Performance measures in evaluating machine learning based bioinformatics predictors for classifications

Yasen Jiao, Pufeng Du

PDF(289 KB)
PDF(289 KB)
Quant. Biol. ›› 2016, Vol. 4 ›› Issue (4) : 320-330. DOI: 10.1007/s40484-016-0081-2
REVIEW
REVIEW

Performance measures in evaluating machine learning based bioinformatics predictors for classifications

Author information +
History +

Abstract

Background: Many existing bioinformatics predictors are based on machine learning technology. When applying these predictors in practical studies, their predictive performances should be well understood. Different performance measures are applied in various studies as well as different evaluation methods. Even for the same performance measure, different terms, nomenclatures or notations may appear in different context.

Results: We carried out a review on the most commonly used performance measures and the evaluation methods for bioinformatics predictors.

Conclusions: It is important in bioinformatics to correctly understand and interpret the performance, as it is the key to rigorously compare performances of different predictors and to choose the right predictor.

Graphical abstract

Keywords

machine learning / performance measures / evaluation methods

Cite this article

Download citation ▾
Yasen Jiao, Pufeng Du. Performance measures in evaluating machine learning based bioinformatics predictors for classifications. Quant. Biol., 2016, 4(4): 320‒330 https://doi.org/10.1007/s40484-016-0081-2

