Whole genome sequencing and its applications in medical genetics

Jiaxin Wu, Mengmeng Wu, Ting Chen, Rui Jiang

PDF(296 KB)
PDF(296 KB)
Quant. Biol. ›› 2016, Vol. 4 ›› Issue (2) : 115-128. DOI: 10.1007/s40484-016-0067-0
REVIEW
REVIEW

Whole genome sequencing and its applications in medical genetics

Author information +
History +

Abstract

Fundamental improvement was made for genome sequencing since the next-generation sequencing (NGS) came out in the 2000s. The newer technologies make use of the power of massively-parallel short-read DNA sequencing, genome alignment and assembly methods to digitally and rapidly search the genomes on a revolutionary scale, which enable large-scale whole genome sequencing (WGS) accessible and practical for researchers. Nowadays, whole genome sequencing is more and more prevalent in detecting the genetics of diseases, studying causative relations with cancers, making genome-level comparative analysis, reconstruction of human population history, and giving clinical implications and instructions. In this review, we first give a typical pipeline of whole genome sequencing, including the lab template preparation, sequencing, genome assembling and quality control, variants calling and annotations. We compare the difference between whole genome and whole exome sequencing (WES), and explore a wide range of applications of whole genome sequencing for both mendelian diseases and complex diseases in medical genetics. We highlight the impact of whole genome sequencing in cancer studies, regulatory variant analysis, predictive medicine and precision medicine, as well as discuss the challenges of the whole genome sequencing.

Graphical abstract

Keywords

whole genome sequencing / whole exome sequencing / next-generation sequencing / non-coding / regulatory variant

Cite this article

Download citation ▾
Jiaxin Wu, Mengmeng Wu, Ting Chen, Rui Jiang. Whole genome sequencing and its applications in medical genetics. Quant. Biol., 2016, 4(2): 115‒128 https://doi.org/10.1007/s40484-016-0067-0

