Advances in computational ChIA-PET data analysis
Chao He, Guipeng Li, Diekidel M. Nadhir, Yang Chen, Xiaowo Wang, Michael Q. Zhang
Advances in computational ChIA-PET data analysis
Genome-wide chromatin interaction analysis has become important for understanding 3D topological structure of a genome as well as for linking distal cis-regulatory elements to their target genes. Compared to the Hi-C method, chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) is unique, in that one can interrogate thousands of chromatin interactions (in a genome) mediated by a specific protein of interest at high resolution and reasonable cost. However, because of the noisy nature of the data, efficient analytical tools have become necessary. Here, we review some new computational methods recently developed by us and compare them with other existing methods. Our intention is to help readers to better understand ChIA-PET results and to guide the users on selection of the most appropriate tools for their own projects.
[1] |
Fullwood, M. J., Liu, M. H., Pan, Y. F., Liu, J., Xu, H., Mohamed, Y. B., Orlov, Y. L., Velkov, S., Ho, A., Mei, P. H.,
CrossRef
Pubmed
Google scholar
|
[2] |
Li, G., Ruan, X., Auerbach, R. K., Sandhu, K. S., Zheng, M., Wang, P., Poh, H. M., Goh, Y., Lim, J., Zhang, J.,
CrossRef
Pubmed
Google scholar
|
[3] |
Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O.,
CrossRef
Pubmed
Google scholar
|
[4] |
Rao, S. S., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D., Robinson, J. T., Sanborn, A. L., Machol, I., Omer, A. D., Lander, E. S.,
CrossRef
Pubmed
Google scholar
|
[5] |
He, C., Zhang, M. Q. and Wang, X. (2015) MICC: an R package for identifying chromatin interactions from ChIA-PET data. Bioinformatics, 31, 3832–3834
Pubmed
|
[6] |
He, C., Wang, X. and Zhang, M. Q. (2014) Nucleosome eviction and multiple co-factor binding predict estrogen-receptor-alpha-associated long-range interactions. Nucleic Acids Res., 42, 6935–6944
CrossRef
Pubmed
Google scholar
|
[7] |
Djekidel, M. N., Liang, Z., Wang, Q., Hu, Z., Li, G., Chen, Y. and Zhang, M. Q. (2015) 3CPET: finding co-factor complexes from ChIA-PET data using a hierarchical Dirichlet process. Genome Biol., 16, 288
CrossRef
Pubmed
Google scholar
|
[8] |
Tang, Z., Luo, O. J., Li, X., Zheng, M., Zhu, J. J., Szalaj, P., Trzaskoma, P., Magalska, A., Wlodarczyk, J., Ruszczycki, B.,
CrossRef
Pubmed
Google scholar
|
[9] |
Li, G., Fullwood, M. J., Xu, H., Mulawadi, F. H., Velkov, S., Vega, V., Ariyaratne, P. N., Mohamed, Y. B., Ooi, H. S., Tennakoon, C.,
CrossRef
Pubmed
Google scholar
|
[10] |
Paulsen, J., Rødland, E. A., Holden, L., Holden, M. and Hovig, E. (2014) A statistical model of ChIA-PET data for accurate detection of chromatin 3D interactions. Nucleic Acids Res., 42, e143
CrossRef
Pubmed
Google scholar
|
[11] |
Phanstiel, D. H., Boyle, A. P., Heidari, N. and Snyder, M. P. (2015) Mango: a bias-correcting ChIA-PET analysis pipeline. Bioinformatics, 31, 3092–3098
CrossRef
Pubmed
Google scholar
|
[12] |
Heyse, J. (2011) A false discovery rate procedure for categorical data. In Resent Advances in Biostatistics: False Discovery Rates, Survival Analysis, and Related Topics, 43–58, World Scientific Publishing Company
|
[13] |
Benjamini YaH,
|
[14] |
Jessen, B. and Wintner, A. (1935) Distribution functions and the Riemann ZETA function. Trans. Am. Math. Soc., 38, 48–88
CrossRef
Google scholar
|
[15] |
Sanyal, A., Lajoie, B. R., Jain, G. and Dekker, J. (2012) The long-range interaction landscape of gene promoters. Nature, 489, 109–113
CrossRef
Pubmed