References

[1]
Eberwine, J., Sul, J.-Y., Bartfai, T. and Kim, J. (2014) The promise of single-cell sequencing. Nat. Methods, 11, 25–27
CrossRef Pubmed Google scholar
[2]
Ashley, E. A. (2015) The precision medicine initiative: a new national effort. JAMA, 313, 2119–2120
CrossRef Pubmed Google scholar
[3]
Chou, K.-C. (2009) Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology. Curr. Proteomics, 6, 262–274
CrossRef Google scholar
[4]
Chou, K.-C. (2015) Impacts of bioinformatics to medicinal chemistry. Med. Chem., 11, 218–234
CrossRef Pubmed Google scholar
[5]
Jiao, Y.-S. and Du, P.-F. (2016) Predicting Golgi-resident protein types using pseudo amino acid compositions: approaches with positional specific physicochemical properties. J. Theor. Biol., 391, 35–42
CrossRef Pubmed Google scholar
[6]
Wang, Y. and Zeng, J. (2013) Predicting drug-target interactions using restricted Boltzmann machines. Bioinformatics, 29, i126–i134
CrossRef Pubmed Google scholar
[7]
Lee, K., Byun, K., Hong, W., Chuang, H. Y., Pack, C. G., Bayarsaikhan, E., Paek, S. H., Kim, H., Shin, H. Y., Ideker, T., (2013) Proteome-wide discovery of mislocated proteins in cancer. Genome Res., 23, 1283–1294
CrossRef Pubmed Google scholar
[8]
Shao, J., Xu, D., Hu, L., Kwan, Y. W., Wang, Y., Kong, X. and Ngai, S. M. (2012) Systematic analysis of human lysine acetylation proteins and accurate prediction of human lysine acetylation through bi-relative adapted binomial score Bayes feature representation. Mol. Biosyst., 8, 2964–2973
CrossRef Pubmed Google scholar
[9]
Libbrecht, M. W. and Noble, W. S. (2015) Machine learning applications in genetics and genomics. Nat. Rev. Genet., 16, 321–332
CrossRef Pubmed Google scholar
[10]
Kohavi, R. and Provost, F. (1998) Glossary of terms. Mach. Learn., 30, 271–274
CrossRef Google scholar
[11]
Simon P. (2013) Too Big to Ignore: The Business Case for Big Data. New Jersey: Wiley
[12]
Fan, Y.-X., Zhang, Y. and Shen, H.-B. (2013) LabCaS: labeling calpain substrate cleavage sites from amino acid sequence using conditional random fields. Proteins, 81, 622–634
CrossRef Pubmed Google scholar
[13]
Song, J., Tan, H., Shen, H., Mahmood, K., Boyd, S. E., Webb, G. I., Akutsu, T. and Whisstock, J. C. (2010) Cascleave: towards more accurate prediction of caspase substrate cleavage sites. Bioinformatics, 26, 752–760
CrossRef Pubmed Google scholar
[14]
Chou, K.-C. and Shen, H.-B. (2008) Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms. Nat. Protoc., 3, 153–162
CrossRef Pubmed Google scholar
[15]
Li X, Liu T, Tao P, Wang, C., Chen, L. (2015) A highly accurate protein structural class prediction approach using auto cross covariance transformation and recursive feature elimination. Comput. Biol. Chem., 59, 95–100
[16]
Kong, L., Zhang, L. and Lv, J. (2014) Accurate prediction of protein structural classes by incorporating predicted secondary structure information into the general form of Chou’s pseudo amino acid composition. J. Theor. Biol., 344, 12–18
CrossRef Pubmed Google scholar
[17]
Guo, S.-H., Deng, E.-Z., Xu, L.-Q., Ding, H., Lin, H., Chen, W. and Chou, K. C. (2014) iNuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with pseudo k-tuple nucleotide composition. Bioinformatics, 30, 1522–1529
CrossRef Pubmed Google scholar
[18]
Xu, Y., Wen, X., Wen, L.-S., Wu, L. Y., Deng, N. Y. and Chou, K. C. (2014) iNitro-Tyr: prediction of nitrotyrosine sites in proteins with general pseudo amino acid composition. PLoS One, 9, e105018
CrossRef Pubmed Google scholar
[19]
Xu, Y. and Chou, K.-C. (2016) Recent progress in predicting posttranslational modification sites in proteins. Curr. Top. Med. Chem., 16, 591–603
CrossRef Pubmed Google scholar
[20]
Jiang, R., Tang, W., Wu, X. and Fu, W. (2009) A random forest approach to the detection of epistatic interactions in case-control studies. BMC Bioinformatics, 10, S65
CrossRef Pubmed Google scholar
[21]
Tang, W., Wu, X., Jiang, R. and Li, Y. (2009) Epistatic module detection for case-control studies: a Bayesian model with a Gibbs sampling strategy. PLoS Genet., 5, e1000464
CrossRef Pubmed Google scholar
[22]
