A quantitative understanding of microRNA- mediated competing endogenous RNA regulation

Ye Yuan, Xinying Ren, Zhen Xie, Xiaowo Wang

PDF(1172 KB)
PDF(1172 KB)
Quant. Biol. ›› 2016, Vol. 4 ›› Issue (1) : 47-57. DOI: 10.1007/s40484-016-0062-5

A quantitative understanding of microRNA- mediated competing endogenous RNA regulation

Author information +
History +

Abstract

MicroRNA (miRNA) plays key roles in post-transcriptional regulations. Recently, a competing endogenous RNA (ceRNA) hypothesis has been proposed that miRNA targets could communicate and regulate each other through titrating shared miRNAs, which provides a new layer of gene regulation. Though a number of ceRNAs playing biological functions have been identified, the ceRNA hypothesis remains controversial. Recent experimental and theoretical studies argued that the modulation of a single RNA species could hardly change the expression level of competing miRNA targets through ceRNA effect under normal physiological conditions. Here, we reviewed a common framework to model miRNA regulations, and summarized the current theoretical and experimental studies for quantitative understanding ceRNA effect. By revisiting a coarse-grained ceRNA model, we proposed that network topology could significantly influence the competing effect and ceRNA regulation at protein level could be much stronger than that at RNA level. We also provided a conditional independent binding equation to describe miRNA relative repression on different target, which could be applied to quantify siRNA off-target effect.

Graphical abstract

Keywords

microRNA regulation / competing endogenous RNA / molecular titration / quantitative model / complex networks

Cite this article

Download citation ▾
Ye Yuan, Xinying Ren, Zhen Xie, Xiaowo Wang. A quantitative understanding of microRNA- mediated competing endogenous RNA regulation. Quant. Biol., 2016, 4(1): 47‒57 https://doi.org/10.1007/s40484-016-0062-5