References

[1]
Veeramah, K. R. and Hammer, M. F. ( 2014 ) The impact of whole-genome sequencing on the reconstruction of human population history. Nat. Rev. Genet. , 15 , 149 – 162
CrossRef Google scholar
[2]
Hendrix, R. W. ( 2003 ) Bacteriophage genomics. Curr. Opin. Microbiol. , 6 , 506 – 511
CrossRef Google scholar
[3]
Metzker, M. L. ( 2010 ) Sequencing technologies—the next generation. Nat. Rev. Genet. , 11 , 31 – 46
CrossRef Google scholar
[4]
Zimmermann, J. , Voss, H. , Schwager, C. , Stegemann, J. and Ansorge, W. ( 1988 ) Automated Sanger dideoxy sequencing reaction protocol. FEBS Lett. , 233 , 432 – 436
CrossRef Google scholar
[5]
Watson, J. D. ( 1990 ) The human genome project: past, present, and future. Science , 248 , 44 – 49
CrossRef Google scholar
[6]
Fleischmann, R. , Adams, M. , White, O. , Clayton, R. , Kirkness, E. , Kerlavage, A. , Bult, C. , Tomb, J. , Dougherty, B. , Merrick, J. , ( 1995 ) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd . Science , 269 , 496 – 512
CrossRef Google scholar
[7]
Pabinger, S. , Dander, A. , Fischer, M. , Snajder, R. , Sperk, M. , Efremova, M. , Krabichler, B. , Speicher, M. R. , Zschocke, J. and Trajanoski, Z. ( 2014 ) A surveyof tools for variant analysis of next-generation genome sequencing data. Brief. Bioinform. , 15 , 256 – 278
CrossRef Google scholar
[8]
Liu, L. , Li, Y. H. , Li, S. L. , Hu, N. , He, Y. M. , Pong, R. , Lin, D. N. , Lu, L. H. and Law, M. ( 2012 ) Comparison of next-generation sequencing systems . J. BioMed. Biotech. , 251364
[9]
Voelkerding, K. V. , Dames, S. A. and Durtschi, J. D. ( 2009 ) Next-generation sequencing: from basic research to diagnostics. Clin. Chem. , 55 , 641 – 658
CrossRef Google scholar
[10]
Ng, P. C. and Kirkness, E. F. ( 2010 ) Whole Genome Sequencing. In Genetic Variation , pp. 215 – 226 , Springer
[11]
Hurd, P. J. and Nelson, C. J. ( 2009 ) Advantages of next-generation sequencing versus the microarray in epigenetic research. Brief. Funct. Genomics , 8, 174 – 183
[12]
Lam, H. Y. , Clark, M. J. , Chen, R. , Chen, R. , Natsoulis, G. , O’Huallachain, M. , Dewey, F. E. , Habegger, L. , Ashley, E. A. , Gerstein, M. B. , ( 2012 ) Performance comparison of whole-genome sequencing platforms. Nat. Biotechnol. , 30 , 78 – 82
CrossRef Google scholar
[13]
Carlton, J. M. , Angiuoli, S. V. , Suh, B. B. , Kooij, T. W. , Pertea, M. , Silva, J. C. , Ermolaeva, M. D. , Allen, J. E. , Selengut, J. D. , Koo, H. L. , ( 2002 ) Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii . Nature , 419 , 512 – 519
CrossRef Google scholar
[14]
Herring, C. D. , Raghunathan, A. , Honisch, C. , Patel, T. , Applebee, M. K. , Joyce, A. R. , Albert, T. J. , Blattner, F. R. , van den Boom, D. , Cantor, C. R. , ( 2006 ) Comparative genome sequencing of Escherichia coli allows observationof bacterial evolution on a laboratory timescale. Nat. Genet. , 38 , 1406 – 1412
CrossRef Google scholar
[15]
Lupski, J. R. ( 2015 ) Structural variation mutagenesis of the human genome: impact on disease and evolution. Environ. Mol. Mutagen. , 56 , 419 – 436
CrossRef Google scholar
[16]
Saunders, C. J. , Miller, N. A. , Soden, S. E. , Dinwiddie, D. L. , Noll, A. , Alnadi, N. A. , Andraws, N. , Patterson, M. L. , Krivohlavek L. A. , Fellis, J. , ( 2012 ) Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. Sci. Trans. Med. 4 , 154ra135
[17]
Cirulli, E. T. and Goldstein, D. B. ( 2010 ) Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat. Rev. Genet. , 11 , 415 – 425
CrossRef Google scholar
[18]
Foley, S. B. , Rios, J. J. , Mgbemena, V. E. , Robinson, L. S. , Hampel, H. L. , Toland, A. E. , Durham, L. and Ross, T. S. ( 2015 ) Use of whole genome sequencing for diagnosis and discovery in the cancer genetics clinic. EBioMedicine , 2 , 74 – 81
CrossRef Google scholar
[19]
Chen, K. and Meric-Bernstam, F. ( 2015 ) Whole genome sequencing in cancer clinics. EBioMedicine , 2 , 15 – 16
CrossRef Google scholar
[20]
Berg, J. S. , Khoury, M. J. and Evans, J. P. ( 2011 ) Deploying whole genome sequencing in clinical practice and public health: meeting the challenge one bin at a time. Genet.Med. , 13 , 499 – 504