Wu, X., Jiang, R., Zhang, M. Q. and Li, S. (2008) Network-based global inference of human disease genes. Mol. Syst. Biol., 4, 189
CrossRef Pubmed Google scholar
[23]
Li, T., Du, P. and Xu, N. (2010) Identifying human kinase-specific protein phosphorylation sites by integrating heterogeneous information from various sources. PLoS One, 5, e15411
CrossRef Pubmed Google scholar
[24]
Xue, Y., Liu, Z., Cao, J., Ma, Q., Gao, X., Wang, Q., Jin, C., Zhou, Y., Wen, L. and Ren, J. (2011) GPS 2.1: enhanced prediction of kinase-specific phosphorylation sites with an algorithm of motif length selection. Protein Eng. Des. Sel., 24, 255–260
CrossRef Pubmed Google scholar
[25]
Zhao, Q., Xie, Y., Zheng, Y., Jiang, S., Liu, W., Mu, W., Liu, Z., Zhao, Y., Xue, Y. and Ren, J. (2014) GPS-SUMO: a tool for the prediction of sumoylation sites and SUMO-interaction motifs. Nucleic Acids Res., 42, W325–W330
CrossRef Pubmed Google scholar
[26]
Nanni, L., Brahnam, S. and Lumini, A. (2012) Combining multiple approaches for gene microarray classification. Bioinformatics, 28, 1151–1157
CrossRef Pubmed Google scholar
[27]
Dong, X. and Weng, Z. (2013) The correlation between histone modifications and gene expression. Epigenomics, 5, 113–116
CrossRef Pubmed Google scholar
[28]
Dong, X., Greven, M. C., Kundaje, A., Djebali, S., Brown, J. B., Cheng, C., Gingeras, T. R., Gerstein, M., Guig�, R., Birney, E., (2012) Modeling gene expression using chromatin features in various cellular contexts. Genome Biol., 13, R53
CrossRef Pubmed Google scholar
[29]
Cheng, C., Shou, C., Yip, K. Y. and Gerstein, M. B. (2011) Genome-wide analysis of chromatin features identifies histone modification sensitive and insensitive yeast transcription factors. Genome Biol., 12, R111
CrossRef Pubmed Google scholar
[30]
Huang, J., Marco, E., Pinello, L. and Yuan, G. C. (2015) Predicting chromatin organization using histone marks. Genome Biol., 16, 162
CrossRef Pubmed Google scholar
[31]
Bishop CM. (2006) Pattern Recognition and Machine Learning. New York: Springer
[32]
Zhang, M.-L. and Zhou, Z.-H. (2007) ML-KNN: a lazy learning approach to multi-label learning. Pattern Recognit., 40, 2038–2048
CrossRef Google scholar
[33]
Chou, K.-C. (2013) Some remarks on predicting multi-label attributes in molecular biosystems. Mol. Biosyst., 9, 1092–1100
CrossRef Pubmed Google scholar
[34]
Chou, K.-C. and Shen, H.-B. (2006) Hum-PLoc: a novel ensemble classifier for predicting human protein subcellular localization. Biochem. Biophys. Res. Commun., 347, 150–157
CrossRef Pubmed Google scholar
[35]
Chou, K.-C., Wu, Z.-C. and Xiao, X. (2012) iLoc-Hum: using the accumulation-label scale to predict subcellular locations of human proteins with both single and multiple sites. Mol. Biosyst., 8, 629–641
CrossRef Pubmed Google scholar
[36]
Du, P. and Li, Y. (2006) Prediction of protein submitochondria locations by hybridizing pseudo-amino acid composition with various physicochemical features of segmented sequence. BMC Bioinformatics, 7, 518
CrossRef Pubmed Google scholar
[37]
Du, P., Tian, Y. and Yan, Y. (2012) Subcellular localization prediction for human internal and organelle membrane proteins with projected gene ontology scores. J. Theor. Biol., 313, 61–67
CrossRef Pubmed Google scholar
[38]
Lin, H., Deng, E.-Z., Ding, H., Chen, W. and Chou, K. C. (2014) iPro54-PseKNC: a sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple nucleotide composition. Nucleic Acids Res., 42, 12961–12972
CrossRef Pubmed Google scholar
[39]
Chou, K.-C. (2011) Some remarks on protein attribute prediction and pseudo amino acid composition. J. Theor. Biol., 273, 236–247
CrossRef Pubmed Google scholar
[40]
Chou, K. C. and Zhang, C. T. (1995) Prediction of protein structural classes. Crit. Rev. Biochem. Mol. Biol., 30, 275–349
CrossRef Pubmed Google scholar
[41]
Du, P., Li, T. and Wang, X. (2011) Recent progress in predicting protein sub-subcellular locations. Expert Rev. Proteomics, 8, 391–404
CrossRef Pubmed Google scholar
[42]
Hastie, T., Tibshirani, R. and Friedman, J. (2009) Model Assessment and Selection. In The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 219–260, New York: Springer-Verlag
[43]
