Computational inference of physical spatial organization of eukaryotic genomes
Bingxiang Xu, Zhihua Zhang
Computational inference of physical spatial organization of eukaryotic genomes
Background: Chromosomes are packed in the cell’s nucleus, and chromosomal conformation is critical to nearly all intranuclear biological reactions, including gene transcription and DNA replication. Nevertheless, chromosomal conformation is largely a mystery in terms of its formation and the regulatory machinery that accesses it.
Results: Thanks to recent technological developments, we can now probe chromatin interaction in substantial detail, boosting research interest in modeling genome spatial organization. Here, we review the current computational models that simulate chromosome dynamics, and explain the physical and topological properties of chromosomal conformation, as inferred from these newly generated data.
Conclusion: Novel models shall be developed to address questions beyond averaged structure in the near further.
3D genome / models / simulation
[1] |
Dillon, N. (2008) The impact of gene location in the nucleus on transcriptional regulation. Dev. Cell, 15, 182–186
CrossRef
Pubmed
Google scholar
|
[2] |
Miele, A. and Dekker, J. (2008) Long-range chromosomal interactions and gene regulation. Mol. Biosyst., 4, 1046–1057
CrossRef
Pubmed
Google scholar
|
[3] |
Dekker, J., Rippe, K., Dekker, M., Kleckner, N. (2002) Capturing chromosome conformation. Science, 295,1306–1311
CrossRef
Google scholar
|
[4] |
Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O.
CrossRef
Google scholar
|
[5] |
Cremer, M., Grasser, F., Lanctôt, C., Müller, S., Neusser, M., Zinner, R., Solovei, I. and Cremer, T. (2008) Multicolor 3D fluorescence in situ hybridization for imaging interphase chromosomes. In The Nucleus, Hancock. R. Ed. 463, 205–239, Germany: Springer
CrossRef
Pubmed
Google scholar
|
[6] |
Song, F., Chen, P., Sun, D., Wang, M., Dong, L., Liang, D., Xu, R. M., Zhu, P. and Li, G. (2014) Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science, 344, 376–380
CrossRef
Pubmed
Google scholar
|
[7] |
Zhu, P. and Li, G. (2016) Structural insights of nucleosome and the 30-nm chromatin fiber. Curr. Opin. Struct. Biol., 36, 106–115
CrossRef
Pubmed
Google scholar
|
[8] |
Naumova, N., Imakaev, M., Fudenberg, G., Zhan, Y., Lajoie, B. R., Mirny, L. A. and Dekker, J. (2013) Organization of the mitotic chromosome. Science, 342, 948–953
CrossRef
Pubmed
Google scholar
|
[9] |
Tang, Z., Luo, O. J., Li, X., Zheng, M., Zhu, J. J., Szalaj, P., Trzaskoma, P., Magalska, A., Wlodarczyk, J., Ruszczycki, B.,
CrossRef
Pubmed
Google scholar
|
[10] |
Bickmore, W. A. (2013) The spatial organization of the human genome. Annu. Rev. Genomics Hum. Genet., 14, 67–84
CrossRef
Pubmed
Google scholar
|
[11] |
Selvaraj, S., R Dixon, J., Bansal, V. and Ren, B. (2013) Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing. Nat. Biotechnol., 31, 1111–1118
CrossRef
Pubmed
Google scholar
|
[12] |
Klenin, K., Merlitz, H. and Langowski, J. (1998) A Brownian dynamics program for the simulation of linear and circular DNA and other wormlike chain polyelectrolytes. Biophys. J., 74, 780–788
CrossRef
Pubmed
Google scholar
|
[13] |
Bednar, J., Furrer, P., Stasiak, A., Dubochet, J., Egelman, E. H. and Bates, A. D. (1994) The twist, writhe and overall shape of supercoiled DNA change during counterion-induced transition from a loosely to a tightly interwound superhelix: possible implications for DNA structure in vivo. J. Mol. Biol., 235, 825–847
CrossRef
Pubmed
Google scholar
|
[14] |
Gr�nbech-Jensen, N., Mashl, R. J., Bruinsma, R. F. and Gelbart, W. M. (1997) Counterion-induced attraction between rigid polyelectrolytes. Phys. Rev. Lett., 78, 2477–2480
CrossRef
Google scholar
|
[15] |
Langowski, J. and Heermann, D. W. (2007) Computational modeling of the chromatin fiber. Semin. Cell. Dev. Biol., 235, 659–667
|