Google scholar
|
[16] |
Fullwood, M. J., Wei, C. L., Liu, E. T. and Ruan, Y. (2009) Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. Genome Res., 19, 521–532
CrossRef
Pubmed
Google scholar
|
[17] |
He, H. H., Meyer, C. A., Chen, M. W., Jordan, V. C., Brown, M. and Liu, X. S. (2012) Differential DNase I hypersensitivity reveals factor-dependent chromatin dynamics. Genome Res., 22, 1015–1025
CrossRef
Pubmed
Google scholar
|
[18] |
Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S. and Ren, B. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 485, 376–380
CrossRef
Pubmed
Google scholar
|
[19] |
Marsman J., Horsfield, J.(2012) Long distance relationships: enhancer–promoter communication and dynamic gene transcription. Biochim. Biophys. Acta, 1819:1217–1227
CrossRef
Google scholar
|
[20] |
Phillips-Cremins, J. E., Sauria, M. E., Sanyal, A., Gerasimova, T. I., Lajoie, B. R., Bell, J. S., Ong, C. T., Hookway, T. A., Guo, C., Sun, Y.,
CrossRef
Pubmed
Google scholar
|
[21] |
Kagey, M. H., Newman, J. J., Bilodeau, S., Zhan, Y., Orlando, D. A., van Berkum, N. L., Ebmeier, C. C., Goossens, J., Rahl, P. B., Levine, S. S.,
CrossRef
Pubmed
Google scholar
|
[22] |
Lan, X., Witt, H., Katsumura, K., Ye, Z., Wang, Q., Bresnick, E. H., Farnham, P. J. and Jin, V. X. (2012) Integration of Hi-C and ChIP-seq data reveals distinct types of chromatin linkages. Nucleic Acids Res., 40, 7690–7704
CrossRef
Pubmed
Google scholar
|
[23] |
Deng, W., Lee, J., Wang, H., Miller, J., Reik, A., Gregory, P. D., Dean, A. and Blobel, G. A. (2012) Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell, 149, 1233–1244
CrossRef
Pubmed
Google scholar
|
[24] |
Teha, Y.W., Jordana, M. I., Beala, M. J. and Bleia, D. M. ( 2006) Hierarchical Dirichlet processes. J. Am. Stat. Assoc., 101, 1566–1581
|
[25] |
Mohammed, H., D’Santos, C., Serandour, A. A., Ali, H. R., Brown, G. D., Atkins, A., Rueda, O. M., Holmes, K. A., Theodorou, V., Robinson, J. L.,
CrossRef
Pubmed
Google scholar
|
[26] |
Li, M. J., Wang, L.Y., Xia, Z., Sham, P.C., Wang, J. (2013) GWAS3D: Detecting human regulatory variants by integrative analysis of genome-wide associations, chromosome interactions and histone modifications. Nucl. Acids Res. 41, W150–W158
CrossRef
Google scholar
|
[27] |
Grubert, F., Zaugg, J. B., Kasowski, M., Ursu, O., Spacek, D. V., Martin, A. R., Greenside, P., Srivas, R., Phanstiel, D. H., Pekowska, A.,
CrossRef
Pubmed
Google scholar
|
[28] |
Higgins, G. A., Allyn-Feuer, A. and Athey, B. D. (2015) Epigenomic mapping and effect sizes of noncoding variants associated with psychotropic drug response. Pharmacogenomics, 16, 1565–1583
CrossRef
Pubmed
Google scholar
|
[29] |
Smemo, S., Tena, J. J., Kim, K. H., Gamazon, E. R., Sakabe, N. J., Gómez-Marín, C., Aneas, I., Credidio, F. L., Sobreira, D. R., Wasserman, N. F.,
CrossRef
Pubmed
Google scholar
|
[30] |
Hnisz, D., Weintraub, A. S., Day, D. S., Valton, A. L., Bak, R. O., Li, C. H., Goldmann, J., Lajoie, B. R., Fan, Z. P., Sigova, A. A.,
CrossRef
Pubmed
Google scholar
|
[31] |
Heidari, N., Phanstiel, D. H., He, C., Grubert, F., Jahanbani, F., Kasowski, M., Zhang, M. Q. and Snyder, M. P. (2014) Genome-wide map of regulatory interactions in the human genome. Genome Res., 24, 1905–1917
CrossRef
Pubmed
Google scholar
|
[32] |
Li, G., Cai, L., Chang, H., Hong, P., Zhou, Q., Kulakova, E. V., Kolchanov, N. A. and Ruan, Y. (2014) Chromatin interaction analysis with paired-end tag (ChIA-PET) sequencing technology and application. BMC Genomics, 15, S11
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |