Design of efficient simplified genomic DNA and bisulfite sequencing in large plant populations
Jinhua Wu, Zewei Luo, Ning Jiang
Design of efficient simplified genomic DNA and bisulfite sequencing in large plant populations
The next generation sequencing enables generation of high resolution and high throughput data for structure sequence of any genome at a fast declining cost. This opens opportunity for population based genetic and genomic analyses. In many applications, whole genome sequencing or re-sequencing is unnecessary or prohibited by budget limits. The Reduced Representation Genome Sequencing (RRGS), which sequences only a small proportion of the genome of interest, has been proposed to deal with the situations. Several forms of RRGS are proposed and implemented in the literature. When applied to plant or crop species, the current RRGS protocols shared a key drawback that a significantly high proportion (up to 60%) of sequence reads to be generated may be of non-genomic origin but attributed to chloroplast DNA or rRNA genes, leaving an exceptional low efficiency of the sequencing experiment. We recommended and discussed here the design of optimized simplified genomic DNA and bisulfite sequencing strategies, which may greatly improves efficiency of the sequencing experiments by bringing down the presentation of the undesirable sequencing reads to less than 10% in the whole sequence reads. The optimized RAD-seq and RRBS-seq methods are potentially useful for sequence variant screening and genotyping in large plant/crop populations.
plant/crop genomes / next generation sequencing / genotyping / restriction-enzyme sites associated DNA (RAD) / DNA methylation / reduced representation bisulfite sequencing
[1] |
Luikart, G., England, P. R., Tallmon, D., Jordan, S. and Taberlet, P. (2003) The power and promise of population genomics: from genotyping to genome typing. Nat. Rev. Genet., 4, 981–994
CrossRef
Pubmed
Google scholar
|
[2] |
Davey, J. W., Hohenlohe, P. A., Etter, P. D., Boone, J. Q., Catchen, J. M. and Blaxter, M. L. (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat. Rev. Genet., 12, 499–510
CrossRef
Pubmed
Google scholar
|
[3] |
Poland, J. A. and Rife, T. W. (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome, 5, 92–102
CrossRef
Google scholar
|
[4] |
Hutchison, C. A. III. (2007) DNA sequencing: bench to bedside and beyond. Nucleic Acids Res., 35, 6227–6237
CrossRef
Pubmed
Google scholar
|
[5] |
Sanger, F., Nicklen, S. and Coulson, A. R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA, 74, 5463–5467
CrossRef
Pubmed
Google scholar
|
[6] |
Bush, W. S. and Moore, J. H. (2012) Chapter 11: Genome-wide association studies. PLOS Comput. Biol., 8, e1002822
CrossRef
Pubmed
Google scholar
|
[7] |
Shendure, J. and Ji, H. (2008) Next-generation DNA sequencing. Nat. Biotechnol., 26, 1135–1145
CrossRef
Pubmed
Google scholar
|
[8] |
Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., Berka, J., Braverman, M. S., Chen, Y. J., Chen, Z.,
Pubmed
|
[9] |
Metzker, M. L. (2010) Sequencing technologies — the next generation. Nat. Rev. Genet., 11, 31–46
CrossRef
Pubmed
Google scholar
|
[10] |
Ashelford, K., Eriksson, M. E., Allen, C. M. D., D’Amore, R., Johansson, M., Gould, P., Kay, S., Millar, A. J., Hall, N. and Hall, A. (2011) Full genome re-sequencing reveals a novel circadian clock mutation in Arabidopsis. Genome Biol., 12, R28
CrossRef
Pubmed
Google scholar
|
[11] |
Xu, X., Pan, S., Cheng, S., Zhang, B., Mu, D., Ni, P., Zhang, G., Yang, S., Li, R., Wang, J.,
CrossRef
Pubmed
Google scholar
|
[12] |
Huang, X., Feng, Q., Qian, Q., Zhao, Q., Wang, L., Wang, A., Guan, J., Fan, D., Weng, Q., Huang, T.,
CrossRef
Pubmed
Google scholar
|
[13] |
Chia, J. M., Song, C., Bradbury, P. J., Costich, D., de Leon, N., Doebley, J., Elshire, R. J., Gaut, B., Geller, L., Glaubitz, J. C.,