CrossRef Google scholar
[21]
Dewey, F. E. , Grove, M. E. , Pan, C. , Goldstein, B. A. , Bernstein, J. A. , Chaib, H. , Merker, J. D. , Goldfeder, R. L. , Enns, G. M. , David, S. P. , ( 2014 ) Clinical interpretation and implications of whole-genome sequencing. JAMA , 311 , 1035 – 1045
CrossRef Google scholar
[22]
Belkadi, A. , Bolze, A. , Itan, Y. , Cobat, A. , Vincent, Q. B. , Antipenko, A. , Shang, L. , Boisson, B. , Casanova, J.-L. and Abel, L. ( 2015 ) Whole-genome sequencing is more powerful than whole-exome sequencing for detecting exome variants. Proc. Natl. Acad. Sci. USA , 112 , 5473 – 5478
CrossRef Google scholar
[23]
Ekblom, R. and Wolf, J. B. ( 2014 ) A field guide to whole-genome sequencing, assembly and annotation. Evol. Appl. , 7 , 1026 – 1042
CrossRef Google scholar
[24]
https://support.illumina.com/downloads/genomic_dna_sample_prep_guide_1003806.html
[25]
van Dijk, E. L. , Jaszczyszyn, Y. and Thermes, C. ( 2014 ) Library preparation methods for next-generation sequencing: tone down the bias. Exp. Cell Res. , 322 , 12 – 20
CrossRef Google scholar
[26]
Miyamoto, M. , Motooka, D. , Gotoh, K. , Imai, T. , Yoshitake, K. , Goto, N. , Iida, T. , Yasunaga, T. , Horii, T. , Arakawa, K. , ( 2014 ) Performance comparison of second-and third-generation sequencers using a bacterial genome with two chromosomes. BMC Genomics , 15 , 699
CrossRef Google scholar
[27]
http://allseq.com/knowledgebank
[28]
Bao, S. , Jiang, R. , Kwan, W. K. , Wang, B. B. , Ma, X. and Song, Y.-Q. ( 2011 ) Evaluation of next-generation sequencing software in mapping and assembly. J. Hum. Genet. , 56 , 406 – 414
CrossRef Google scholar
[29]
Swindell, S. R. and Plasterer, €T. N. ( 1997 ) SEQMAN. In Sequence Data Analysis Guidebook , pp. 75 – 89 , New York : Springer
[30]
Sundquist, A. , Ronaghi, M. , Tang, H. , Pevzner, P. and Batzoglou, S. ( 2007 ) Whole-genome sequencing and assembly with high-throughput, short-read technologies. PLoS One , 2 , e484
CrossRef Google scholar
[31]
Paszkiewicz, K. and Studholme, D. J. ( 2010 ) De novo assembly of short sequence reads. Brief. Bioinform. , 11, 457 – 472
[32]
Hunt, M. , Kikuchi, T. , Sanders, M. , Newbold, C. , Berriman, M. and Otto, T. D. ( 2013 ) REAPR: a universal tool for genome assembly evaluation. Genome Biol. , 14 , R47
CrossRef Google scholar
[33]
Liu, X. , Han, S. , Wang, Z. , Gelernter, J. and Yang, B.-Z. ( 2013 ) Variant callers for next-generation sequencing data: a comparison study. PLoS One , 8 , e75619
CrossRef Google scholar
[34]
Altmann, A. , Weber, P. , Bader, D. , Preuß, M. , Binder, E. B. and Müller-Myhsok, B. ( 2012 ) A beginners guide to SNP calling from high-throughput DNA-sequencing data. Hum. Genet. , 131 , 1541 – 1554
CrossRef Google scholar
[35]
Pirooznia, M. , Goes, F. S. and Zandi, P. P ( 2015 ) Whole-genome CNV analysis: advances in computational approaches. Front.Genet. , 6, 138
[36]
DePristo, M. A. , Banks, E. , Poplin, R. , Garimella, K. V. , Maguire, J. R. , Hartl, C. , Philippakis, A. A. , del Angel, G. , Rivas, M. A. , Hanna, M. , ( 2011 ) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. , 43 , 491 – 498
CrossRef Google scholar
[37]
Kircher, M. , Witten, D. M. , Jain, P. , O’Roak, B. J. , Cooper, G. M. and Shendure, J. ( 2014 ) A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. , 46 , 310 – 315
CrossRef Google scholar
[38]
Liu, X. , Jian, X. and Boerwinkle, E. ( 2011 ) dbNSFP: a lightweight database of human nonsynonymous SNPs and their functional predictions. Hum. Mutat. , 32 , 894 – 899
CrossRef Google scholar
[39]
McKenna, A. , Hanna, M. , Banks, E. , Sivachenko, A. , Cibulskis, K. , Kernytsky, A. , Garimella, K. , Altshuler, D. , Gabriel, S. , Daly, M. , ( 2010 ) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencingdata. Genome Res. , 20 , 1297 – 1303
CrossRef Google scholar
[40]
Paila, U. , Chapman, B. A. , Kirchner, R. and Quinlan, A. R. ( 2013 ) GEMINI: integrative exploration of genetic variation and genome annotations. PLoS Comput. Biol. , 9 , e1003153
CrossRef Google scholar
[41]
