Comparison of the experimental methods in haplotype sequencing via next generation sequencing

Jing Tu , Na Lu , Mengqin Duan , An Ju , Xiao Sun , Zuhong Lu

Quant. Biol. ›› 2016, Vol. 4 ›› Issue (2) : 106 -114.

PDF (607KB)
Quant. Biol. ›› 2016, Vol. 4 ›› Issue (2) : 106 -114. DOI: 10.1007/s40484-016-0068-z
REVIEW
REVIEW

Comparison of the experimental methods in haplotype sequencing via next generation sequencing

Author information +
History +
PDF (607KB)

Abstract

Although the diploid nature has been observed for over 50 years, phasing the diploid is still a laborious task. The speed and throughput of next generation sequencing have largely increased in the past decades. However, the short read-length remains one of the biggest challenges of haplotype analysis. For instance, reads as short as 150 bp span no more than one variant in most cases. Numerous experimental technologies have been developed to overcome this challenge. Distance, complexity and accuracy of the linkages obtained are the main factors to evaluate the efficiency of whole genome haplotyping methods. Here, we review these experimental technologies, evaluating their efficiency in linkages obtaining and system complexity. The technologies are organized into four categories based on its strategy: (i) chromosomes separation, (ii) dilution pools, (iii) crosslinking and proximity ligation, (ix) long-read technologies. Within each category, several subsections are listed to classify each technology. Innovative experimental strategies are expected to have high-quality performance, low cost and be labor-saving, which will be largely desired in the future.

Graphical abstract

Keywords

next generation sequencing / haplotyping / haplotype sequencing

Cite this article

Download citation ▾
Jing Tu, Na Lu, Mengqin Duan, An Ju, Xiao Sun, Zuhong Lu. Comparison of the experimental methods in haplotype sequencing via next generation sequencing. Quant. Biol., 2016, 4(2): 106-114 DOI:10.1007/s40484-016-0068-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tewhey, R., Bansal, V., Torkamani, A., Topol, E. J. and Schork, N. J. (2011) The importance of phase information for human genomics. Nat. Rev. Genet., 12, 215–223

[2]

Muers, M. (2011) Genomics: No half measures for haplotypes. Nat. Rev. Genet., 12, 77

[3]

Tian, Q., Price, N. D. and Hood, L. (2012) Systems cancer medicine: towards realization of predictive, preventive, personalized and participatory (P4) medicine. J. Intern. Med., 271, 111–121

[4]

Levenstien, M. A., Ott, J. and Gordon, D. (2006) Are molecular haplotypes worth the time and expense? A cost-effective method for applying molecular haplotypes. PLoS Genet., 2, e127

[5]

Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M. H. Y., (2010) A draft sequence of the Neandertal genome. Science, 328, 710–722

[6]

Tjio, J. H. (1978) The chromosome number of man. Am. J. Obstet. Gynecol., 130, 723–724

[7]

Lejeune, J. and Turpin, R. (1961) Chromosomal aberrations in man. Am. J. Hum. Genet., 13, 175–184

[8]

Caspersson, T., Zech, L., Johansson, C. and Modest, E. J. (1970) Identification of human chromosomes by DNA-binding fluorescent agents. Chromosoma, 30, 215–227

[9]

Fodor, S. P. A., Read, J. L., Pirrung, M. C., Stryer, L., Lu, A. T. and Solas, D. (1991) Light-directed, spatially addressable parallel chemical synthesis. Science, 251, 767–773

[10]

Pinkel, D., Segraves, R., Sudar, D., Clark, S., Poole, I., Kowbel, D., Collins, C., Kuo, W. L., Chen, C., Zhai, Y., (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat. Genet., 20, 207–211

[11]

Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., , (2001) Initial sequencing and analysis of the human genome. Nature, 409, 860–921

[12]

Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O., Yandell, M., Evans, C. A., Holt, R. A., (2001) The sequence of the human genome. Science, 291, 1304–1351

[13]

Levy, S., Sutton, G., Ng, P. C., Feuk, L., Halpern, A. L., Walenz, B. P., Axelrod, N., Huang, J., Kirkness, E. F., Denisov, G., (2007) The diploid genome sequence of an individual human. PLoS Biol., 5, e254

[14]

Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., Berka, J., Braverman, M. S., Chen, Y. J., Chen, Z., (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437, 376–380

[15]

Bentley, D. R. (2006) Whole-genome re-sequencing. Curr. Opin. Genet. Dev., 16, 545–552

[16]

Shendure, J., Porreca, G. J., Reppas, N. B., Lin, X., McCutcheon, J. P., Rosenbaum, A. M., Wang, M. D., Zhang, K., Mitra, R. D. and Church, G. M. (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science, 309, 1728–1732