CrossRef
Pubmed
Google scholar
|
[14] |
Rowe, H. C., Renaut, S. and Guggisberg, A. (2011) RAD in the realm of next-generation sequencing technologies. Mol. Ecol., 20, 3499–3502
Pubmed
|
[15] |
Wetterstrand, K. A. (2012). DNA sequencing costs: Data from the NHGRI large-scale genome sequencing program. National Human Genome Research Institute, Bethesda, MD. http://www.genome.gov/sequencingcosts
|
[16] |
Geraldes, A., Pang, J., Thiessen, N., Cezard, T., Moore, R., Zhao, Y., Tam, A., Wang, S., Friedmann, M., Birol, I.,
CrossRef
Pubmed
Google scholar
|
[17] |
Hamilton, J. P., Hansey, C. N., Whitty, B. R., Stoffel, K., Massa, A. N., Van Deynze, A., De Jong, W. S., Douches, D. S. and Buell, C. R. (2011) Single nucleotide polymorphism discovery in elite North American potato germplasm. BMC Genomics, 12, 302
CrossRef
Pubmed
Google scholar
|
[18] |
Chepelev, I., Wei, G., Tang, Q. and Zhao, K. (2009) Detection of single nucleotide variations in expressed exons of the human genome using RNA-Seq. Nucleic Acids Res., 37, e106
CrossRef
Pubmed
Google scholar
|
[19] |
Nothnagel, M., Wolf, A., Herrmann, A., Szafranski, K., Vater, I., Brosch, M., Huse, K., Siebert, R., Platzer, M., Hampe, J.,
CrossRef
Pubmed
Google scholar
|
[20] |
Deelen, P., Zhernakova, D. V., de Haan, M., van der Sijde, M., Bonder, M. J., Karjalainen, J., van der Velde, K. J., Abbott, K. M., Fu, J., Wijmenga, C.,
CrossRef
Pubmed
Google scholar
|
[21] |
Christodoulou, D. C., Gorham, J. M., Herman, D. S. and Seidman, J. G. (2011) Construction of normalized RNA-seq libraries for next-generation sequencing using the crab duplex-specific nuclease. Curr. Protoc. Mol. Biol., doi: 10.1002/0471142727.mb0412s94
|
[22] |
Mamanova, L., Coffey, A. J., Scott, C. E., Kozarewa, I., Turner, E. H., Kumar, A., Howard, E., Shendure, J. and Turner, D. J. (2010) Target-enrichment strategies for next-generation sequencing. Nat. Methods, 7, 111–118
CrossRef
Pubmed
Google scholar
|
[23] |
Clark, M. J., Chen, R., Lam, H. Y., Karczewski, K. J., Chen, R., Euskirchen, G., Butte, A. J. and Snyder, M. (2011) Performance comparison of exome DNA sequencing technologies. Nat. Biotechnol., 29, 908–914
CrossRef
Pubmed
Google scholar
|
[24] |
Kiialainen, A., Karlberg, O., Ahlford, A., Sigurdsson, S., Lindblad-Toh, K. and Syvänen, A. C. (2011) Performance of microarray and liquid based capture methods for target enrichment for massively parallel sequencing and SNP discovery. PLoS One, 6, e16486
CrossRef
Pubmed
Google scholar
|
[25] |
Uitdewilligen, J. G., Wolters, A. M., D’hoop, B. B., Borm, T. J., Visser, R. G. and van Eck, H. J. (2013) A next-generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potato. PLoS One, 8, e62355
CrossRef
Pubmed
Google scholar
|
[26] |
Mertes, F., Elsharawy, A., Sauer, S., van Helvoort, J. M., van der Zaag, P. J., Franke, A., Nilsson, M., Lehrach, H. and Brookes, A. J. (2011) Targeted enrichment of genomic DNA regions for next-generation sequencing. Brief. Funct. Genomics, 10, 374–386
CrossRef
Pubmed
Google scholar
|
[27] |
Baird, N. A., Etter, P. D., Atwood, T. S., Currey, M. C., Shiver, A. L., Lewis, Z. A., Selker, E. U., Cresko, W. A. and Johnson, E. A. (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One, 3, e3376
CrossRef
Pubmed
Google scholar
|
[28] |
Poland, J. A., Brown, P. J., Sorrells, M. E. and Jannink, J. L. (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One, 7, e32253
CrossRef
Pubmed
Google scholar
|
[29] |
Wang, N., Fang, L., Xin, H., Wang, L. and Li, S. (2012) Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing. BMC Plant Biol., 12, 148
CrossRef
Pubmed
Google scholar
|
[30] |
Toonen, R. J., Puritz, J. B., Forsman, Z. H., Whitney, J. L., Fernandez-Silva, I., Andrews, K. R. and Bird, C. E. (2013) ezRAD: a simplified method for genomic genotyping in non-model organisms. PeerJ, 1, e203
