Advances in computational ChIA-PET data analysis

Chao He, Guipeng Li, Diekidel M. Nadhir, Yang Chen, Xiaowo Wang, Michael Q. Zhang

PDF(573 KB)
PDF(573 KB)
Quant. Biol. ›› 2016, Vol. 4 ›› Issue (3) : 217-225. DOI: 10.1007/s40484-016-0080-3
REVIEW

Advances in computational ChIA-PET data analysis

Author information +
History +

Abstract

Genome-wide chromatin interaction analysis has become important for understanding 3D topological structure of a genome as well as for linking distal cis-regulatory elements to their target genes. Compared to the Hi-C method, chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) is unique, in that one can interrogate thousands of chromatin interactions (in a genome) mediated by a specific protein of interest at high resolution and reasonable cost. However, because of the noisy nature of the data, efficient analytical tools have become necessary. Here, we review some new computational methods recently developed by us and compare them with other existing methods. Our intention is to help readers to better understand ChIA-PET results and to guide the users on selection of the most appropriate tools for their own projects.

Graphical abstract

Cite this article

Download citation ▾
Chao He, Guipeng Li, Diekidel M. Nadhir, Yang Chen, Xiaowo Wang, Michael Q. Zhang. Advances in computational ChIA-PET data analysis. Quant. Biol., 2016, 4(3): 217‒225 https://doi.org/10.1007/s40484-016-0080-3

References

[1]
Fullwood, M. J., Liu, M. H., Pan, Y. F., Liu, J., Xu, H., Mohamed, Y. B., Orlov, Y. L., Velkov, S., Ho, A., Mei, P. H., (2009) An oestrogen-receptor-alpha-bound human chromatin interactome. Nature, 462, 58–64
CrossRef Pubmed Google scholar
[2]
Li, G., Ruan, X., Auerbach, R. K., Sandhu, K. S., Zheng, M., Wang, P., Poh, H. M., Goh, Y., Lim, J., Zhang, J., (2012) Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell, 148, 84–98
CrossRef Pubmed Google scholar
[3]
Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O., (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326, 289–293.
CrossRef Pubmed Google scholar
[4]
Rao, S. S., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D., Robinson, J. T., Sanborn, A. L., Machol, I., Omer, A. D., Lander, E. S., (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 159, 1665–1680.
CrossRef Pubmed Google scholar
[5]
He, C., Zhang, M. Q. and Wang, X. (2015) MICC: an R package for identifying chromatin interactions from ChIA-PET data. Bioinformatics, 31, 3832–3834
Pubmed
[6]
He, C., Wang, X. and Zhang, M. Q. (2014) Nucleosome eviction and multiple co-factor binding predict estrogen-receptor-alpha-associated long-range interactions. Nucleic Acids Res., 42, 6935–6944
CrossRef Pubmed Google scholar
[7]
Djekidel, M. N., Liang, Z., Wang, Q., Hu, Z., Li, G., Chen, Y. and Zhang, M. Q. (2015) 3CPET: finding co-factor complexes from ChIA-PET data using a hierarchical Dirichlet process. Genome Biol., 16, 288
CrossRef Pubmed Google scholar
[8]
Tang, Z., Luo, O. J., Li, X., Zheng, M., Zhu, J. J., Szalaj, P., Trzaskoma, P., Magalska, A., Wlodarczyk, J., Ruszczycki, B., (2015) CTCF-mediated human 3D genome architecture reveals chromatin topology for transcription. Cell, 163, 1611–1627
CrossRef Pubmed Google scholar
[9]
Li, G., Fullwood, M. J., Xu, H., Mulawadi, F. H., Velkov, S., Vega, V., Ariyaratne, P. N., Mohamed, Y. B., Ooi, H. S., Tennakoon, C., (2010) ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biol., 11, R22
CrossRef Pubmed Google scholar
[10]
Paulsen, J., Rødland, E. A., Holden, L., Holden, M. and Hovig, E. (2014) A statistical model of ChIA-PET data for accurate detection of chromatin 3D interactions. Nucleic Acids Res., 42, e143
CrossRef Pubmed Google scholar
[11]
Phanstiel, D. H., Boyle, A. P., Heidari, N. and Snyder, M. P. (2015) Mango: a bias-correcting ChIA-PET analysis pipeline. Bioinformatics, 31, 3092–3098
CrossRef Pubmed Google scholar
[12]
Heyse, J. (2011) A false discovery rate procedure for categorical data. In Resent Advances in Biostatistics: False Discovery Rates, Survival Analysis, and Related Topics, 43–58, World Scientific Publishing Company
[13]
Benjamini YaH, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B Methodol. 57, 289–300
[14]
Jessen, B. and Wintner, A. (1935) Distribution functions and the Riemann ZETA function. Trans. Am. Math. Soc., 38, 48–88
CrossRef Google scholar
[15]
Sanyal, A., Lajoie, B. R., Jain, G. and Dekker, J. (2012) The long-range interaction landscape of gene promoters. Nature, 489, 109–113
CrossRef Pubmed Google scholar
[16]
Fullwood, M. J., Wei, C. L., Liu, E. T. and Ruan, Y. (2009) Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. Genome Res., 19, 521–532
CrossRef Pubmed Google scholar
[17]
He, H. H., Meyer, C. A., Chen, M. W., Jordan, V. C., Brown, M. and Liu, X. S. (2012) Differential DNase I hypersensitivity reveals factor-dependent chromatin dynamics. Genome Res., 22, 1015–1025
CrossRef Pubmed Google scholar
[18]
Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S. and Ren, B. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 485, 376–380
CrossRef Pubmed Google scholar
[19]
Marsman J., Horsfield, J.(2012) Long distance relationships: enhancer–promoter communication and dynamic gene transcription. Biochim. Biophys. Acta, 1819:1217–1227
CrossRef Google scholar
[20]
Phillips-Cremins, J. E., Sauria, M. E., Sanyal, A., Gerasimova, T. I., Lajoie, B. R., Bell, J. S., Ong, C. T., Hookway, T. A., Guo, C., Sun, Y., (2013) Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell, 153, 1281–1295
CrossRef Pubmed Google scholar
[21]
Kagey, M. H., Newman, J. J., Bilodeau, S., Zhan, Y., Orlando, D. A., van Berkum, N. L., Ebmeier, C. C., Goossens, J., Rahl, P. B., Levine, S. S., (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature, 467, 430–435
CrossRef Pubmed Google scholar
[22]
Lan, X., Witt, H., Katsumura, K., Ye, Z., Wang, Q., Bresnick, E. H., Farnham, P. J. and Jin, V. X. (2012) Integration of Hi-C and ChIP-seq data reveals distinct types of chromatin linkages. Nucleic Acids Res., 40, 7690–7704
CrossRef Pubmed Google scholar
[23]
Deng, W., Lee, J., Wang, H., Miller, J., Reik, A., Gregory, P. D., Dean, A. and Blobel, G. A. (2012) Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell, 149, 1233–1244
CrossRef Pubmed Google scholar
[24]
Teha, Y.W., Jordana, M. I., Beala, M. J. and Bleia, D. M. ( 2006) Hierarchical Dirichlet processes. J. Am. Stat. Assoc., 101, 1566–1581
[25]
Mohammed, H., D’Santos, C., Serandour, A. A., Ali, H. R., Brown, G. D., Atkins, A., Rueda, O. M., Holmes, K. A., Theodorou, V., Robinson, J. L., (2013) Endogenous purification reveals GREB1 as a key estrogen receptor regulatory factor. Cell Reports, 3, 342–349
CrossRef Pubmed Google scholar
[26]
Li, M. J., Wang, L.Y., Xia, Z., Sham, P.C., Wang, J. (2013) GWAS3D: Detecting human regulatory variants by integrative analysis of genome-wide associations, chromosome interactions and histone modifications. Nucl. Acids Res. 41, W150–W158
CrossRef Google scholar
[27]
Grubert, F., Zaugg, J. B., Kasowski, M., Ursu, O., Spacek, D. V., Martin, A. R., Greenside, P., Srivas, R., Phanstiel, D. H., Pekowska, A., (2015) Genetic control of chromatin states in humans involves local and distal chromosomal interactions. Cell, 162, 1051–1065
CrossRef Pubmed Google scholar
[28]
Higgins, G. A., Allyn-Feuer, A. and Athey, B. D. (2015) Epigenomic mapping and effect sizes of noncoding variants associated with psychotropic drug response. Pharmacogenomics, 16, 1565–1583
CrossRef Pubmed Google scholar
[29]
Smemo, S., Tena, J. J., Kim, K. H., Gamazon, E. R., Sakabe, N. J., Gómez-Marín, C., Aneas, I., Credidio, F. L., Sobreira, D. R., Wasserman, N. F., (2014) Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature, 507, 371–375
CrossRef Pubmed Google scholar
[30]
Hnisz, D., Weintraub, A. S., Day, D. S., Valton, A. L., Bak, R. O., Li, C. H., Goldmann, J., Lajoie, B. R., Fan, Z. P., Sigova, A. A., (2016) Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science, 351, 1454–1458
CrossRef Pubmed Google scholar
[31]
Heidari, N., Phanstiel, D. H., He, C., Grubert, F., Jahanbani, F., Kasowski, M., Zhang, M. Q. and Snyder, M. P. (2014) Genome-wide map of regulatory interactions in the human genome. Genome Res., 24, 1905–1917
CrossRef Pubmed Google scholar
[32]
Li, G., Cai, L., Chang, H., Hong, P., Zhou, Q., Kulakova, E. V., Kolchanov, N. A. and Ruan, Y. (2014) Chromatin interaction analysis with paired-end tag (ChIA-PET) sequencing technology and application. BMC Genomics, 15, S11
CrossRef Pubmed Google scholar

ACKNOWLEDGEMENTS

This work is supported by the National Basic Research Program of China (No. 2012CB316503), the National Nature Science Foundation of China (Nos. 91519326, 31361163004 and 31301044) and Tsinghua National Laboratory for Information Science and Technology Cross-discipline Foundation. We thank Zhenyu Liang for help of cover figure design.

COMPLIANCE WITH ETHICS GUIDELINES

The authors Chao He, Guipeng Li, Diekidel M. Nadhir, Yang Chen, Xiaowo Wang and Michael Q. Zhang declare that they have no conflict of interests.
This article does not contain any studies with human or animal subjects performed by any of the authors.
Funding
 

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(573 KB)

Accesses

Citations

Detail

Sections
Recommended

/