[16] |
Meluzzi, D. and Arya, G. (2013) Recovering ensembles of chromatin conformations from contact probabilities. Nucleic Acids Res., 41, 63–75
CrossRef
Pubmed
Google scholar
|
[17] |
Tolhuis, B., Palstra, R. J., Splinter, E., Grosveld, F. and de Laat, W. (2002) Looping and interaction between hypersensitive sites in the active β-globin locus. Mol. Cell, 10, 1453–1465
CrossRef
Pubmed
Google scholar
|
[18] |
Brackley, C. A., Brown, J. M., Waithe, D., Babbs, C., Davies, J., Hughes, J. R., Buckle, V. J. and Marenduzzo, D. (2016) Predicting the three-dimensional folding of cis-regulatory regions in mammalian genomes using bioinformatic data and polymer models. Genome Biol., 17, 59
CrossRef
Pubmed
Google scholar
|
[19] |
Rosa, A. and Everaers, R. (2008) Structure and dynamics of interphase chromosomes. PLoS Comput. Biol., 4, e1000153
CrossRef
Pubmed
Google scholar
|
[20] |
Tokuda, N., Terada, T. P. and Sasai, M. (2012) Dynamical modeling of three-dimensional genome organization in interphase budding yeast. Biophys. J., 102, 296–304
CrossRef
Pubmed
Google scholar
|
[21] |
Fudenberg, G. and Mirny, L. A. (2012) Higher-order chromatin structure: bridging physics and biology. Curr. Opin. Genet. Dev., 22, 115–124
CrossRef
Pubmed
Google scholar
|
[22] |
Tark-Dame, M., van Driel, R. and Heermann, D. W. (2011) Chromatin folding—from biology to polymer models and back. J. Cell Sci., 124, 839–845
CrossRef
Pubmed
Google scholar
|
[23] |
Mateos-Langerak, J., Bohn, M., de Leeuw, W., Giromus, O., Manders, E. M., Verschure, P. J., Indemans, M. H., Gierman, H. J., Heermann, D. W., van Driel, R.,
CrossRef
Pubmed
Google scholar
|
[24] |
Marko, J. F. and Siggia, E. D. (1997) Polymer models of meiotic and mitotic chromosomes. Mol. Biol. Cell, 8, 2217–2231
CrossRef
Pubmed
Google scholar
|
[25] |
Göndör, A. and Ohlsson, R. (2009) Chromosome crosstalk in three dimensions. Nature, 461, 212–217
CrossRef
Pubmed
Google scholar
|
[26] |
Kadauke, S. and Blobel, G. A. (2009) Chromatin loops in gene regulation. Biochim. Biophys. Acta, 1789, 17–25
CrossRef
Pubmed
Google scholar
|
[27] |
Bohn, M. and Heermann, D. W. (2010) Diffusion-driven looping provides a consistent framework for chromatin organization. PLoS One, 5, e12218
CrossRef
Pubmed
Google scholar
|
[28] |
Nicodemi, M., Panning, B. and Prisco, A. (2008) A thermodynamic switch for chromosome colocalization. Genetics, 179, 717–721
CrossRef
Pubmed
Google scholar
|
[29] |
Alipour, E. and Marko, J. F. (2012) Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res., 40, 11202–11212
CrossRef
Pubmed
Google scholar
|
[30] |
Grosberg, A. Iu., Nechaev, S. K. and Shakhnovich, E. I. (1988) The role of topological limitations in the kinetics of homopolymer collapse and self-assembly of biopolymers. Biofizika, 33, 247–253
Pubmed
|
[31] |
Nicodemi, M., Panning, B. and Prisco, A. (2008) A thermodynamic switch for chromosome colocalization. Genetics, 179, 717–721
CrossRef
Pubmed
Google scholar
|
[32] |
Barbieri, M., Chotalia, M., Fraser, J., Lavitas, L. M., Dostie, J., Pombo, A. and Nicodemi, M. (2012) Complexity of chromatin folding is captured by the strings and binders switch model. Proc. Natl. Acad. Sci. USA, 109, 16173–16178
CrossRef
Pubmed
Google scholar
|
[33] |
Goloborodko, A., Marko, J. F. and Mirny, L. A. (2016) Chromosome compaction by active loop extrusion. Biophys. J., 110, 2162–2168
CrossRef
Pubmed
Google scholar
|
[34] |
Rao, S. S., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D., Robinson, J. T., Sanborn, A. L., Machol, I., Omer, A. D., Lander, E. S.,
CrossRef
Pubmed
Google scholar
|
[35] |
Fudenberg, G., Imakaev, M., Lu, C., Goloborodko, A., Abdennur, N., Mimy, L.A. (2015) Formation of chromosomal domains by loop extrusion. Cell Rep., 15, 2038–2049
|
[36] |
Gruber, S. (2014) Multilayer chromosome organization through DNA bending, bridging and extrusion. Curr. Opin. Microbiol., 22, 102–110
CrossRef
Pubmed
Google scholar