References

[1]
He, L. and Hannon, G. J. (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet., 5, 522–531
CrossRef Pubmed Google scholar
[2]
Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E. and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391, 806–811
CrossRef Pubmed Google scholar
[3]
Wee, L. M., Flores-Jasso, C. F., Salomon, W. E. and Zamore, P. D. (2012) Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties. Cell, 151, 1055–1067
CrossRef Pubmed Google scholar
[4]
Zamore, P. D., Tuschl, T., Sharp, P. A. and Bartel, D. P. (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 101, 25–33
CrossRef Pubmed Google scholar
[5]
Bartel, D. P. (2009) MicroRNAs: target recognition and regulatory functions. Cell, 136, 215–233
CrossRef Pubmed Google scholar
[6]
Hutvágner, G. and Zamore, P. D. (2002) A microRNA in a multiple-turnover RNAi enzyme complex. Science, 297, 2056–2060
CrossRef Pubmed Google scholar
[7]
Agarwal, V., Bell, G. W., Nam, J. W. and Bartel, D. P. (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife, 4, 4
Pubmed
[8]
Krek, A., Grün, D., Poy, M. N., Wolf, R., Rosenberg, L., Epstein, E. J., MacMenamin, P., da Piedade, I., Gunsalus, K. C., Stoffel, M., (2005) Combinatorial microRNA target predictions. Nat. Genet., 37, 495–500
CrossRef Pubmed Google scholar
[9]
Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U. and Segal, E. (2007) The role of site accessibility in microRNA target recognition. Nat. Genet., 39, 1278–1284
CrossRef Pubmed Google scholar
[10]
Lewis, B. P., Burge, C. B. and Bartel, D. P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120, 15–20
CrossRef Pubmed Google scholar
[11]
Jens, M. and Rajewsky, N. (2015) Competition between target sites of regulators shapes post-transcriptional gene regulation. Nat. Rev. Genet., 16, 113–126
CrossRef Pubmed Google scholar
[12]
Allantaz, F., Cheng, D. T., Bergauer, T., Ravindran, P., Rossier, M. F., Ebeling, M., Badi, L., Reis, B., Bitter, H., D’Asaro, M., (2012) Expression profiling of human immune cell subsets identifies miRNA-mRNA regulatory relationships correlated with cell type specific expression. PLoS One, 7, e29979
CrossRef Pubmed Google scholar
[13]
Cajigas, I. J., Tushev, G., Will, T. J., tom Dieck, S., Fuerst, N. and Schuman, E. M. (2012) The local transcriptome in the synaptic neuropil revealed by deep sequencing and high-resolution imaging. Neuron, 74, 453–466
CrossRef Pubmed Google scholar
[14]
Gennarino, V. A., Sardiello, M., Avellino, R., Meola, N., Maselli, V., Anand, S., Cutillo, L., Ballabio, A. and Banfi, S. (2009) MicroRNA target prediction by expression analysis of host genes. Genome Res., 19, 481–490
CrossRef Pubmed Google scholar
[15]
Jung, D., Kim, B., Freishtat, R. J., Giri, M., Hoffman, E. and Seo, J. (2015) miRTarVis: an interactive visual analysis tool for microRNA-mRNA expression profile data. BMC Proc, 9, S2
CrossRef Pubmed Google scholar
[16]
Xie, P., Liu, Y., Li, Y., Zhang, M. Q. and Wang, X. (2014) MIROR: a method for cell-type specific microRNA occupancy rate prediction. Mol Biosyst, 10, 1377–1384
CrossRef Pubmed Google scholar
[17]
Salmena, L., Poliseno, L., Tay, Y., Kats, L. and Pandolfi, P. P. (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell, 146, 353–358
CrossRef Pubmed Google scholar
[18]
Tay, Y., Rinn, J. and Pandolfi, P. P. (2014) The multilayered complexity of ceRNA crosstalk and competition. Nature, 505, 344–352
CrossRef Pubmed Google scholar
[19]
Taulli, R., Loretelli, C. and Pandolfi, P. P. (2013) From pseudo-ceRNAs to circ-ceRNAs: a tale of cross-talk and competition. Nat. Struct. Mol. Biol., 20, 541–543
CrossRef Pubmed Google scholar
[20]
Cesana, M., Cacchiarelli, D., Legnini, I., Santini, T., Sthandier, O., Chinappi, M., Tramontano, A. and Bozzoni, I. (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 147, 358–369
CrossRef Pubmed Google scholar
[21]
Karreth, F. A., Tay, Y., Perna, D., Ala, U., Tan, S. M., Rust, A. G., DeNicola, G., Webster, K. A., Weiss, D., Perez-Mancera, P. A., (2011) In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell, 147, 382–395
