Comparison of the experimental methods in haplotype sequencing via next generation sequencing
Jing Tu, Na Lu, Mengqin Duan, An Ju, Xiao Sun, Zuhong Lu
Comparison of the experimental methods in haplotype sequencing via next generation sequencing
Although the diploid nature has been observed for over 50 years, phasing the diploid is still a laborious task. The speed and throughput of next generation sequencing have largely increased in the past decades. However, the short read-length remains one of the biggest challenges of haplotype analysis. For instance, reads as short as 150 bp span no more than one variant in most cases. Numerous experimental technologies have been developed to overcome this challenge. Distance, complexity and accuracy of the linkages obtained are the main factors to evaluate the efficiency of whole genome haplotyping methods. Here, we review these experimental technologies, evaluating their efficiency in linkages obtaining and system complexity. The technologies are organized into four categories based on its strategy: (i) chromosomes separation, (ii) dilution pools, (iii) crosslinking and proximity ligation, (ix) long-read technologies. Within each category, several subsections are listed to classify each technology. Innovative experimental strategies are expected to have high-quality performance, low cost and be labor-saving, which will be largely desired in the future.
next generation sequencing / haplotyping / haplotype sequencing
[1] |
Tewhey, R., Bansal, V., Torkamani, A., Topol, E. J. and Schork, N. J. (2011) The importance of phase information for human genomics. Nat. Rev. Genet., 12, 215–223
Pubmed
|
[2] |
Muers, M. (2011) Genomics: No half measures for haplotypes. Nat. Rev. Genet., 12, 77
Pubmed
|
[3] |
Tian, Q., Price, N. D. and Hood, L. (2012) Systems cancer medicine: towards realization of predictive, preventive, personalized and participatory (P4) medicine. J. Intern. Med., 271, 111–121
Pubmed
|
[4] |
Levenstien, M. A., Ott, J. and Gordon, D. (2006) Are molecular haplotypes worth the time and expense? A cost-effective method for applying molecular haplotypes. PLoS Genet., 2, e127
Pubmed
|
[5] |
Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M. H. Y.,
Pubmed
|
[6] |
Tjio, J. H. (1978) The chromosome number of man. Am. J. Obstet. Gynecol., 130, 723–724
Pubmed
|
[7] |
Lejeune, J. and Turpin, R. (1961) Chromosomal aberrations in man. Am. J. Hum. Genet., 13, 175–184
Pubmed
|
[8] |
Caspersson, T., Zech, L., Johansson, C. and Modest, E. J. (1970) Identification of human chromosomes by DNA-binding fluorescent agents. Chromosoma, 30, 215–227
Pubmed
|
[9] |
Fodor, S. P. A., Read, J. L., Pirrung, M. C., Stryer, L., Lu, A. T. and Solas, D. (1991) Light-directed, spatially addressable parallel chemical synthesis. Science, 251, 767–773
Pubmed
|
[10] |
Pinkel, D., Segraves, R., Sudar, D., Clark, S., Poole, I., Kowbel, D., Collins, C., Kuo, W. L., Chen, C., Zhai, Y.,
Pubmed
|
[11] |
Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W.,
Pubmed
|
[12] |
Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O., Yandell, M., Evans, C. A., Holt, R. A.,
Pubmed
|
[13] |
Levy, S., Sutton, G., Ng, P. C., Feuk, L., Halpern, A. L., Walenz, B. P., Axelrod, N., Huang, J., Kirkness, E. F., Denisov, G.,