|
[37] |
Simonis, M., Klous, P., Splinter, E., Moshkin, Y., Willemsen, R., de Wit, E., van Steensel, B. and de Laat, W. (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat. Genet., 38, 1348–1354
CrossRef
Pubmed
Google scholar
|
[38] |
Dostie, J., Richmond, T. A., Arnaout, R. A., Selzer, R. R., Lee, W. L., Honan, T. A., Rubio, E. D., Krumm, A., Lamb, J., Nusbaum, C.,
CrossRef
Pubmed
Google scholar
|
[39] |
Zhang, J., Poh, H. M., Peh, S. Q., Sia, Y. Y., Li, G., Mulawadi, F. H., Goh, Y., Fullwood, M. J., Sung, W. K., Ruan, X.,
CrossRef
Pubmed
Google scholar
|
[40] |
Denker, A. and de Laat, W. (2016) The second decade of 3C technologies: detailed insights into nuclear organization. Genes Dev., 30, 1357–1382
CrossRef
Pubmed
Google scholar
|
[41] |
Duan, Z., Andronescu, M., Schutz, K., McIlwain, S., Kim, Y. J., Lee, C., Shendure, J., Fields, S., Blau, C. A. and Noble, W. S. (2010) A three-dimensional model of the yeast genome. Nature, 465, 363–367
CrossRef
Pubmed
Google scholar
|
[42] |
Sexton, T., Yaffe, E., Kenigsberg, E., Bantignies, F., Leblanc, B., Hoichman, M., Parrinello, H., Tanay, A. and Cavalli, G. (2012) Three-dimensional folding and functional organization principles of the Drosophila genome. Cell, 148, 458–472
CrossRef
Pubmed
Google scholar
|
[43] |
Zhang, Y., McCord, R. P., Ho, Y. J., Lajoie, B. R., Hildebrand, D. G., Simon, A. C., Becker, M. S., Alt, F. W. and Dekker, J. (2012) Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell, 148, 908–921
CrossRef
Pubmed
Google scholar
|
[44] |
Hübner, M. R. and Spector, D. L. (2010) Chromatin dynamics. Annu. Rev. Biophys., 39, 471–489
CrossRef
Pubmed
Google scholar
|
[45] |
Lesne, A., Riposo, J., Roger, P., Cournac, A. and Mozziconacci, J. (2014) 3D genome reconstruction from chromosomal contacts. Nat. Methods, 11, 1141–1143
CrossRef
Pubmed
Google scholar
|
[46] |
Zhang, Z., Li, G., Toh, K. C. and Sung, W. K. (2013) 3D chromosome modeling with semi-definite programming and Hi-C data. J. Comput. Biol., 20, 831–846
CrossRef
Pubmed
Google scholar
|
[47] |
Varoquaux, N., Ay, F., Noble, W. S. and Vert, J. P. (2014) A statistical approach for inferring the 3D structure of the genome. Bioinformatics, 30, i26–i33
CrossRef
Pubmed
Google scholar
|
[48] |
Peng, C., Fu, L. Y., Dong, P. F., Deng, Z. L., Li, J. X., Wang, X. T. and Zhang, H. Y. (2013) The sequencing bias relaxed characteristics of Hi-C derived data and implications for chromatin 3D modeling. Nucleic Acids Res., 41, e183
CrossRef
Pubmed
Google scholar
|
[49] |
Ba�, D. and Marti-Renom, M. A. (2012) Genome structure determination via 3C-based data integration by the Integrative Modeling Platform. Methods, 58, 300–306
CrossRef
Pubmed
Google scholar
|
[50] |
Zou, C., Zhang, Y. and Ouyang, Z. (2016) HSA: integrating multi-track Hi-C data for genome-scale reconstruction of 3D chromatin structure. Genome Biol., 17, 40
CrossRef
Pubmed
Google scholar
|
[51] |
Nowotny, J., Ahmed, S., Xu, L., Oluwadare, O., Chen, H., Hensley, N., Trieu, T., Cao, R. and Cheng, J. (2015) Iterative reconstruction of three-dimensional models of human chromosomes from chromosomal contact data. BMC Bioinformatics, 16, 338
CrossRef
Pubmed
Google scholar
|
[52] |
Trieu, T. and Cheng, J. (2014) Large-scale reconstruction of 3D structures of human chromosomes from chromosomal contact data. Nucleic Acids Res., 42, e52
CrossRef
Pubmed
Google scholar
|
[53] |
Serra, F., Di Stefano, M., Spill, Y. G., Cuartero, Y., Goodstadt, M., Ba�, D. and Marti-Renom, M. A. (2015) Restraint-based three-dimensional modeling of genomes and genomic domains. FEBS Lett., 589, 2987–2995
CrossRef
Pubmed
Google scholar
|
[54] |
Yaffe, E. and Tanay, A. (2011) Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat. Genet., 43, 1059–1065
CrossRef
Pubmed
Google scholar
|
[55] |
Wang, S., Xu, J. and Zeng, J. (2015) Inferential modeling of 3D chromatin structure. Nucleic Acids Res., 43, e54.