CrossRef Pubmed Google scholar
[22]
Sumazin, P., Yang, X., Chiu, H. S., Chung, W. J., Iyer, A., Llobet-Navas, D., Rajbhandari, P., Bansal, M., Guarnieri, P., Silva, J., (2011) An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell, 147, 370–381
CrossRef Pubmed Google scholar
[23]
Tay, Y., Kats, L., Salmena, L., Weiss, D., Tan, S. M., Ala, U., Karreth, F., Poliseno, L., Provero, P., Di Cunto, F., (2011) Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell, 147, 344–357
CrossRef Pubmed Google scholar
[24]
Memczak, S., Jens, M., Elefsinioti, A., Torti, F., Krueger, J., Rybak, A., Maier, L., Mackowiak, S. D., Gregersen, L. H., Munschauer, M., (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 495, 333–338
CrossRef Pubmed Google scholar
[25]
Kumar, M. S., Armenteros-Monterroso, E., East, P., Chakravorty, P., Matthews, N., Winslow, M. M. and Downward, J. (2014) HMGA2 functions as a competing endogenous RNA to promote lung cancer progression. Nature, 505, 212–217
CrossRef Pubmed Google scholar
[26]
Peng, H., Lu, M. and Selaru, F. M. (2015) The genome-wide gene expression profiling to predict competitive endogenous RNA network in hepatocellular cancer. Genom Data, 4, 93–95
CrossRef Pubmed Google scholar
[27]
Qi, X., Zhang, D. H., Wu, N., Xiao, J. H., Wang, X. and Ma, W. (2015) ceRNA in cancer: possible functions and clinical implications. J. Med. Genet., 52, 710–718
CrossRef Pubmed Google scholar
[28]
Zhang, J., Fan, D., Jian, Z., Chen, G. G. and Lai, P. B. (2015) Cancer specific long noncoding RNAs show differential expression patterns and competing endogenous RNA potential in hepatocellular carcinoma. PLoS One, 10, e0141042
CrossRef Pubmed Google scholar
[29]
Bosson, A. D., Zamudio, J. R. and Sharp, P. A. (2014) Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol. Cell, 56, 347–359
CrossRef Pubmed Google scholar
[30]
Mayya, V. K. and Duchaine, T. F. (2015) On the availability of microRNA-induced silencing complexes, saturation of microRNA-binding sites and stoichiometry. Nucleic Acids Res., 43, 7556–7565
CrossRef Pubmed Google scholar
[31]
Yuan, Y., Liu, B., Xie, P., Zhang, M. Q., Li, Y., Xie, Z. and Wang, X. (2015) Model-guided quantitative analysis of microRNA-mediated regulation on competing endogenous RNAs using a synthetic gene circuit. Proc. Natl. Acad. Sci. USA, 112, 3158–3163
CrossRef Pubmed Google scholar
[32]
Denzler, R., Agarwal, V., Stefano, J., Bartel, D. P. and Stoffel, M. (2014) Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol. Cell, 54, 766–776
CrossRef Pubmed Google scholar
[33]
Hausser, J. and Zavolan, M. (2014) Identification and consequences of miRNA-target interactions—beyond repression of gene expression. Nat. Rev. Genet., 15, 599–612
CrossRef Pubmed Google scholar
[34]
Lim, L. P., Lau, N. C., Garrett-Engele, P., Grimson, A., Schelter, J. M., Castle, J., Bartel, D. P., Linsley, P. S. and Johnson, J. M. (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 433, 769–773
CrossRef Pubmed Google scholar
[35]
Kou, Y., Qiao, L. and Wang, Q. (2015) Identification of core miRNA based on small RNA-seq and RNA-seq for colorectal cancer by bioinformatics. Tumour Biol., 36, 2249–2255
CrossRef Pubmed Google scholar
[36]
Wang, Z., Gerstein, M. and Snyder, M. (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet., 10, 57–63
CrossRef Pubmed Google scholar
[37]
Bazzini, A. A., Lee, M. T. and Giraldez, A. J. (2012) Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science, 336, 233–237
CrossRef Pubmed Google scholar
[38]
Baek, D., Villén, J., Shin, C., Camargo, F. D., Gygi, S. P. and Bartel, D. P. (2008) The impact of microRNAs on protein output. Nature, 455, 64–71
CrossRef Pubmed Google scholar
[39]
Hausser, J., Syed, A. P., Selevsek, N., van Nimwegen, E., Jaskiewicz, L., Aebersold, R. and Zavolan, M. (2013) Timescales and bottlenecks in miRNA-dependent gene regulation. Mol. Syst. Biol., 9, 711.
CrossRef Pubmed Google scholar
[40]
Selbach, M., Schwanhäusser, B., Thierfelder, N., Fang, Z., Khanin, R. and Rajewsky, N. (2008) Widespread changes in protein synthesis induced by microRNAs. Nature, 455, 58–63