[17]

Rothberg, J. M., Hinz, W., Rearick, T. M., Schultz, J., Mileski, W., Davey, M., Leamon, J. H., Johnson, K., Milgrew, M. J., Edwards, M., (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature, 475, 348–352

[18]

Bayley, H. (2006) Sequencing single molecules of DNA. Curr. Opin. Chem. Biol., 10, 628–637

[19]

McKernan, K. J., Peckham, H. E., Costa, G. L., McLaughlin, S. F., Fu, Y., Tsung, E. F., Clouser, C. R., Duncan, C., Ichikawa, J. K., Lee, C. C., (2009) Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding. Genome Res., 19, 1527–1541

[20]

Abecasis, G. R., Altshuler, D., Auton, A., Brooks, L. D., Durbin, R. M., Gibbs, R. A., Hurles, M. E., McVean, G. A., Donnelly, P., Egholm, M., , (2010) A map of human genome variation from population-scale sequencing. Nature, 467, 1061–1073

[21]

The 1000 Genomes Project Consortium. (2012) An integrated map of genetic variation from 1,092 human genomes. Nature, 491, 56–65

[22]

Delaneau, O., Marchini, J. and Zagury, J. F. (2012) A linear complexity phasing method for thousands of genomes. Nat. Methods, 9, 179–181

[23]

Lu, S., Zong, C., Fan, W., Yang, M., Li, J., Chapman, A. R., Zhu, P., Hu, X., Xu, L., Yan, L., (2012) Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing. Science, 338, 1627–1630

[24]

Kirkness, E. F., Grindberg, R. V., Yee-Greenbaum, J., Marshall, C. R., Scherer, S. W., Lasken, R. S. and Venter, J. C. (2013) Sequencing of isolated sperm cells for direct haplotyping of a human genome. Genome Res., 23, 826–832

[25]

Wang, J., Fan, H. C., Behr, B. and Quake, S. R. (2012) Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell, 150, 402–412

[26]

Dean, F. B., Hosono, S., Fang, L., Wu, X., Faruqi, A. F., Bray-Ward, P., Sun, Z., Zong, Q., Du, Y., Du, J., (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc. Natl. Acad. Sci. USA, 99, 5261–5266

[27]

Hou, Y., Fan, W., Yan, L., Li, R., Lian, Y., Huang, J., Li, J., Xu, L., Tang, F., Xie, X. S., (2013) Genome analyses of single human oocytes. Cell, 155, 1492–1506

[28]

Ma, L., Xiao, Y., Huang, H., Wang, Q., Rao, W., Feng, Y., Zhang, K. and Song, Q. (2010) Direct determination of molecular haplotypes by chromosome microdissection. Nat. Methods, 7, 299–301

[29]

Yang, H., Chen, X. and Wong, W. H. (2011) Completely phased genome sequencing through chromosome sorting. Proc. Natl. Acad. Sci. USA, 108, 12–17

[30]

Fan, H. C., Wang, J., Potanina, A. and Quake, S. R. (2011) Whole-genome molecular haplotyping of single cells. Nat. Biotechnol., 29, 51–57

[31]

Dear, P. H. and Cook, P. R. (1989) Happy mapping: a proposal for linkage mapping the human genome. Nucleic Acids Res., 17, 6795–6807

[32]

Burgtorf, C., Kepper, P., Hoehe, M., Schmitt, C., Reinhardt, R., Lehrach, H. and Sauer, S. (2003) Clone-based systematic haplotyping (CSH): a procedure for physical haplotyping of whole genomes. Genome Res., 13, 2717–2724

[33]

Kitzman, J. O., MacKenzie, A. P., Adey, A., Hiatt, J. B., Patwardhan, R. P., Sudmant, P. H., Ng, S. B., Alkan, C., Qiu, R. L., Eichler, E. E., (2011) Haplotype-resolved genome sequencing of a Gujarati Indian individual. Nat. Biotechnol., 29, 59–63.

[34]

Suk, E. K., McEwen, G. K., Duitama, J., Nowick, K., Schulz, S., Palczewski, S., Schreiber, S., Holloway, D. T., McLaughlin, S., Peckham, H., (2011) A comprehensively molecular haplotype-resolved genome of a European individual. Genome Res., 21, 1672–1685

[35]

Duitama, J., McEwen, G. K., Huebsch, T., Palczewski, S., Schulz, S., Verstrepen, K., Suk, E. K. and Hoehe, M. R. (2012) Fosmid-based whole genome haplotyping of a HapMap trio child: evaluation of Single Individual Haplotyping techniques. Nucleic Acids Res., 40, 2041–2053

[36]

Adey, A., Burton, J. N., Kitzman, J. O., Hiatt, J. B., Lewis, A. P., Martin, B. K., Qiu, R., Lee, C. and Shendure, J. (2013) The haplotype-resolved genome and epigenome of the aneuploid HeLa cancer cell line. Nature, 500, 207–211

[37]

Prüfer, K., Racimo, F., Patterson, N., Jay, F., Sankararaman, S., Sawyer, S., Heinze, A., Renaud, G., Sudmant, P. H., de Filippo, C., (2014) The complete genome sequence of a Neanderthal from the Altai Mountains. Nature, 505, 43–49

[38]

Hoehe, M. R., Church, G. M., Lehrach, H., Kroslak, T., Palczewski, S., Nowick, K., Schulz, S., Suk, E. K. and Huebsch, T. (2014) Multiple haplotype-resolved genomes reveal population patterns of gene and protein diplotypes. Nat. Commun., 5, 5569

[39]

Lo, C., Liu, R., Lee, J., Robasky, K., Byrne, S., Lucchesi, C., Aach, J., Church, G., Bafna, V. and Zhang, K. (2013) On the design of clone-based haplotyping. Genome Biol., 14, R100

[40]

Peters, B. A., Kermani, B. G., Sparks, A. B., Alferov, O., Hong, P., Alexeev, A., Jiang, Y., Dahl, F., Tang, Y. T., Haas, J., (2012) Accurate whole-genome sequencing and haplotyping from 10 to 20 human cells. Nature, 487, 190–195

[41]

Kaper, F., Swamy, S., Klotzle, B., Munchel, S., Cottrell, J., Bibikova, M., Chuang, H. Y., Kruglyak, S., Ronaghi, M., Eberle, M. A., (2013) Whole-genome haplotyping by dilution, amplification, and sequencing. Proc. Natl. Acad. Sci. USA, 110, 5552–5557

[42]

Amini, S., Pushkarev, D., Christiansen, L., Kostem, E., Royce, T., Turk, C., Pignatelli, N., Adey, A., Kitzman, J. O., Vijayan, K., (2014) Haplotype-resolved whole-genome sequencing by contiguity-preserving transposition and combinatorial indexing. Nat. Genet., 46, 1343–1349

[43]

Kuleshov, V., Xie, D., Chen, R., Pushkarev, D., Ma, Z., Blauwkamp, T., Kertesz, M. and Snyder, M. (2014) Whole-genome haplotyping using long reads and statistical methods. Nat. Biotechnol., 32, 261–266

[44]

Dekker, J., Rippe, K., Dekker, M. and Kleckner, N. (2002) Capturing chromosome conformation. Science, 295, 1306–1311

[45]

Duan, Z., Andronescu, M., Schutz, K., McIlwain, S., Kim, Y. J., Lee, C., Shendure, J., Fields, S., Blau, C. A. and Noble, W. S. (2010) A three-dimensional model of the yeast genome. Nature, 465, 363–367

[46]

Selvaraj, S., R Dixon, J., Bansal, V. and Ren, B. (2013) Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing. Nat. Biotechnol., 31, 1111–1118

[47]

de Vree, P. J. P., de Wit, E., Yilmaz, M., van de Heijning, M., Klous, P., Verstegen, M. J. A. M., Wan, Y., Teunissen, H., Krijger, P. H. L., Geeven, G., (2014) Targeted sequencing by proximity ligation for comprehensive variant detection and local haplotyping. Nat. Biotechnol., 32, 1019–1025

[48]

Putnam, N. H., O’Connell, B. L., Stites, J. C., Rice, B. J., Blanchette, M., Calef, R., Troll, C. J., Fields, A., Hartley, P. D., Sugnet, C. W., (2016). Chromosome-scale shotgun assembly using an in vitro method for long-range linkage. Genome Res. 26, 342–350

[49]

Chaisson, M. J. P., Huddleston, J., Dennis, M. Y., Sudmant, P. H., Malig, M., Hormozdiari, F., Antonacci, F., Surti, U., Sandstrom, R., Boitano, M., (2015) Resolving the complexity of the human genome using single-molecule sequencing. Nature, 517, 608–611

[50]

Laszlo, A. H., Derrington, I. M., Ross, B. C., Brinkerhoff, H., Adey, A., Nova, I. C., Craig, J. M., Langford, K. W., Samson, J. M., Daza, R., (2014) Decoding long nanopore sequencing reads of natural DNA. Nat. Biotechnol., 32, 829–833

[51]

Koren, S., Schatz, M. C., Walenz, B. P., Martin, J., Howard, J. T., Ganapathy, G., Wang, Z., Rasko, D. A., McCombie, W. R., Jarvis, E.D., (2012). Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat Biotechnol. 30, 693–700

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (607KB)

1944

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/