CrossRef
Pubmed
Google scholar
|
[56] |
Tjong, H., Li, W., Kalhor, R., Dai, C., Hao, S., Gong, K., Zhou, Y., Li, H., Zhou, X. J., Le Gros, M. A.,
CrossRef
Pubmed
Google scholar
|
[57] |
Rousseau, M., Fraser, J., Ferraiuolo, M. A., Dostie, J. and Blanchette, M. (2011) Three-dimensional modeling of chromatin structure from interaction frequency data using Markov chain Monte Carlo sampling. BMC Bioinformatics, 12, 414
CrossRef
Pubmed
Google scholar
|
[58] |
Hu, M., Deng, K., Qin, Z., Dixon, J., Selvaraj, S., Fang, J., Ren, B. and Liu, J. S. (2013) Bayesian inference of spatial organizations of chromosomes. PLoS Comput. Biol., 9, e1002893
CrossRef
Pubmed
Google scholar
|
[59] |
He, C., Wang, X. and Zhang, M. Q. (2014) Nucleosome eviction and multiple co-factor binding predict estrogen-receptor-alpha-associated long-range interactions. Nucleic Acids Res., 42, 6935–6944
CrossRef
Pubmed
Google scholar
|
[60] |
Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S. and Ren, B. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 485, 376– 380
CrossRef
Pubmed
Google scholar
|
[61] |
Ho, J. W., Jung, Y. L., Liu, T., Alver, B. H., Lee, S., Ikegami, K., Sohn, K. A., Minoda, A., Tolstorukov, M. Y., Appert, A.,
CrossRef
Pubmed
Google scholar
|
[62] |
Fortin, J. P. and Hansen, K. D. (2015) Reconstructing A/B compartments as revealed by Hi-C using long-range correlations in epigenetic data. Genome Biol., 16, 180
CrossRef
Pubmed
Google scholar
|
[63] |
Huang, J., Marco, E., Pinello, L. and Yuan, G. C. (2015) Predicting chromatin organization using histone marks. Genome Biol., 16, 162
CrossRef
Pubmed
Google scholar
|
[64] |
Zhang, Z. and Zhang, M. Q. (2011) Histone modification profiles are predictive for tissue/cell-type specific expression of both protein-coding and microRNA genes. BMC Bioinformatics, 12, 155
CrossRef
Pubmed
Google scholar
|
[65] |
Wang, Z., Zang, C., Rosenfeld, J. A., Schones, D. E., Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Peng, W., Zhang, M. Q.,
CrossRef
Pubmed
Google scholar
|
[66] |
Karlić, R., Chung, H. R., Lasserre, J., Vlahovicek, K. and Vingron, M. (2010) Histone modification levels are predictive for gene expression. Proc. Natl. Acad. Sci. USA, 107, 2926–2931
CrossRef
Pubmed
Google scholar
|
[67] |
Allis, C. D., Jenuwein, T., Reinberg, D., Caparros, M. (2015) Epigenetics. New York: Cold Spring Harbor Laboratory Press
|
[68] |
Zhu, Y., Chen, Z., Zhang, K., Wang, M., Medovoy, D., Whitaker, J. W., Ding, B., Li, N., Zheng, L. and Wang, W. (2016) Constructing 3D interaction maps from 1D epigenomes. Nat. Commun., 7, 10812
CrossRef
Pubmed
Google scholar
|
[69] |
Chen, Y., Wang, Y., Xuan, Z., Chen, M. and Zhang, M. Q. (2016) De novo deciphering three-dimensional chromatin interaction and topological domains by wavelet transformation of epigenetic profiles. Nucleic Acids Res., 44, e106
CrossRef
Pubmed
Google scholar
|
[70] |
Whalen, S., Truty, R. M. and Pollard, K. S. (2016) Enhancer-promoter interactions are encoded by complex genomic signatures on looping chromatin. Nat. Genet., 48, 488–496
CrossRef
Pubmed
Google scholar
|
[71] |
The ENCODE Project Consortium. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57–74
CrossRef
Pubmed
Google scholar
|
[72] |
Kornberg, R. D. and Stryer, L. (1988) Statistical distributions of nucleosomes: nonrandom locations by a stochastic mechanism. Nucleic Acids Res., 16, 6677–6690
CrossRef
Pubmed
Google scholar
|
[73] |
Kalhor, R., Tjong, H., Jayathilaka, N., Alber, F. and Chen, L. (2011) Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat. Biotechnol., 30, 90–98
CrossRef
Pubmed
Google scholar
|
[74] |
Giorgetti, L., Galupa, R., Nora, E. P., Piolot, T., Lam, F., Dekker, J., Tiana, G. and Heard, E. (2014) Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell, 157, 950–963
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |