Comparison of the experimental methods in haplotype sequencing via next generation sequencing

Jing Tu, Na Lu, Mengqin Duan, An Ju, Xiao Sun, Zuhong Lu

PDF(607 KB)
PDF(607 KB)
Quant. Biol. ›› 2016, Vol. 4 ›› Issue (2) : 106-114. DOI: 10.1007/s40484-016-0068-z
REVIEW
REVIEW

Comparison of the experimental methods in haplotype sequencing via next generation sequencing

Author information +
History +

Abstract

Although the diploid nature has been observed for over 50 years, phasing the diploid is still a laborious task. The speed and throughput of next generation sequencing have largely increased in the past decades. However, the short read-length remains one of the biggest challenges of haplotype analysis. For instance, reads as short as 150 bp span no more than one variant in most cases. Numerous experimental technologies have been developed to overcome this challenge. Distance, complexity and accuracy of the linkages obtained are the main factors to evaluate the efficiency of whole genome haplotyping methods. Here, we review these experimental technologies, evaluating their efficiency in linkages obtaining and system complexity. The technologies are organized into four categories based on its strategy: (i) chromosomes separation, (ii) dilution pools, (iii) crosslinking and proximity ligation, (ix) long-read technologies. Within each category, several subsections are listed to classify each technology. Innovative experimental strategies are expected to have high-quality performance, low cost and be labor-saving, which will be largely desired in the future.

Graphical abstract

Keywords

next generation sequencing / haplotyping / haplotype sequencing

Cite this article

Download citation ▾
Jing Tu, Na Lu, Mengqin Duan, An Ju, Xiao Sun, Zuhong Lu. Comparison of the experimental methods in haplotype sequencing via next generation sequencing. Quant. Biol., 2016, 4(2): 106‒114 https://doi.org/10.1007/s40484-016-0068-z