Wu, J. , Li, Y. and Jiang, R. ( 2014 ) Integrating multiple genomic data to predict disease-causing nonsynonymous single nucleotide variants in exome sequencing studies. PLoS Genet. , 10 , e1004237
CrossRef Google scholar
[42]
Makarov, V. , O’Grady, T. , Cai, G. , Lihm, J. , Buxbaum, J. D. and Yoon, S. ( 2012 ) AnnTools: a comprehensive and versatile annotation toolkit for genomic variants. Bioinformatics , 28 , 724 – 725
CrossRef Google scholar
[43]
Wang, K. , Li, M. and Hakonarson, H. ( 2010 ) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. , 38 , e164
CrossRef Google scholar
[44]
Zhao, M. and Zhao, Z. ( 2013 ) CNVannotator: a comprehensive annotation server for copy number variation in the human genome . 8 , e80170
[45]
McLaren, W. , Pritchard, B. , Rios, D. , Chen, Y. , Flicek, P. and Cunningham, F. ( 2010 ) Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics , 26 , 2069 – 2070
CrossRef Google scholar
[46]
Bick, D. and Dimmock, D. ( 2011 ) Whole exome and whole genome sequencing. Curr. Opin. Pediatr. , 23 , 594 – 600
CrossRef Google scholar
[47]
Gilchrist, C. A. , Turner, S. D. , Riley, M. F. , Petri, W. A. Jr and Hewlett, E. L. ( 2015 ) Whole-genome sequencing in outbreak analysis. Clin. Microbiol. Rev. , 28 , 541 – 563
CrossRef Google scholar
[48]
http://blog.genohub.com/whole-genome-sequencing-wgs-vs-whole-exome-sequencing-wes/
[49]
Online Mendelian Inheritance in Man . Johns Hopkins University (Baltimore,MD) , http://omim.org/
[50]
Botstein, D. and Risch, N. ( 2003 ) Discovering genotypes underlying human phenotypes: pastsuccesses for mendelian disease, future approaches for complex disease. Nat. Genet. , 33 , 228 – 237
CrossRef Google scholar
[51]
Ku, C.-S. , Naidoo, N. and Pawitan, Y. ( 2011 ) Revisiting Mendelian disorders through exome sequencing. Hum. Genet. , 129 , 351 – 370
CrossRef Google scholar
[52]
Bamshad, M. J. , Ng, S. B. , Bigham, A. W. , Tabor, H. K. , Emond, M. J. , Nickerson, D. A. and Shendure, J. ( 2011 ) Exome sequencing as a tool for Mendelian disease gene discovery. Nat. Rev. Genet. , 12 , 745 – 755
CrossRef Google scholar
[53]
Ng, S. B. , Buckingham, K. J. , Lee, C. , Bigham, A. W. , Tabor, H. K. , Dent, K. M. , Huff, C. D. , Shannon, P. T. , Jabs, E. W. , Nickerson, D. A. , ( 2010 ) Exome sequencing identifies the cause of a mendelian disorder. Nat. Genet. , 42 , 30 – 35
CrossRef Google scholar
[54]
Yang, Y. , Muzny, D. M. , Reid, J. G. , Bainbridge, M. N. , Willis, A. , Ward, P. A. , Braxton, A. , Beuten, J. , Xia, F. , Niu, Z. , ( 2013 ) Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N. Engl. J. Med. , 369 , 1502 – 1511
CrossRef Google scholar
[55]
Ng, S. B. , Bigham, A. W. , Buckingham, K. J. , Hannibal, M. C. , McMillin, M. J. , Gildersleeve, H.I. , Beck, A. E. , Tabor, H. K. , Cooper, G. M. , Mefford, H. C. , ( 2010 ) Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat. Genet. , 42 , 790 – 793
CrossRef Google scholar
[56]
Roach, J. C. , Glusman, G. , Smit, A. F. A. , Huff, C. D. , Hubley, R. , Shannon, P. T. , Rowen, L. , Pant, K. P. , Goodman, N. , Bamshad, M. , ( 2010 ) Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science , 328 , 636 – 639
CrossRef Google scholar
[57]
Lupski, J. R. , Reid, J. G. , Gonzaga-Jauregui, C. , Rio Deiros, D. , Chen, D. C. Y. , Nazareth, L. , Bainbridge, M. , Dinh, H. , Jing, C. , Wheeler, D. A. , ( 2010 ) Whole-genome sequencing in a patient with Charcot–Marie–Tooth neuropathy. N. Engl. J. Med. , 362 , 1181 – 1191
CrossRef Google scholar
[58]
Cooper, G. M. , ( 2005 ) Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. , 15 , 901 – 913
CrossRef Google scholar
[59]
Taylor, J. C. , Martin, H. C. , Lise, S. , Broxholme, J. , Cazier, J.-B. , Rimmer, A. , Kanapin, A. , Lunter, G. , Fiddy, S. , Allan, C. , ( 2015 ) Factors influencing successof clinical genome sequencing across a broad spectrum of disorders. Nat. Genet. , 47 , 717 – 726
CrossRef Google scholar
[60]
Kumar, P. , Henikoff, S. and Ng, P. C. ( 2009 ) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. , 4 , 1073 – 1081
CrossRef Google scholar
[61]