CrossRef
Pubmed
Google scholar
|
[31] |
Guo, Y., Yuan, H., Fang, D., Song, L., Liu, Y., Liu, Y., Wu, L., Yu, J., Li, Z., Xu, X.,
CrossRef
Pubmed
Google scholar
|
[32] |
Wang, S., Meyer, E., McKay, J. K. and Matz, M. V. (2012) 2b-RAD: a simple and flexible method for genome-wide genotyping. Nat. Methods, 9, 808–810
CrossRef
Pubmed
Google scholar
|
[33] |
Truong, H. T., Ramos, A. M., Yalcin, F., de Ruiter, M., van der Poel, H. J., Huvenaars, K. H., Hogers, R. C., van Enckevort, L. J., Janssen, A., van Orsouw, N. J.,
CrossRef
Pubmed
Google scholar
|
[34] |
Chen, X., Li, X., Zhang, B., Xu, J., Wu, Z., Wang, B., Li, H., Younas, M., Huang, L., Luo, Y.,
CrossRef
Pubmed
Google scholar
|
[35] |
Life and Technologies. (2015) Pippin Prep™ System (includes instrument and monitor). http://www.lifetechnologies.com/order/catalog/product/4471271?CID=search-product
|
[36] |
Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. and Hoekstra, H. E. (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One, 7, e37135
CrossRef
Pubmed
Google scholar
|
[37] |
Quail, M. A., Kozarewa, I., Smith, F., Scally, A., Stephens, P. J., Durbin, R., Swerdlow, H. and Turner, D. J. (2008) A large genome center’s improvements to the Illumina sequencing system. Nat. Methods, 5, 1005–1010
CrossRef
Pubmed
Google scholar
|
[38] |
Hurd, P. J. and Nelson, C. J. (2009) Advantages of next-generation sequencing versus the microarray in epigenetic research. Brief. Funct. Genomics Proteomics, 8, 174–183
CrossRef
Pubmed
Google scholar
|
[39] |
Adey, A. and Shendure, J. (2012) Ultra-low-input, tagmentation-based whole-genome bisulfite sequencing. Genome Res., 22, 1139–1143
CrossRef
Pubmed
Google scholar
|
[40] |
Habibi, E., Brinkman, A. B., Arand, J., Kroeze, L. I., Kerstens, H. H., Matarese, F., Lepikhov, K., Gut, M., Brun-Heath, I., Hubner, N. C.,
CrossRef
Pubmed
Google scholar
|
[41] |
Cokus, S. J., Feng, S., Zhang, X., Chen, Z., Merriman, B., Haudenschild, C. D., Pradhan, S., Nelson, S. F., Pellegrini, M. and Jacobsen, S. E. (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature, 452, 215–219
CrossRef
Pubmed
Google scholar
|
[42] |
Regulski, M., Lu, Z., Kendall, J., Donoghue, M. T., Reinders, J., Llaca, V., Deschamps, S., Smith, A., Levy, D., McCombie, W. R.,
CrossRef
Pubmed
Google scholar
|
[43] |
Meissner, A., Gnirke, A., Bell, G. W., Ramsahoye, B., Lander, E. S. and Jaenisch, R. (2005) Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res., 33, 5868–5877
CrossRef
Pubmed
Google scholar
|
[44] |
Smith, Z. D., Gu, H., Bock, C., Gnirke, A. and Meissner, A. (2009) High-throughput bisulfite sequencing in mammalian genomes. Methods, 48, 226–232
CrossRef
Pubmed
Google scholar
|
[45] |
Wang, J., Xia, Y., Li, L., Gong, D., Yao, Y., Luo, H., Lu, H., Yi, N., Wu, H., Zhang, X.,
CrossRef
Pubmed
Google scholar
|
[46] |
Landau, D. A., Clement, K., Ziller, M. J., Boyle, P., Fan, J., Gu, H., Stevenson, K., Sougnez, C., Wang, L., Li, S.,
CrossRef
Pubmed
Google scholar
|
[47] |
Andolfatto, P., Davison, D., Erezyilmaz, D., Hu, T. T., Mast, J., Sunayama-Morita, T. and Stern, D. L. (2011) Multiplexed shotgun genotyping for rapid and efficient genetic mapping. Genome Res., 21, 610–617
CrossRef
Pubmed
Google scholar
|
[48] |
Yang, X., Kundariya, H., Xu, Y. Z., Sandhu, A., Yu, J., Hutton, S. F., Zhang, M. and Mackenzie, S. A. (2015) MutS HOMOLOG1-derived epigenetic breeding potential in tomato. Plant Physiol., 168, 222–232
CrossRef
Pubmed
Google scholar
|
[49] |
Tao, S., Chu, J., Liu, X., Zhang, R., Zhang, Z. and Luo, Z. (2002) High-resolution gene mapping using admixture linkage disequilibrium. Chin. Sci. Bull., 47, 1717–1719
|
[50] |
Krueger, F. and Andrews S. R. (2011) Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics, 27, 1571–1572
CrossRef
Google scholar
|
/
〈 | 〉 |