based classification of breast cancer metastasis. Mol. Syst. Biol., 3, 140
CrossRef
Pubmed
Google scholar
|
[29] |
Zeng, T., Wang, D. C., Wang, X., Xu, F. and Chen, L. (2014) Prediction of dynamical drug sensitivity and resistance by module network rewiring-analysis based on transcriptional profiling. Drug Resist. Updat., 17, 64–76
CrossRef
Pubmed
Google scholar
|
[30] |
Zeng, T., Zhang, W., Yu, X., Liu, X., Li, M. and Chen, L. (2015) Big-data-based edge biomarkers: study on dynamical drug sensitivity and resistance in individuals. Brief. Bioinform., 17, 576–592
Pubmed
|
[31] |
Leung, A., Bader, G. D. and Reimand, J. (2014) HyperModules: identifying clinically and phenotypically significant network modules with disease mutations for biomarker discovery. Bioinformatics, 30, 2230–2232
CrossRef
Pubmed
Google scholar
|
[32] |
Kim, Y. A., Cho, D. Y., Dao, P. and Przytycka, T. M. (2015) MEMCover: integrated analysis of mutual exclusivity and functional network reveals dysregulated pathways across multiple cancer types. Bioinformatics, 31, i284–i292
CrossRef
Pubmed
Google scholar
|
[33] |
Kim, Y. A., Salari, R., Wuchty, S. and Przytycka, T. M. (2013) Module cover—a new approach to genotype-phenotype studies, In Proceedings of the Pacific Symposium, Biocomputing, 135–146, Singapore: World Scientific
Pubmed
|
[34] |
Chen, L., Liu, R., Liu, Z. P., Li, M.and Aihara, K. (2012) Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci. Rep., 2, 342
CrossRef
Pubmed
Google scholar
|
[35] |
Liu, R., Li, M., Liu, Z. P., Wu, J. , Chen, L. and Aihara, K. (2012) Identifying critical transitions and their leading biomolecular networks in complex diseases. Sci. Rep., 2, 813
CrossRef
Pubmed
Google scholar
|
[36] |
Li, Y., Jin, S., Lei, L., Pan, Z. and Zou, X. (2015) Deciphering deterioration mechanisms of complex diseases based on the construction of dynamic networks and systems analysis. Sci. Rep., 5, 9283
CrossRef
Pubmed
Google scholar
|
[37] |
Zeng, T., Zhang, C. C., Zhang, W., Liu, R., Liu, J. and Chen, L. (2014) Deciphering early development of complex diseases by progressive module network. Methods, 67, 334–343
CrossRef
Pubmed
Google scholar
|
[38] |
Allahyar, A. and de Ridder, J. (2015) FERAL: network-based classifier with application to breast cancer outcome prediction. Bioinformatics, 31, i311–i319
CrossRef
Pubmed
Google scholar
|
[39] |
de Gramont, A., Watson, S., Ellis, L. M., Rodón, J. , Tabernero, J., de Gramont, A. and Hamilton, S. R. (2015) Pragmatic issues in biomarker evaluation for targeted therapies in cancer. Nat. Rev. Clin. Oncol., 12, 197–212
CrossRef
Pubmed
Google scholar
|
[40] |
Qin, G. and Zhao, X. M. (2014) A survey on computational approaches to identifying disease biomarkers based on molecular networks. J. Theor. Biol., 362, 9–16
CrossRef
Pubmed
Google scholar
|
[41] |
Liu, R., Wang, X., Aihara, K. and Chen, L. (2014) Early diagnosis of complex diseases by molecular biomarkers, network biomarkers, and dynamical network biomarkers. Med. Res. Rev., 34, 455–478
CrossRef
Pubmed
Google scholar
|
[42] |
Zeng, T., Zhang, W., Yu, X., Liu, X., Li, M., Liu, R. and Chen, L. (2014) Edge biomarkers for classification and prediction of phenotypes. Sci. China Life Sci., 57, 1103–1114
CrossRef
Pubmed
Google scholar
|
[43] |
Zeng, T., Sun, S. Y., Wang, Y., Zhu, H. and Chen, L. (2013) Network biomarkers reveal dysfunctional gene regulations during disease progression. FEBS J., 280, 5682–5695
CrossRef
Pubmed
Google scholar
|
[44] |
Liu, X., Liu, R., Zhao, X. M. and Chen, L. ( 2013) Detecting early-warning signals of type 1 diabetes and its leading biomolecular networks by dynamical network biomarkers. BMC Med Genomics, 6, S8
Pubmed
|
/
〈 | 〉 |