Adzhubei, I. A. , Schmidt, S. , Peshkin, L. , Ramensky, V. E. , Gerasimova, A. , Bork, P. , Kondrashov, A. S. and Sunyaev, S. R. ( 2010 ) A method and server for predicting damaging missense mutations. Nat. Methods , 7 , 248 – 249
CrossRef Google scholar
[62]
Kircher, M. , Witten, D. M. , Jain, P. , O’Roak, B. J. , Cooper, G. M. and Shendure, J. ( 2014 ) A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. , 46 , 310 – 315
CrossRef Google scholar
[63]
Quang, D. , Chen, Y. and Xie, X. ( 2015 ) DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics , 31 , 761 – 763
CrossRef Google scholar
[64]
Shihab, H. A. , Rogers, M. F. , Gough, J. , Mort, M. , Cooper, D. N. , Day, I. N. M ., Gaunt, T. R. and Campbell C. ( 2015 ) An integrative approach to predicting the functional effects of non-coding and coding sequence variation. Bioinformatics , 10.1093/bioinformatics/btv009
CrossRef Google scholar
[65]
Fu, Y. , Liu, Z. , Lou, S. , Bedford, J. , Mu, X. J. , Yip, K. Y. , Khurana, E. and Gerstein, M. ( 2014 ) FunSeq2: a framework for prioritizing noncoding regulatory variants in cancer. Genome Biol. , 15 , 480
CrossRef Google scholar
[66]
Khurana, E. , Fu, Y. , Colonna, V. , Mu, X. J. , Kang, H. M. , Lappalainen, T. , Sboner, A. , Lochovsky, L. , Chen, J. , Harmanci, A. , ( 2013 ) Integrative annotation of variants from 1092 humans: application to cancer genomics. Science , 342 , 1235587
CrossRef Google scholar
[67]
Lehmann, K.-V. and Chen, T. ( 2013 ) Exploring functional variant discovery in non-coding regions with SInBaD. Nucleic Acids Res. , 41 , e7
CrossRef Google scholar
[68]
Lee, D. , Gorkin, D. U. , Baker, M. , Strober, B. J. , Asoni, A. L. , McCallion, A. S. and Beer, M. A. ( 2015 ) A method to predict the impact of regulatory variants from DNA sequence. Nat. Genet. , 47 , 955 – 961
CrossRef Google scholar
[69]
Ritchie, G. R. , Dunham, I. , Zeggini, E. and Flicek, P. ( 2014 ) Functional annotation of noncoding sequence variants. Nat. Methods , 11 , 294 – 296
CrossRef Google scholar
[70]
Zhang, F. and Lupski, J. R. ( 2015 ) Noncoding genetic variants in human disease. Hum. Mol. Genet. ,
CrossRef Google scholar
[71]
Lupski, J. R. ( 1998 ) Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet. , 14 , 417 – 422
CrossRef Google scholar
[72]
Lee, C. and Morton, C. C. ( 2008 ) Structural genomic variation and personalized medicine. N. Engl. J. Med. , 358 , 740 – 741
CrossRef Google scholar
[73]
Lupski, J. R. ( 2009 ) Genomic disorders ten years on. Genome Med. , 1 , 42
CrossRef Google scholar
[74]
Sathirapongsasuti, J. F. , Lee, H. , Horst, B. A. J. , Brunner, G. , Cochran, A. J. , Binder, S. , Quackenbush, J. and Nelson, S. F. ( 2011 ) Exome sequencing-based copy-number variation and loss of heterozygosity detection: ExomeCNV. Bioinformatics , 27 , 2648 – 2654
CrossRef Google scholar
[75]
Fromer, M. , Moran, J. L. , Chambert, K. , Banks, E. , Bergen, S. E. , Ruderfer, D. M. , Handsaker, R. E. , McCarroll, S. A. , O’Donovan, M. C. , Owen, M. J. , ( 2012 ) Discovery and statistical genotyping of copy-number variation from whole-exome sequencing depth. Am. J. Hum. Genet. , 91 , 597 – 607
CrossRef Google scholar
[76]
Zong, C. , Lu, S. , Chapman, A. R. and Xie, X. S. ( 2012 ) Genome-wide detectionof single-nucleotide and copy-number variations of a single humancell. Science , 338 , 1622 – 1626
CrossRef Google scholar
[77]
Cardon, L. R. and Bell, J. I. ( 2001 ) Association study designs for complex diseases. Nat. Rev. Genet. , 2 , 91 – 99
CrossRef Google scholar
[78]
Manolio, T. A. , Collins, F. S. , Cox, N. J. , Goldstein, D. B. , Hindorff, L. A. , Hunter, D. J. , McCarthy, M. I. , Ramos, E. M. , Cardon, L. R. , Chakravarti, A. , ( 2009 ) Finding the missing heritability of complex diseases. Nature , 461 , 747 – 753
CrossRef Google scholar
[79]
Schork, N. J. , Murray, S. S. , Frazer, K. A. and Topol, E. J. ( 2009 ) Common vs. rare allele hypotheses for complex diseases. Curr. Opin. Genet. Dev. , 19 , 212 – 219
CrossRef Google scholar
[80]
Spain, S. L. and Barrett, J. C. ( 2015 ) Strategies for fine-mapping complex traits. Hum. Mol. Genet. ,
CrossRef Google scholar
[81]