Pubmed
|
[14] |
Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., Berka, J., Braverman, M. S., Chen, Y. J., Chen, Z.,
Pubmed
|
[15] |
Bentley, D. R. (2006) Whole-genome re-sequencing. Curr. Opin. Genet. Dev., 16, 545–552
Pubmed
|
[16] |
Shendure, J., Porreca, G. J., Reppas, N. B., Lin, X., McCutcheon, J. P., Rosenbaum, A. M., Wang, M. D., Zhang, K., Mitra, R. D. and Church, G. M. (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science, 309, 1728–1732
Pubmed
|
[17] |
Rothberg, J. M., Hinz, W., Rearick, T. M., Schultz, J., Mileski, W., Davey, M., Leamon, J. H., Johnson, K., Milgrew, M. J., Edwards, M.,
Pubmed
|
[18] |
Bayley, H. (2006) Sequencing single molecules of DNA. Curr. Opin. Chem. Biol., 10, 628–637
Pubmed
|
[19] |
McKernan, K. J., Peckham, H. E., Costa, G. L., McLaughlin, S. F., Fu, Y., Tsung, E. F., Clouser, C. R., Duncan, C., Ichikawa, J. K., Lee, C. C.,
Pubmed
|
[20] |
Abecasis, G. R., Altshuler, D., Auton, A., Brooks, L. D., Durbin, R. M., Gibbs, R. A., Hurles, M. E., McVean, G. A., Donnelly, P., Egholm, M.,
Pubmed
|
[21] |
The 1000 Genomes Project Consortium. (2012) An integrated map of genetic variation from 1,092 human genomes. Nature, 491, 56–65
Pubmed
|
[22] |
Delaneau, O., Marchini, J. and Zagury, J. F. (2012) A linear complexity phasing method for thousands of genomes. Nat. Methods, 9, 179–181
Pubmed
|
[23] |
Lu, S., Zong, C., Fan, W., Yang, M., Li, J., Chapman, A. R., Zhu, P., Hu, X., Xu, L., Yan, L.,
Pubmed
|
[24] |
Kirkness, E. F., Grindberg, R. V., Yee-Greenbaum, J., Marshall, C. R., Scherer, S. W., Lasken, R. S. and Venter, J. C. (2013) Sequencing of isolated sperm cells for direct haplotyping of a human genome. Genome Res., 23, 826–832
Pubmed
|
[25] |
Wang, J., Fan, H. C., Behr, B. and Quake, S. R. (2012) Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell, 150, 402–412
Pubmed
|
[26] |
Dean, F. B., Hosono, S., Fang, L., Wu, X., Faruqi, A. F., Bray-Ward, P., Sun, Z., Zong, Q., Du, Y., Du, J.,
Pubmed
|
[27] |
Hou, Y., Fan, W., Yan, L., Li, R., Lian, Y., Huang, J., Li, J., Xu, L., Tang, F., Xie, X. S.,
Pubmed
|
[28] |
Ma, L., Xiao, Y., Huang, H., Wang, Q., Rao, W., Feng, Y., Zhang, K. and Song, Q. (2010) Direct determination of molecular haplotypes by chromosome microdissection. Nat. Methods, 7, 299–301
Pubmed
|
[29] |
Yang, H., Chen, X. and Wong, W. H. (2011) Completely phased genome sequencing through chromosome sorting. Proc. Natl. Acad. Sci. USA, 108, 12–17
Pubmed
|
[30] |
Fan, H. C., Wang, J., Potanina, A. and Quake, S. R. (2011) Whole-genome molecular haplotyping of single cells. Nat. Biotechnol., 29, 51–57
Pubmed
|
[31] |
Dear, P. H. and Cook, P. R. (1989) Happy mapping: a proposal for linkage mapping the human genome. Nucleic Acids Res., 17, 6795–6807
Pubmed
|
[32] |
Burgtorf, C., Kepper, P., Hoehe, M., Schmitt, C., Reinhardt, R., Lehrach, H. and Sauer, S. (2003) Clone-based systematic haplotyping (CSH): a procedure for physical haplotyping of whole genomes. Genome Res., 13, 2717–2724
Pubmed
|
[33] |
Kitzman, J. O., MacKenzie, A. P., Adey, A., Hiatt, J. B., Patwardhan, R. P., Sudmant, P. H., Ng, S. B., Alkan, C., Qiu, R. L., Eichler, E. E.,
|
[34] |