CrossRef Pubmed Google scholar
[41]
Broughton, J. P. and Pasquinelli, A. E. (2013) Identifying Argonaute binding sites in Caenorhabditis elegans using iCLIP. Methods, 63, 119–125
CrossRef Pubmed Google scholar
[42]
Chi, S. W., Zang, J. B., Mele, A. and Darnell, R. B. (2009) Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature, 460, 479–486
Pubmed
[43]
Konig, J., Zarnack, K., Rot, G., Curk, T., Kayikci, M., Zupan, B., Turner, D. J., Luscombe, N. M. and Ule, J. (2011) iCLIP—transcriptome-wide mapping of protein-RNA interactions with individual nucleotide resolution. J. Vis. Exp., e2638
CrossRef Pubmed Google scholar
[44]
Loeb, G. B., Khan, A. A., Canner, D., Hiatt, J. B., Shendure, J., Darnell, R. B., Leslie, C. S. and Rudensky, A. Y. (2012) Transcriptome-wide miR-155 binding map reveals widespread noncanonical microRNA targeting. Mol. Cell, 48, 760–770
CrossRef Pubmed Google scholar
[45]
Sutandy, F. X., Hildebrandt, A. and König, J. (2016) Profiling the binding sites of RNA-binding proteins with nucleotide resolution using iCLIP. Methods Mol. Biol., 1358, 175–195
CrossRef Pubmed Google scholar
[46]
Zisoulis, D. G., Lovci, M. T., Wilbert, M. L., Hutt, K. R., Liang, T. Y., Pasquinelli, A. E. and Yeo, G. W. (2010) Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nat. Struct. Mol. Biol., 17, 173–179
CrossRef Pubmed Google scholar
[47]
Kishore, S., Jaskiewicz, L., Burger, L., Hausser, J., Khorshid, M. and Zavolan, M. (2011) A quantitative analysis of CLIP methods for identifying binding sites of RNA-binding proteins. Nat. Methods, 8, 559–564
CrossRef Pubmed Google scholar
[48]
Zhang, C. and Darnell, R. B. (2011) Mapping in vivo protein-RNA interactions at single-nucleotide resolution from HITS-CLIP data. Nat. Biotechnol., 29, 607–614
CrossRef Pubmed Google scholar
[49]
Levine, E., Zhang, Z., Kuhlman, T. and Hwa, T. (2007) Quantitative characteristics of gene regulation by small RNA. PLoS Biol., 5, e229.
CrossRef Pubmed Google scholar
[50]
Mukherji, S., Ebert, M. S., Zheng, G. X., Tsang, J. S., Sharp, P. A. and van Oudenaarden, A. (2011) MicroRNAs can generate thresholds in target gene expression. Nat. Genet., 43, 854–859
CrossRef Pubmed Google scholar
[51]
Schmiedel, J. M., Klemm, S. L., Zheng, Y., Sahay, A., Blüthgen, N., Marks, D. S. and van Oudenaarden, A. (2015) MicroRNA control of protein expression noise. Science, 348, 128–132
CrossRef Pubmed Google scholar
[52]
Milo, R., Jorgensen, P., Moran, U., Weber, G. and Springer, M. (2010) BioNumbers—the database of key numbers in molecular and cell biology. Nucleic Acids Res., 38, D750–D753
CrossRef Pubmed Google scholar
[53]
Schwanhäusser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J., Chen, W. and Selbach, M. (2011) Global quantification of mammalian gene expression control. Nature, 473, 337–342
CrossRef Pubmed Google scholar
[54]
Buchler, N. E. and Louis, M. (2008) Molecular titration and ultrasensitivity in regulatory networks. J. Mol. Biol., 384, 1106–1119
CrossRef Pubmed Google scholar
[55]
Ala, U., Karreth, F. A., Bosia, C., Pagnani, A., Taulli, R., Léopold, V., Tay, Y., Provero, P., Zecchina, R. and Pandolfi, P. P. (2013) Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments. Proc. Natl. Acad. Sci. USA, 110, 7154–7159
CrossRef Pubmed Google scholar
[56]
Martinez, N. J. and Gregory, R. I. (2013) Argonaute2 expression is post-transcriptionally coupled to microRNA abundance. RNA, 19, 605–612
CrossRef Pubmed Google scholar
[57]
Wang, D., Zhang, Z., O’Loughlin, E., Lee, T., Houel, S., O’Carroll, D., Tarakhovsky, A., Ahn, N. G. and Yi, R. (2012) Quantitative functions of Argonaute proteins in mammalian development. Genes Dev., 26, 693–704
CrossRef Pubmed Google scholar
[58]
Riba, A., Bosia, C., El Baroudi, M., Ollino, L. and Caselle, M. (2014) A combination of transcriptional and microRNA regulation improves the stability of the relative concentrations of target genes. PLoS Comput. Biol., 10, e1003490.
CrossRef Pubmed Google scholar
[59]
Poliseno, L., Salmena, L., Zhang, J., Carver, B., Haveman, W. J. and Pandolfi, P. P. (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature, 465, 1033–1038