CONVERGE consortium ( 2015 ) Sparse whole-genome sequencing identifiestwo loci for major depressive disorder . Nature , 523 , 588 –591.
[82]
Lippert, C. , Listgarten, J. , Liu, Y. , Kadie, C. M. , Davidson, R. I. and Heckerman, D. ( 2011 ) FaST linear mixed models for genome-wide association studies. Nat. Methods , 8 , 833 – 835
CrossRef Google scholar
[83]
Widmer, C. , Lippert, C. , Weissbrod, O. , Fusi, N. , Kadie, C. , Davidson, R. , Listgarten, J . and Heckerman , D. ( 2014 ) Further improvements to linear mixed models for genome-wide association studies. Sci. Rep. , 4 , 6874
[84]
Wu, M. C. , Lee, S. , Cai, T. , Li, Y. , Boehnke, M. and Lin, X. ( 2011 ) Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet. , 89 , 82 – 93
CrossRef Google scholar
[85]
Taylor, P. N. , Porcu, E. , Chew, S. , Campbell, P. J. , Traglia, M. , Brown, S. J. , Mullin, B. H. , Shihab, H. A. , Min, J. , Walter, K. , ( 2015 ) Whole-genome sequence-based analysis of thyroid function. Nat. Commun. , 6 , 5681
[86]
Morrison, A. C. , Voorman, A. , Johnson, A. D. , Liu, X. M. , Yu, J. , Li, A. , Muzny, D. , Yu, F. L. , Rice, K. , Zhu, C. S. , ( 2013 ) Whole genome sequence-based analysis of a model complex trait, high density lipoprotein cholesterol. Nat. Genet. , 45, 899–901
CrossRef Google scholar
[87]
Gibson, G. ( 2012 ) Rare and common variants: twenty arguments. Nat. Rev. Genet. , 13 , 135 – 145
CrossRef Google scholar
[88]
Yang, J. , Benyamin, B. , McEvoy, B. P. , Gordon, S. , Henders, A. K. , Nyholt, D. R. , Madden, P. A. , Heath, A. C. , Martin, N. G. , Montgomery, G. W. , ( 2010 ) Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. , 42 , 565 – 569
CrossRef Google scholar
[89]
Li, Y. , Sidore, C. , Kang, H. M. , Boehnke, M. and Abecasis, G. R. ( 2011 ) Low-coverage sequencing: implications for design of complex trait association studies. Genome Res. , 21 , 940 – 951
CrossRef Google scholar
[90]
Edwards, S. L. , Beesley, J. , French, J. D. and Dunning, A. M. ( 2013 ) Beyond GWASs: illuminating the dark road from association to function. Am. J. Hum. Genet. , 93 , 779 – 797
CrossRef Google scholar
[91]
Farh, K. K.-H. , Marson, A. , Zhu, J. , Kleinewietfeld, M. , Housley, W. J. , Beik, S. , Shoresh, N. , Whitton, H. , Ryan, R. J. H. , Shishkin, A. A. , ( 2015 ) Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature , 518 , 337 – 343
CrossRef Google scholar
[92]
Maller, J. B. , McVean, G. , Byrnes, J. , Vukcevic, D. , Palin, K. , Su, Z. , Howson, J. M. M. , Auton, A. , Myers, S. , Morris, A. , ( 2012 ) Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat. Genet. , 44 , 1294 – 1301
CrossRef Google scholar
[93]
Barbieri, C. E. , Baca, S. C. , Lawrence, M. S. , Demichelis, F. , Blattner, M. , Theurillat, J.-P. , White, T. A. , Stojanov, P. , Van Allen, E. , Stransky, N. , ( 2012 ) Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat. Genet. , 44 , 685 – 689
CrossRef Google scholar
[94]
Wang, K. , Kan, J. , Yuen, S. T. , Shi, S. T. , Chu, K. M. , Law, S. , Chan, T. L. , Kan, Z. , Chan, A. S. Y. , Tsui, W. Y. , ( 2011 ) Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat. Genet. , 43 , 1219 – 1223
CrossRef Google scholar
[95]
Nakagawa, H. , Wardell, C. P. , Furuta, M. , Taniguchi, H. and Fujimoto, A. ( 2015 ) Cancer whole-genome sequencing: present and future. Oncogene , 34 , 5943 – 5950
CrossRef Google scholar
[96]
Huang, F. W. , Hodis, E. , Xu, M. J. , Kryukov, G. V. , Chin, L. and Garraway, L. A. ( 2013 ) Highly recurrent TERT promoter mutations in human melanoma. Science , 339 , 957 – 959
CrossRef Google scholar
[97]
Vinagre, J. , Almeida, A. , Pópulo, H. , Batista, R. , Lyra, J. , Pinto, V. , Coelho, R. , Celestino, R. , Prazeres, H. , Lima, L. , ( 2013 ) Frequency of TERT promoter mutations in human cancers. Nat.Commun. , 4 , 2185
[98]
Mansour, M. R. , Abraham, B. J. , Anders, L. , Berezovskaya, A. , Gutierrez, A. , Durbin, A. D. , Etchin, J. , Lawton, L. , Sallan, S. E. , Silverman, L. B. , ( 2014 ) An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science , 346 , 1373 – 1377
CrossRef Google scholar
[99]
Weinhold, N. , Jacobsen, A. , Schultz, N. , Sander, C. and Lee, W. ( 2014 ) Genome-wide analysis of noncoding regulatory mutationsin cancer. Nat. Genet. , 46 , 1160 – 1165