Suk, E. K., McEwen, G. K., Duitama, J., Nowick, K., Schulz, S., Palczewski, S., Schreiber, S., Holloway, D. T., McLaughlin, S., Peckham, H.,
Pubmed
|
[35] |
Duitama, J., McEwen, G. K., Huebsch, T., Palczewski, S., Schulz, S., Verstrepen, K., Suk, E. K. and Hoehe, M. R. (2012) Fosmid-based whole genome haplotyping of a HapMap trio child: evaluation of Single Individual Haplotyping techniques. Nucleic Acids Res., 40, 2041–2053
Pubmed
|
[36] |
Adey, A., Burton, J. N., Kitzman, J. O., Hiatt, J. B., Lewis, A. P., Martin, B. K., Qiu, R., Lee, C. and Shendure, J. (2013) The haplotype-resolved genome and epigenome of the aneuploid HeLa cancer cell line. Nature, 500, 207–211
Pubmed
|
[37] |
Prüfer, K., Racimo, F., Patterson, N., Jay, F., Sankararaman, S., Sawyer, S., Heinze, A., Renaud, G., Sudmant, P. H., de Filippo, C.,
Pubmed
|
[38] |
Hoehe, M. R., Church, G. M., Lehrach, H., Kroslak, T., Palczewski, S., Nowick, K., Schulz, S., Suk, E. K. and Huebsch, T. (2014) Multiple haplotype-resolved genomes reveal population patterns of gene and protein diplotypes. Nat. Commun., 5, 5569
Pubmed
|
[39] |
Lo, C., Liu, R., Lee, J., Robasky, K., Byrne, S., Lucchesi, C., Aach, J., Church, G., Bafna, V. and Zhang, K. (2013) On the design of clone-based haplotyping. Genome Biol., 14, R100
Pubmed
|
[40] |
Peters, B. A., Kermani, B. G., Sparks, A. B., Alferov, O., Hong, P., Alexeev, A., Jiang, Y., Dahl, F., Tang, Y. T., Haas, J.,
Pubmed
|
[41] |
Kaper, F., Swamy, S., Klotzle, B., Munchel, S., Cottrell, J., Bibikova, M., Chuang, H. Y., Kruglyak, S., Ronaghi, M., Eberle, M. A.,
Pubmed
|
[42] |
Amini, S., Pushkarev, D., Christiansen, L., Kostem, E., Royce, T., Turk, C., Pignatelli, N., Adey, A., Kitzman, J. O., Vijayan, K.,
Pubmed
|
[43] |
Kuleshov, V., Xie, D., Chen, R., Pushkarev, D., Ma, Z., Blauwkamp, T., Kertesz, M. and Snyder, M. (2014) Whole-genome haplotyping using long reads and statistical methods. Nat. Biotechnol., 32, 261–266
Pubmed
|
[44] |
Dekker, J., Rippe, K., Dekker, M. and Kleckner, N. (2002) Capturing chromosome conformation. Science, 295, 1306–1311
Pubmed
|
[45] |
Duan, Z., Andronescu, M., Schutz, K., McIlwain, S., Kim, Y. J., Lee, C., Shendure, J., Fields, S., Blau, C. A. and Noble, W. S. (2010) A three-dimensional model of the yeast genome. Nature, 465, 363–367
Pubmed
|
[46] |
Selvaraj, S., R Dixon, J., Bansal, V. and Ren, B. (2013) Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing. Nat. Biotechnol., 31, 1111–1118
Pubmed
|
[47] |
de Vree, P. J. P., de Wit, E., Yilmaz, M., van de Heijning, M., Klous, P., Verstegen, M. J. A. M., Wan, Y., Teunissen, H., Krijger, P. H. L., Geeven, G.,
Pubmed
|
[48] |
Putnam, N. H., O’Connell, B. L., Stites, J. C., Rice, B. J., Blanchette, M., Calef, R., Troll, C. J., Fields, A., Hartley, P. D., Sugnet, C. W.,
|
[49] |
Chaisson, M. J. P., Huddleston, J., Dennis, M. Y., Sudmant, P. H., Malig, M., Hormozdiari, F., Antonacci, F., Surti, U., Sandstrom, R., Boitano, M.,
Pubmed
|
[50] |
Laszlo, A. H., Derrington, I. M., Ross, B. C., Brinkerhoff, H., Adey, A., Nova, I. C., Craig, J. M., Langford, K. W., Samson, J. M., Daza, R.,
Pubmed
|
[51] |
Koren, S., Schatz, M. C., Walenz, B. P., Martin, J., Howard, J. T., Ganapathy, G., Wang, Z., Rasko, D. A., McCombie, W. R., Jarvis, E.D.,
|
/
〈 | 〉 |