Design of efficient simplified genomic DNA and bisulfite sequencing in large plant populations

Jinhua Wu , Zewei Luo , Ning Jiang

Quant. Biol. ›› 2016, Vol. 4 ›› Issue (3) : 226 -239.

PDF (1179KB)
Quant. Biol. ›› 2016, Vol. 4 ›› Issue (3) : 226 -239. DOI: 10.1007/s40484-016-0079-9
RERSPECTIVE
RERSPECTIVE

Design of efficient simplified genomic DNA and bisulfite sequencing in large plant populations

Author information +
History +
PDF (1179KB)

Abstract

The next generation sequencing enables generation of high resolution and high throughput data for structure sequence of any genome at a fast declining cost. This opens opportunity for population based genetic and genomic analyses. In many applications, whole genome sequencing or re-sequencing is unnecessary or prohibited by budget limits. The Reduced Representation Genome Sequencing (RRGS), which sequences only a small proportion of the genome of interest, has been proposed to deal with the situations. Several forms of RRGS are proposed and implemented in the literature. When applied to plant or crop species, the current RRGS protocols shared a key drawback that a significantly high proportion (up to 60%) of sequence reads to be generated may be of non-genomic origin but attributed to chloroplast DNA or rRNA genes, leaving an exceptional low efficiency of the sequencing experiment. We recommended and discussed here the design of optimized simplified genomic DNA and bisulfite sequencing strategies, which may greatly improves efficiency of the sequencing experiments by bringing down the presentation of the undesirable sequencing reads to less than 10% in the whole sequence reads. The optimized RAD-seq and RRBS-seq methods are potentially useful for sequence variant screening and genotyping in large plant/crop populations.

Graphical abstract

Keywords

plant/crop genomes / next generation sequencing / genotyping / restriction-enzyme sites associated DNA (RAD) / DNA methylation / reduced representation bisulfite sequencing

Cite this article

Download citation ▾
Jinhua Wu, Zewei Luo, Ning Jiang. Design of efficient simplified genomic DNA and bisulfite sequencing in large plant populations. Quant. Biol., 2016, 4(3): 226-239 DOI:10.1007/s40484-016-0079-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Luikart, G., England, P. R., Tallmon, D., Jordan, S. and Taberlet, P. (2003) The power and promise of population genomics: from genotyping to genome typing. Nat. Rev. Genet., 4, 981–994

[2]

Davey, J. W., Hohenlohe, P. A., Etter, P. D., Boone, J. Q., Catchen, J. M. and Blaxter, M. L. (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet., 12, 499–510

[3]

Poland, J. A. and Rife, T. W. (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome, 5, 92–102

[4]

Hutchison, C. A. III. (2007) DNA sequencing: bench to bedside and beyond. Nucleic Acids Res., 35, 6227–6237

[5]

Sanger, F., Nicklen, S. and Coulson, A. R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA, 74, 5463–5467

[6]

Bush, W. S. and Moore, J. H. (2012) Chapter 11: Genome-wide association studies. PLOS Comput. Biol., 8, e1002822

[7]

Shendure, J. and Ji, H. (2008) Next-generation DNA sequencing. Nat. Biotechnol., 26, 1135–1145

[8]

Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., Berka, J., Braverman, M. S., Chen, Y. J., Chen, Z., (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437, 376–380

[9]

Metzker, M. L. (2010) Sequencing technologies — the next generation. Nat. Rev. Genet., 11, 31–46

[10]

Ashelford, K., Eriksson, M. E., Allen, C. M. D., D’Amore, R., Johansson, M., Gould, P., Kay, S., Millar, A. J., Hall, N. and Hall, A. (2011) Full genome re-sequencing reveals a novel circadian clock mutation in Arabidopsis. Genome Biol., 12, R28

[11]

Xu, X., Pan, S., Cheng, S., Zhang, B., Mu, D., Ni, P., Zhang, G., Yang, S., Li, R., Wang, J., (2011) Genome sequence and analysis of the tuber crop potato. Nature, 475, 189–195

[12]

Huang, X., Feng, Q., Qian, Q., Zhao, Q., Wang, L., Wang, A., Guan, J., Fan, D., Weng, Q., Huang, T., (2009) High-throughput genotyping by whole-genome resequencing. Genome Res., 19, 1068–1076

[13]

Chia, J. M., Song, C., Bradbury, P. J., Costich, D., de Leon, N., Doebley, J., Elshire, R. J., Gaut, B., Geller, L., Glaubitz, J. C., (2012) Maize HapMap2 identifies extant variation from a genome in flux. Nat. Genet., 44, 803–807

[14]

Rowe, H. C., Renaut, S. and Guggisberg, A. (2011) RAD in the realm of next-generation sequencing technologies. Mol. Ecol., 20, 3499–3502

[15]

Wetterstrand, K. A. (2012). DNA sequencing costs: Data from the NHGRI large-scale genome sequencing program. National Human Genome Research Institute, Bethesda, MD.

[16]

Geraldes, A., Pang, J., Thiessen, N., Cezard, T., Moore, R., Zhao, Y., Tam, A., Wang, S., Friedmann, M., Birol, I., (2011) SNP discovery in black cottonwood (Populus trichocarpa) by population transcriptome resequencing. Mol. Ecol. Resour., 11, 81–92

[17]

Hamilton, J. P., Hansey, C. N., Whitty, B. R., Stoffel, K., Massa, A. N., Van Deynze, A., De Jong, W. S., Douches, D. S. and Buell, C. R. (2011) Single nucleotide polymorphism discovery in elite North American potato germplasm. BMC Genomics, 12, 302

[18]

Chepelev, I., Wei, G., Tang, Q. and Zhao, K. (2009) Detection of single nucleotide variations in expressed exons of the human genome using RNA-Seq. Nucleic Acids Res., 37, e106

[19]

Nothnagel, M., Wolf, A., Herrmann, A., Szafranski, K., Vater, I., Brosch, M., Huse, K., Siebert, R., Platzer, M., Hampe, J., (2011) Statistical inference of allelic imbalance from transcriptome data. Hum. Mutat., 32, 98–106

[20]

Deelen, P., Zhernakova, D. V., de Haan, M., van der Sijde, M., Bonder, M. J., Karjalainen, J., van der Velde, K. J., Abbott, K. M., Fu, J., Wijmenga, C., (2015) Calling genotypes from public RNA-sequencing data enables identification of genetic variants that affect gene-expression levels. Genome Med., 7, 30

[21]

Christodoulou, D. C., Gorham, J. M., Herman, D. S. and Seidman, J. G. (2011) Construction of normalized RNA-seq libraries for next-generation sequencing using the crab duplex-specific nuclease. Curr. Protoc. Mol. Biol., doi: 10.1002/0471142727.mb0412s94

[22]

Mamanova, L., Coffey, A. J., Scott, C. E., Kozarewa, I., Turner, E. H., Kumar, A., Howard, E., Shendure, J. and Turner, D. J. (2010) Target-enrichment strategies for next-generation sequencing. Nat. Methods, 7, 111–118

[23]

Clark, M. J., Chen, R., Lam, H. Y., Karczewski, K. J., Chen, R., Euskirchen, G., Butte, A. J. and Snyder, M. (2011) Performance comparison of exome DNA sequencing technologies. Nat. Biotechnol., 29, 908–914

[24]

Kiialainen, A., Karlberg, O., Ahlford, A., Sigurdsson, S., Lindblad-Toh, K. and Syvänen, A. C. (2011) Performance of microarray and liquid based capture methods for target enrichment for massively parallel sequencing and SNP discovery. PLoS One, 6, e16486

[25]

Uitdewilligen, J. G., Wolters, A. M., D’hoop, B. B., Borm, T. J., Visser, R. G. and van Eck, H. J. (2013) A next-generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potato. PLoS One, 8, e62355

[26]

Mertes, F., Elsharawy, A., Sauer, S., van Helvoort, J. M., van der Zaag, P. J., Franke, A., Nilsson, M., Lehrach, H. and Brookes, A. J. (2011) Targeted enrichment of genomic DNA regions for next-generation sequencing. Brief. Funct. Genomics, 10, 374–386

[27]

Baird, N. A., Etter, P. D., Atwood, T. S., Currey, M. C., Shiver, A. L., Lewis, Z. A., Selker, E. U., Cresko, W. A. and Johnson, E. A. (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One, 3, e3376

[28]

Poland, J. A., Brown, P. J., Sorrells, M. E. and Jannink, J. L. (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One, 7, e32253

[29]

Wang, N., Fang, L., Xin, H., Wang, L. and Li, S. (2012) Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing. BMC Plant Biol., 12, 148

[30]

Toonen, R. J., Puritz, J. B., Forsman, Z. H., Whitney, J. L., Fernandez-Silva, I., Andrews, K. R. and Bird, C. E. (2013) ezRAD: a simplified method for genomic genotyping in non-model organisms. PeerJ, 1, e203

[31]

Guo, Y., Yuan, H., Fang, D., Song, L., Liu, Y., Liu, Y., Wu, L., Yu, J., Li, Z., Xu, X., (2014) An improved 2b-RAD approach (I2b-RAD) offering genotyping tested by a rice (Oryza sativa L.) F2 population. BMC Genomics, 15, 956

[32]

Wang, S., Meyer, E., McKay, J. K. and Matz, M. V. (2012) 2b-RAD: a simple and flexible method for genome-wide genotyping. Nat. Methods, 9, 808–810

[33]

Truong, H. T., Ramos, A. M., Yalcin, F., de Ruiter, M., van der Poel, H. J., Huvenaars, K. H., Hogers, R. C., van Enckevort, L. J., Janssen, A., van Orsouw, N. J., (2012) Sequence-based genotyping for marker discovery and co-dominant scoring in germplasm and populations. PLoS One, 7, e37565

[34]

Chen, X., Li, X., Zhang, B., Xu, J., Wu, Z., Wang, B., Li, H., Younas, M., Huang, L., Luo, Y., (2013) Detection and genotyping of restriction fragment associated polymorphisms in polyploid crops with a pseudo-reference sequence: a case study in allotetraploid Brassica napus. BMC Genomics, 14, 346

[35]

Life and Technologies. (2015) Pippin Prep™ System (includes instrument and monitor).

[36]

Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. and Hoekstra, H. E. (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One, 7, e37135

[37]

Quail, M. A., Kozarewa, I., Smith, F., Scally, A., Stephens, P. J., Durbin, R., Swerdlow, H. and Turner, D. J. (2008) A large genome center’s improvements to the Illumina sequencing system. Nat. Methods, 5, 1005–1010

[38]

Hurd, P. J. and Nelson, C. J. (2009) Advantages of next-generation sequencing versus the microarray in epigenetic research. Brief. Funct. Genomics Proteomics, 8, 174–183

[39]

Adey, A. and Shendure, J. (2012) Ultra-low-input, tagmentation-based whole-genome bisulfite sequencing. Genome Res., 22, 1139–1143

[40]

Habibi, E., Brinkman, A. B., Arand, J., Kroeze, L. I., Kerstens, H. H., Matarese, F., Lepikhov, K., Gut, M., Brun-Heath, I., Hubner, N. C., (2013) Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells. Cell Stem Cell, 13, 360–369

[41]

Cokus, S. J., Feng, S., Zhang, X., Chen, Z., Merriman, B., Haudenschild, C. D., Pradhan, S., Nelson, S. F., Pellegrini, M. and Jacobsen, S. E. (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature, 452, 215–219

[42]

Regulski, M., Lu, Z., Kendall, J., Donoghue, M. T., Reinders, J., Llaca, V., Deschamps, S., Smith, A., Levy, D., McCombie, W. R., (2013) The maize methylome influences mRNA splice sites and reveals widespread paramutation-like switches guided by small RNA. Genome Res., 23, 1651–1662

[43]

Meissner, A., Gnirke, A., Bell, G. W., Ramsahoye, B., Lander, E. S. and Jaenisch, R. (2005) Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res., 33, 5868–5877

[44]

Smith, Z. D., Gu, H., Bock, C., Gnirke, A. and Meissner, A. (2009) High-throughput bisulfite sequencing in mammalian genomes. Methods, 48, 226–232

[45]

Wang, J., Xia, Y., Li, L., Gong, D., Yao, Y., Luo, H., Lu, H., Yi, N., Wu, H., Zhang, X., (2013) Double restriction-enzyme digestion improves the coverage and accuracy of genome-wide CpG methylation profiling by reduced representation bisulfite sequencing. BMC Genomics, 14, 11

[46]

Landau, D. A., Clement, K., Ziller, M. J., Boyle, P., Fan, J., Gu, H., Stevenson, K., Sougnez, C., Wang, L., Li, S., (2014) Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia. Cancer Cell, 26, 813–825

[47]

Andolfatto, P., Davison, D., Erezyilmaz, D., Hu, T. T., Mast, J., Sunayama-Morita, T. and Stern, D. L. (2011) Multiplexed shotgun genotyping for rapid and efficient genetic mapping. Genome Res., 21, 610–617

[48]

Yang, X., Kundariya, H., Xu, Y. Z., Sandhu, A., Yu, J., Hutton, S. F., Zhang, M. and Mackenzie, S. A. (2015) MutS HOMOLOG1-derived epigenetic breeding potential in tomato. Plant Physiol., 168, 222–232

[49]

Tao, S., Chu, J., Liu, X., Zhang, R., Zhang, Z. and Luo, Z. (2002) High-resolution gene mapping using admixture linkage disequilibrium. Chin. Sci. Bull., 47, 1717–1719

[50]

Krueger, F. and Andrews S. R. (2011) Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics, 27, 1571–1572

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1179KB)

Supplementary files

 Supplementary Material 1

1995

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/