References

[1]
Tewhey, R., Bansal, V., Torkamani, A., Topol, E. J. and Schork, N. J. (2011) The importance of phase information for human genomics. Nat. Rev. Genet., 12, 215–223
Pubmed
[2]
Muers, M. (2011) Genomics: No half measures for haplotypes. Nat. Rev. Genet., 12, 77
Pubmed
[3]
Tian, Q., Price, N. D. and Hood, L. (2012) Systems cancer medicine: towards realization of predictive, preventive, personalized and participatory (P4) medicine. J. Intern. Med., 271, 111–121
Pubmed
[4]
Levenstien, M. A., Ott, J. and Gordon, D. (2006) Are molecular haplotypes worth the time and expense? A cost-effective method for applying molecular haplotypes. PLoS Genet., 2, e127
Pubmed
[5]
Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M. H. Y., (2010) A draft sequence of the Neandertal genome. Science, 328, 710–722
Pubmed
[6]
Tjio, J. H. (1978) The chromosome number of man. Am. J. Obstet. Gynecol., 130, 723–724
Pubmed
[7]
Lejeune, J. and Turpin, R. (1961) Chromosomal aberrations in man. Am. J. Hum. Genet., 13, 175–184
Pubmed
[8]
Caspersson, T., Zech, L., Johansson, C. and Modest, E. J. (1970) Identification of human chromosomes by DNA-binding fluorescent agents. Chromosoma, 30, 215–227
Pubmed
[9]
Fodor, S. P. A., Read, J. L., Pirrung, M. C., Stryer, L., Lu, A. T. and Solas, D. (1991) Light-directed, spatially addressable parallel chemical synthesis. Science, 251, 767–773
Pubmed
[10]
Pinkel, D., Segraves, R., Sudar, D., Clark, S., Poole, I., Kowbel, D., Collins, C., Kuo, W. L., Chen, C., Zhai, Y., (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat. Genet., 20, 207–211
Pubmed
[11]
Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., , (2001) Initial sequencing and analysis of the human genome. Nature, 409, 860–921
Pubmed
[12]
Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O., Yandell, M., Evans, C. A., Holt, R. A., (2001) The sequence of the human genome. Science, 291, 1304–1351
Pubmed
[13]
Levy, S., Sutton, G., Ng, P. C., Feuk, L., Halpern, A. L., Walenz, B. P., Axelrod, N., Huang, J., Kirkness, E. F., Denisov, G., (2007) The diploid genome sequence of an individual human. PLoS Biol., 5, e254
Pubmed
[14]
Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., Berka, J., Braverman, M. S., Chen, Y. J., Chen, Z., (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437, 376–380
Pubmed
[15]
Bentley, D. R. (2006) Whole-genome re-sequencing. Curr. Opin. Genet. Dev., 16, 545–552
Pubmed
[16]
Shendure, J., Porreca, G. J., Reppas, N. B., Lin, X., McCutcheon, J. P., Rosenbaum, A. M., Wang, M. D., Zhang, K., Mitra, R. D. and Church, G. M. (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science, 309, 1728–1732
Pubmed
[17]
Rothberg, J. M., Hinz, W., Rearick, T. M., Schultz, J., Mileski, W., Davey, M., Leamon, J. H., Johnson, K., Milgrew, M. J., Edwards, M., (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature, 475, 348–352
Pubmed
[18]
Bayley, H. (2006) Sequencing single molecules of DNA. Curr. Opin. Chem. Biol., 10, 628–637
Pubmed
[19]
McKernan, K. J., Peckham, H. E., Costa, G. L., McLaughlin, S. F., Fu, Y., Tsung, E. F., Clouser, C. R., Duncan, C., Ichikawa, J. K., Lee, C. C., (2009) Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding. Genome Res., 19, 1527–1541
Pubmed
[20]
Abecasis, G. R., Altshuler, D., Auton, A., Brooks, L. D., Durbin, R. M., Gibbs, R. A., Hurles, M. E., McVean, G. A., Donnelly, P., Egholm, M., , (2010) A map of human genome variation from population-scale sequencing. Nature, 467, 1061–1073
Pubmed
[21]
The 1000 Genomes Project Consortium. (2012) An integrated map of genetic variation from 1,092 human genomes. Nature, 491, 56–65
Pubmed
[22]
Delaneau, O., Marchini, J. and Zagury, J. F. (2012) A linear complexity phasing method for thousands of genomes. Nat. Methods, 9, 179–181
Pubmed
[23]
Lu, S., Zong, C., Fan, W., Yang, M., Li, J., Chapman, A. R., Zhu, P., Hu, X., Xu, L., Yan, L., (2012) Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing. Science, 338, 1627–1630
Pubmed
[24]
Kirkness, E. F., Grindberg, R. V., Yee-Greenbaum, J., Marshall, C. R., Scherer, S. W., Lasken, R. S. and Venter, J. C. (2013) Sequencing of isolated sperm cells for direct haplotyping of a human genome. Genome Res., 23, 826–832
Pubmed
[25]
Wang, J., Fan, H. C., Behr, B. and Quake, S. R. (2012) Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell, 150, 402–412
Pubmed
[26]
Dean, F. B., Hosono, S., Fang, L., Wu, X., Faruqi, A. F., Bray-Ward, P., Sun, Z., Zong, Q., Du, Y., Du, J., (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl. Acad. Sci. USA, 99, 5261–5266
Pubmed
[27]
Hou, Y., Fan, W., Yan, L., Li, R., Lian, Y., Huang, J., Li, J., Xu, L., Tang, F., Xie, X. S., (2013) Genome analyses of single human oocytes. Cell, 155, 1492–1506
Pubmed
[28]
Ma, L., Xiao, Y., Huang, H., Wang, Q., Rao, W., Feng, Y., Zhang, K. and Song, Q. (2010) Direct determination of molecular haplotypes by chromosome microdissection. Nat. Methods, 7, 299–301
Pubmed
[29]
Yang, H., Chen, X. and Wong, W. H. (2011) Completely phased genome sequencing through chromosome sorting. Proc. Natl. Acad. Sci. USA, 108, 12–17
Pubmed
[30]
Fan, H. C., Wang, J., Potanina, A. and Quake, S. R. (2011) Whole-genome molecular haplotyping of single cells. Nat. Biotechnol., 29, 51–57
Pubmed
[31]
Dear, P. H. and Cook, P. R. (1989) Happy mapping: a proposal for linkage mapping the human genome. Nucleic Acids Res., 17, 6795–6807