CrossRef Pubmed Google scholar
[60]
Figliuzzi, M., Marinari, E. and De Martino, A. (2013) MicroRNAs as a selective channel of communication between competing RNAs: a steady-state theory. Biophys. J., 104, 1203–1213
CrossRef Pubmed Google scholar
[61]
Nitzan, M., Steiman-Shimony, A., Altuvia, Y., Biham, O. and Margalit, H. (2014) Interactions between distant ceRNAs in regulatory networks. Biophys. J., 106, 2254–2266
CrossRef Pubmed Google scholar
[62]
Noorbakhsh, J., Lang, A. H. and Mehta, P. (2013) Intrinsic noise of microRNA-regulated genes and the ceRNA hypothesis. PLoS One, 8, e72676
CrossRef Pubmed Google scholar
[63]
Wang, P., Zhi, H., Zhang, Y., Liu, Y., Zhang, J., Gao, Y., Guo, M., Ning, S. and Li, X. (2015) miRSponge: a manually curated database for experimentally supported miRNA sponges and ceRNAs. Database (Oxford), 2015, 2015
Pubmed
[64]
Yu, G., Yao, W., Gumireddy, K., Li, A., Wang, J., Xiao, W., Chen, K., Xiao, H., Li, H., Tang, K., (2014) Pseudogene PTENP1 functions as a competing endogenous RNA to suppress clear-cell renal cell carcinoma progression. Mol. Cancer Ther., 13, 3086–3097
CrossRef Pubmed Google scholar
[65]
Jeyapalan, Z., Deng, Z., Shatseva, T., Fang, L., He, C. and Yang, B. B. (2011) Expression of CD44 3′-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis. Nucleic Acids Res., 39, 3026–3041
CrossRef Pubmed Google scholar
[66]
Rutnam, Z. J. and Yang, B. B. (2012) The non-coding 3′ UTR of CD44 induces metastasis by regulating extracellular matrix functions. J. Cell. Sci., 125, 2075–2085
CrossRef Pubmed Google scholar
[67]
Xia, T., Chen, S., Jiang, Z., Shao, Y., Jiang, X., Li, P., Xiao, B. and Guo, J. (2015) Long noncoding RNA FER1L4 suppresses cancer cell growth by acting as a competing endogenous RNA and regulating PTEN expression. Sci Rep, 5, 13445
CrossRef Pubmed Google scholar
[68]
Jackson, A. L., Burchard, J., Schelter, J., Chau, B. N., Cleary, M., Lim, L. and Linsley, P. S. (2006) Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA, 12, 1179–1187
CrossRef Pubmed Google scholar
[69]
Schafer, S., Adami, E., Heinig, M., Rodrigues, K. E., Kreuchwig, F., Silhavy, J., van Heesch, S., Simaite, D., Rajewsky, N., Cuppen, E., (2015) Translational regulation shapes the molecular landscape of complex disease phenotypes. Nat Commun, 6, 7200
CrossRef Pubmed Google scholar
[70]
Jiang, J., Wakimoto, H., Seidman, J. G. and Seidman, C. E. (2013) Allele-specific silencing of mutant Myh6 transcripts in mice suppresses hypertrophic cardiomyopathy. Science, 342, 111–114
CrossRef Pubmed Google scholar
[71]
Chiu, H. S., Llobet-Navas, D., Yang, X., Chung, W. J., Ambesi-Impiombato, A., Iyer, A., Kim, H. R., Seviour, E. G., Luo, Z., Sehgal, V., (2015) Cupid: simultaneous reconstruction of microRNA-target and ceRNA networks. Genome Res., 25, 257–267
CrossRef Pubmed Google scholar
[72]
Tan, J. Y., Sirey, T., Honti, F., Graham, B., Piovesan, A., Merkenschlager, M., Webber, C., Ponting, C. P. and Marques, A. C. (2015) Extensive microRNA-mediated crosstalk between lncRNAs and mRNAs in mouse embryonic stem cells. Genome Res., 25, 655–666
CrossRef Pubmed Google scholar
[73]
Xu, J., Li, Y., Lu, J., Pan, T., Ding, N., Wang, Z., Shao, T., Zhang, J., Wang, L. and Li, X. (2015) The mRNA related ceRNA-ceRNA landscape and significance across 20 major cancer types. Nucleic Acids Res., 43, 8169–8182
CrossRef Pubmed Google scholar

ACKNOWLEDMENTS

This work was supported by the National Basic Research Program (No. 2012CB316503), the National Natural Science Foundation (Nos. 61322310 and 31371341), Tsinghua University Initiative Scientific Research Program, and Tsinghua National Laboratory for Information Science and Technology.
The authors Ye Yuan, Xinying Ren, Zhen Xie and Xiaowo Wang declare that they have no conflict of interest.
This article does not contain any studies with human or animal subjects performed by any of the authors.
Funding
 

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1172 KB)

Accesses

Citations

Detail

Sections
Recommended

/