CrossRef Google scholar
[100]
Fredriksson, N. J. , Ny, L. , Nilsson, J. A. and Larsson, E. ( 2014 ) Systematic analysisof noncoding somatic mutations and gene expression alterations across 14 tumor types. Nat. Genet. , 46 , 1258 – 1263
CrossRef Google scholar
[101]
Melton, C. , Reuter, J. A. , Spacek, D. V. and Snyder, M. ( 2015 ) Recurrent somatic mutations in regulatory regions of human cancer genomes. Nat. Genet. , 47 , 710 – 716
CrossRef Google scholar
[102]
Li, B. and Leal, S. M. ( 2008 ) Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am. J. Hum. Genet. , 83 , 311 – 321
CrossRef Google scholar
[103]
Lin, D.-Y. and Tang, Z.-Z. ( 2011 ) A general framework for detecting disease associations with rare variants in sequencing studies. Am. J. Hum. Genet. , 89 , 354 – 367
CrossRef Google scholar
[104]
Gonzalez-Perez, A. , Mustonen, V. , Reva, B. , Ritchie, G. R. S. , Creixell, P. , Karchin, R. , Vazquez, M. , Fink, J. L. , Kassahn, K. S. , Pearson, J. V. , ( 2013 ) Computational approaches to identify functional genetic variants in cancer genomes. Nat. Methods , 10 , 723 – 729
CrossRef Google scholar
[105]
Albert, F. W. and Kruglyak, L. ( 2015 ) The role of regulatory variation in complex traits and disease. Nat. Rev. Genet. , 16 , 197 – 212
CrossRef Google scholar
[106]
Li, M. J. , Yan, B. , Sham, P. C. , and Wang, J.W. ( 2014 ) Exploring the function of genetic variants in the non-codinggenomic regions: approaches for identifying human regulatory variants affecting gene expression. Brief. Bioinform. , 16 , 393 – 412
[107]
Ward, L. D. and Kellis, M. ( 2012 ) Interpreting noncoding genetic variation in complex traitsand human disease. Nat. Biotechnol. , 30 , 1095 – 1106
CrossRef Google scholar
[108]
Rockman, M. V. and Kruglyak, L. ( 2006 ) Genetics of global gene expression. Nat. Rev. Genet. , 7 , 862 – 872
CrossRef Google scholar
[109]
Degner, J. F. , Pai, A. A. , Pique-Regi, R. , Veyrieras, J.-B. , Gaffney, D. J. , Pickrell, J. K. , De Leon, S. , Michelini, K. , Lewellen, N. , Crawford, G. E. , ( 2012 ) DNase I sensitivity QTLs area major determinant of human expression variation. Nature , 482 , 390 – 394
CrossRef Google scholar
[110]
Monlong, J. , Calvo, M. , Ferreira, P. G. and Guigó, R. ( 2014 ) Identification of genetic variants associated with alternative splicing using sQTLseekeR . Nat. Commun. , 5 , 4698
[111]
Koren, A. , Handsaker, R. E. , Kamitaki, N. , Karlić, R. , Ghosh, S. , Polak, P. , Eggan, K. and McCarroll, S. A. ( 2014 ) Genetic variation in human DNA replication timing. Cell , 159 , 1015 – 1026
CrossRef Google scholar
[112]
del Rosario, R. C.-H. , Poschmann, J. , Rouam, S. L. , Png, E. , Khor, C. C. , Hibberd, M. L. and Prabhakar, S. ( 2015 ) Sensitive detection of chromatin-altering polymorphisms reveals autoimmune diseasemechanisms. Nat. Methods , 12 , 458 – 464
CrossRef Google scholar
[113]
Gibbs, J. R. , van der Brug, M. P. , Hernandez, D. G. , Traynor, B. J. , Nalls, M. A. , Lai, S.-L. , Arepalli, S. , Dillman, A. , Rafferty, I. P. , Troncoso, J. , ( 2010 ) Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet. , 6 , e1000952
CrossRef Google scholar
[114]
Lappalainen, T. , Sammeth, M. , Friedländer, M. R. , ‘t Hoen, P. A. C. , Monlong, J. , Rivas, M. A. , Gonzàlez-Porta, M. , Kurbatova, N. , Griebel, T. , Ferreira, P. G. , , ( 2013 ) Transcriptome and genome sequencing uncovers functional variationin humans. Nature , 501 , 506 – 511
CrossRef Google scholar
[115]
Maurano, M. T. , Humbert, R. , Rynes, E. , Thurman, R. E. , Haugen, E. , Wang, H. , Reynolds, A. P. , Sandstrom, R. , Qu, H. , Brody, J. , ( 2012 ) Systematic localization of common disease-associated variation in regulatory DNA. Science , 337 , 1190 – 1195
CrossRef Google scholar
[116]
Maurano, M. T. , Haugen, E. , Sandstrom, R. , Vierstra, J. , Shafer, A. , Kaul, R. and Stamatoyannopoulos, J. A. ( 2015 ) Large-scale identification of sequence variants influencing human transcription factor occupancy in vivo . Nat. Genet. , 47 , 1393 – 1401
CrossRef Google scholar