Chou, K. C. (2001) Using subsite coupling to predict signal peptides. Protein Eng., 14, 75–79
CrossRef Pubmed Google scholar
[44]
Chen, W., Feng, P., Ding, H., Lin, H. and Chou, K. C. (2015) iRNA-Methyl: identifying N(6)-methyladenosine sites using pseudo nucleotide composition. Anal. Biochem., 490, 26–33
CrossRef Pubmed Google scholar
[45]
Powers, D. M. W. (2011) Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. Inter. J. Mach. Learn. Tech., 2, 37–63
[46]
Li, J., Witten, D. M., Johnstone, I. M. and Tibshirani, R. (2012) Normalization, testing, and false discovery rate estimation for RNA-sequencing data. Biostatistics, 13, 523–538
CrossRef Pubmed Google scholar
[47]
Andreassen, O. A., Thompson, W. K., Schork, A. J., Ripke, S., Mattingsdal, M., Kelsoe, J. R., Kendler, K. S., O’Donovan, M. C., Rujescu, D., Werge, T., (2013) Improved detection of common variants associated with schizophrenia and bipolar disorder using pleiotropy-informed conditional false discovery rate. PLoS Genet., 9, e1003455
CrossRef Pubmed Google scholar
[48]
Chen, J. J., Roberson, P. K. and Schell, M. J. (2010) The false discovery rate: a key concept in large-scale genetic studies. Cancer Control, 17, 58–62
Pubmed
[49]
Brodersen, K. H., Ong, C. S., Stephan, K. E., Buhmann, J. M. (2010) The Balanced Accuracy and Its Posterior Distribution. In 2010 20th International Conference on Pattern Recognition (ICPR). 3121–3124
[50]
Mower, J. P. (2005) PREP-Mt: predictive RNA editor for plant mitochondrial genes. BMC Bioinformatics, 6, 96
CrossRef Pubmed Google scholar
[51]
Dayarian, A., Romero, R., Wang, Z., Biehl, M., Bilal, E., Hormoz, S., Meyer, P., Norel, R., Rhrissorrakrai, K., Bhanot, G., (2015) Predicting protein phosphorylation from gene expression: top methods from the IMPROVER Species Translation Challenge. Bioinformatics, 31, 462–470
CrossRef Pubmed Google scholar
[52]
Matthews, B. W. (1975) Comparison of the predicted and observed secondary structure of T4 phage lysozyme. BBA – Protein Structure, 405, 442–451
CrossRef Google scholar
[53]
Saito, T. and Rehmsmeier, M. (2015) The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS One, 10, e0118432
CrossRef Pubmed Google scholar
[54]
Davis, J. and Goadrich, M. (2006) The relationship between precision-recall and ROC curves. In Proceedings of the 23rd international conference on Machine learning. 233–240, New York: the Association for Computing Machinery
[55]
Du, P. and Xu, C. (2013) Predicting multisite protein subcellular locations: progress and challenges. Expert Rev. Proteomics, 10, 227–237
CrossRef Pubmed Google scholar
[56]
Tsoumakas, G., Katakis, I. and Vlahavas, I. (2010) Mining Multi-label Data. In Data Mining and Knowledge Discovery Handbook. 667–685, New York: Springer US
[57]
Tsoumakas, G. and Katakis, I. (2007) Multi-label classification: an overview. Int. J. Data Warehous. Min., 3, 1–13
CrossRef Google scholar
[58]
Sprenger, J., Fink, J. L. and Teasdale, R. D. (2006) Evaluation and comparison of mammalian subcellular localization prediction methods. BMC Bioinformatics, 7, S3
CrossRef Pubmed Google scholar
[59]
Bermingham, M. L., Pong-Wong, R., Spiliopoulou, A., Hayward, C., Rudan, I., Campbell, H., Wright, A. F., Wilson, J. F., Agakov, F., Navarro, P., (2015) Application of high-dimensional feature selection: evaluation for genomic prediction in man. Sci. Rep., 5, 10312
CrossRef Pubmed Google scholar
[60]
Varma, S. and Simon, R. (2006) Bias in error estimation when using cross-validation for model selection. BMC Bioinformatics, 7, 91
CrossRef Pubmed Google scholar

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China (NSFC 61005041), the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP 20100032120039),Tianjin Natural Science Foundation (No. 12JCQNJC02300), and China Postdoctoral Science Foundation (Nos. 2012T50240 and 2013M530114).

COMPLIANCE WITH ETHICS GUIDELINES

The authors Yasen Jiao and Pufeng Du declare that they have no conflict of interests.
This article does not contain any studies with human or animal subjects performed by any of the authors.
Funding
 

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(289 KB)

Accesses

Citations

Detail

Sections
Recommended

/