Pubmed
[32]
Burgtorf, C., Kepper, P., Hoehe, M., Schmitt, C., Reinhardt, R., Lehrach, H. and Sauer, S. (2003) Clone-based systematic haplotyping (CSH): a procedure for physical haplotyping of whole genomes. Genome Res., 13, 2717–2724
Pubmed
[33]
Kitzman, J. O., MacKenzie, A. P., Adey, A., Hiatt, J. B., Patwardhan, R. P., Sudmant, P. H., Ng, S. B., Alkan, C., Qiu, R. L., Eichler, E. E., (2011) Haplotype-resolved genome sequencing of a Gujarati Indian individual. Nat. Biotechnol., 29, 59–63.
[34]
Suk, E. K., McEwen, G. K., Duitama, J., Nowick, K., Schulz, S., Palczewski, S., Schreiber, S., Holloway, D. T., McLaughlin, S., Peckham, H., (2011) A comprehensively molecular haplotype-resolved genome of a European individual. Genome Res., 21, 1672–1685
Pubmed
[35]
Duitama, J., McEwen, G. K., Huebsch, T., Palczewski, S., Schulz, S., Verstrepen, K., Suk, E. K. and Hoehe, M. R. (2012) Fosmid-based whole genome haplotyping of a HapMap trio child: evaluation of Single Individual Haplotyping techniques. Nucleic Acids Res., 40, 2041–2053
Pubmed
[36]
Adey, A., Burton, J. N., Kitzman, J. O., Hiatt, J. B., Lewis, A. P., Martin, B. K., Qiu, R., Lee, C. and Shendure, J. (2013) The haplotype-resolved genome and epigenome of the aneuploid HeLa cancer cell line. Nature, 500, 207–211
Pubmed
[37]
Prüfer, K., Racimo, F., Patterson, N., Jay, F., Sankararaman, S., Sawyer, S., Heinze, A., Renaud, G., Sudmant, P. H., de Filippo, C., (2014) The complete genome sequence of a Neanderthal from the Altai Mountains. Nature, 505, 43–49
Pubmed
[38]
Hoehe, M. R., Church, G. M., Lehrach, H., Kroslak, T., Palczewski, S., Nowick, K., Schulz, S., Suk, E. K. and Huebsch, T. (2014) Multiple haplotype-resolved genomes reveal population patterns of gene and protein diplotypes. Nat. Commun., 5, 5569
Pubmed
[39]
Lo, C., Liu, R., Lee, J., Robasky, K., Byrne, S., Lucchesi, C., Aach, J., Church, G., Bafna, V. and Zhang, K. (2013) On the design of clone-based haplotyping. Genome Biol., 14, R100
Pubmed
[40]
Peters, B. A., Kermani, B. G., Sparks, A. B., Alferov, O., Hong, P., Alexeev, A., Jiang, Y., Dahl, F., Tang, Y. T., Haas, J., (2012) Accurate whole-genome sequencing and haplotyping from 10 to 20 human cells. Nature, 487, 190–195
Pubmed
[41]
Kaper, F., Swamy, S., Klotzle, B., Munchel, S., Cottrell, J., Bibikova, M., Chuang, H. Y., Kruglyak, S., Ronaghi, M., Eberle, M. A., (2013) Whole-genome haplotyping by dilution, amplification, and sequencing. Proc. Natl. Acad. Sci. USA, 110, 5552–5557
Pubmed
[42]
Amini, S., Pushkarev, D., Christiansen, L., Kostem, E., Royce, T., Turk, C., Pignatelli, N., Adey, A., Kitzman, J. O., Vijayan, K., (2014) Haplotype-resolved whole-genome sequencing by contiguity-preserving transposition and combinatorial indexing. Nat. Genet., 46, 1343–1349
Pubmed
[43]
Kuleshov, V., Xie, D., Chen, R., Pushkarev, D., Ma, Z., Blauwkamp, T., Kertesz, M. and Snyder, M. (2014) Whole-genome haplotyping using long reads and statistical methods. Nat. Biotechnol., 32, 261–266
Pubmed
[44]
Dekker, J., Rippe, K., Dekker, M. and Kleckner, N. (2002) Capturing chromosome conformation. Science, 295, 1306–1311
Pubmed
[45]
Duan, Z., Andronescu, M., Schutz, K., McIlwain, S., Kim, Y. J., Lee, C., Shendure, J., Fields, S., Blau, C. A. and Noble, W. S. (2010) A three-dimensional model of the yeast genome. Nature, 465, 363–367
Pubmed
[46]
Selvaraj, S., R Dixon, J., Bansal, V. and Ren, B. (2013) Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing. Nat. Biotechnol., 31, 1111–1118
Pubmed
[47]
de Vree, P. J. P., de Wit, E., Yilmaz, M., van de Heijning, M., Klous, P., Verstegen, M. J. A. M., Wan, Y., Teunissen, H., Krijger, P. H. L., Geeven, G., (2014) Targeted sequencing by proximity ligation for comprehensive variant detection and local haplotyping. Nat. Biotechnol., 32, 1019–1025
Pubmed
[48]
Putnam, N. H., O’Connell, B. L., Stites, J. C., Rice, B. J., Blanchette, M., Calef, R., Troll, C. J., Fields, A., Hartley, P. D., Sugnet, C. W., (2016). Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 26, 342–350
[49]
Chaisson, M. J. P., Huddleston, J., Dennis, M. Y., Sudmant, P. H., Malig, M., Hormozdiari, F., Antonacci, F., Surti, U., Sandstrom, R., Boitano, M., (2015) Resolving the complexity of the human genome using single-molecule sequencing. Nature, 517, 608–611
Pubmed
[50]
Laszlo, A. H., Derrington, I. M., Ross, B. C., Brinkerhoff, H., Adey, A., Nova, I. C., Craig, J. M., Langford, K. W., Samson, J. M., Daza, R., (2014) Decoding long nanopore sequencing reads of natural DNA. Nat. Biotechnol., 32, 829–833
Pubmed
[51]
Koren, S., Schatz, M. C., Walenz, B. P., Martin, J., Howard, J. T., Ganapathy, G., Wang, Z., Rasko, D. A., McCombie, W. R., Jarvis, E.D., (2012). Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol. 30, 693–700

ACKNOWLEDGEMENTS

This work was supported by the National Basic Research Program of China (No. 2012CB316501), and the National Natural Science Foundation of China (Nos. 61227803 and 61571121).

COMPLIANCE WITH ETHICS GUIDELINES

The authors Jing Tu, Na Lu, Mengqin Duan, An Ju, Xiao Sun and Zuhong Lu declare they have no conflict of interests.
This article does not contain any studies with human or animal subjects performed by any of the authors.
Funding
 

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(607 KB)

Accesses

Citations

Detail

Sections
Recommended

/