[117]
Kasowski, M. , Grubert, F. , Heffelfinger, C. , Hariharan, M. , Asabere, A. , Waszak, S. M. , Habegger, Lukas. , Rozowsky, J. , Shi, M. , Urban, A. E. , ( 2010 ) Variation in transcription factor binding among humans. Science 328 , 232 – 235
[118]
Karczewski, K. J. , Dudley, J. T. , Kukurba, K. R. , Chen, R. , Butte, A. J. , Montgomery, S. B. and Snyder, M. ( 2013 ) Systematic functional regulatory assessment of disease-associated variants. Proc. Natl. Acad. Sci. USA , 110 , 9607 – 9612
CrossRef Google scholar
[119]
Chiang, C. , Layer, R. M. , Faust, G. G. , Lindberg, M. R. , Rose, D. B. , Garrison, E. P. , Marth, G. T. , Quinlan, A. R. and Hall, I. M. ( 2014 ) SpeedSeq: Ultra-fast personal genome analysis and interpretation. Nat. Meth., 12 , 966 – 968
[120]
Park, P. J. ( 2009 ) ChIP–seq: advantages and challenges of a maturing technology. Nat. Rev. Genet. , 10 , 669 – 680
CrossRef Google scholar
[121]
Song, L. and Crawford, G. E. ( 2010 ) DNase-seq: a high-resolution technique for mapping activegene regulatory elements across the genome from mammalian cells. Cold Spring Harb. Protoc. pdb . prot5384
[122]
Buenrostro, J. D. , Giresi, P. G. , Zaba, L. C. , Chang, H. Y. and Greenleaf, W. J. ( 2013 ) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods , 10 , 1213 – 1218
CrossRef Google scholar
[123]
dbWGFP : http://bioinfo.au.tsinghua.edu.cn/dbwgfp
[124]
Biesecker, L. G. ( 2013 ) Hypothesis-generating research and predictive medicine. Genome Res. , 23 , 1051 – 1053
CrossRef Google scholar
[125]
Simon, R. ( 2011 ) Genomic biomarkers in predictive medicine. An interim analysis. EMBO Mol. Med. , 3 , 429 – 435
CrossRef Google scholar
[126]
Matsui, S. , Simon, R. , Qu, P. , Shaughnessy, J. D. , Barlogie, B. and Crowley, J. ( 2012 ) Developing and validating continuous genomic signatures in randomized clinical trials for predictive medicine. Clin. Cancer Res. , 18 , 6065 – 6073
CrossRef Google scholar
[127]
Collins, F. S. and Varmus, H. ( 2015 ) A new initiative on precision medicine. N. Engl. J. Med. , 372 , 793 – 795
CrossRef Google scholar
[128]
Rubin, M. A. ( 2015 ) Health: Make precision medicine work for cancer care. Nature , 520 , 290 – 291
CrossRef Google scholar
[129]
Bellmunt, J. , Orsola, A. and Sonpavde, G. ( 2015 ) Precision and predictive medicine in urothelial cancer: Are we making progress? Eur. Urol. , 68 , 547 – 549
CrossRef Google scholar
[130]
Geschwind, D. H. and State, M. W. ( 2015 ) Gene hunting in autism spectrum disorder: on the path to precision medicine. Lancet Neurol. , 14 , 1109 – 1120
CrossRef Google scholar
[131]
Mak, H. C. ( 2012 ) Genome interpretation and assembly—recent progress and next steps. Nat. Biotechnol. , 30 , 1081 – 1083
CrossRef Google scholar
[132]
Shendure, J. and Aiden, E. L. ( 2012 ) The expanding scope of DNA sequencing. Nat. Biotechnol. , 30 , 1084 – 1094
CrossRef Google scholar
[133]
Fujimoto, A. , Nakagawa, H. , Hosono, N. , Nakano, K. , Abe, T. , Boroevich, K. A. , Nagasaki, M. , Yamaguchi, R. , Shibuya, T. , Kubo, M. , ( 2010 ) Whole-genome sequencing and comprehensive variant analysis of a Japanese individual using massively parallel sequencing. Nat. Genet. , 42 , 931 – 936
CrossRef Google scholar
[134]
Gonzaga-Jauregui, C. , Lupski, J. R. and Gibbs, R. A. ( 2012 ) Human genome sequencing in health and disease. Annu. Rev. Med. , 63 , 35 – 61
CrossRef Google scholar

ACKNOWLEDGEMENTS

This research was partially supported by the National Basic Research Program of China (No. 2012CB316504), the National High Technology Research and Development Program of China (No. 2012AA020401), the National Natural Science Foundation of China (Nos. 61573207 and 61175002) and Beijing Collaborative Innovation Center for Cardiovascular Disorders.

COMPLIANCE WITH ETHICS GUIDELINES

All authors confirm the absence of previous similar or simultaneous publications, their inspection of the manuscript, their substantial contribution to the work, and their agreement to submission.
This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(296 KB)

Accesses

Citations

Detail

Sections
Recommended

/