“RADIOTRANSCRIPTOMICS”: A synergy of imaging and transcriptomics in clinical assessment

Amal Katrib, William Hsu, Alex Bui, Yi Xing

PDF(1018 KB)
PDF(1018 KB)
Quant. Biol. ›› 2016, Vol. 4 ›› Issue (1) : 1-12. DOI: 10.1007/s40484-016-0061-6

“RADIOTRANSCRIPTOMICS”: A synergy of imaging and transcriptomics in clinical assessment

Author information +
History +

Abstract

Recent advances in quantitative imaging and “omics” technology have generated a wealth of mineable biological “big data”. With the push towards a P4 “predictive, preventive, personalized, and participatory” approach to medicine, researchers began integrating complementary tools to further tune existing diagnostic and therapeutic models. The field of radiogenomics has long pioneered such multidisciplinary investigations in neuroscience and oncology, correlating genotypic and phenotypic signatures to study structural and functional changes in relation to altered molecular behavior. Given the innate dynamic nature of complex disorders and the role of environmental and epigenetic factors in pathogenesis, the transcriptome can further elucidate serial modifications undetected at the genome level. We therefore propose “radiotranscriptomics” as a new member of the P4 medicine initiative, combining transcriptome information, including gene expression and isoform variation, and quantitative image annotations.

Graphical abstract

Keywords

quantitative imaging / transcriptomics / RNA-seq / genomics / image genomics / radiogenomics / systems biology / precision medicine

Cite this article

Download citation ▾
Amal Katrib, William Hsu, Alex Bui, Yi Xing. “RADIOTRANSCRIPTOMICS”: A synergy of imaging and transcriptomics in clinical assessment. Quant. Biol., 2016, 4(1): 1‒12 https://doi.org/10.1007/s40484-016-0061-6

References

[1]
Loscalzo, J. and Barabasi, A. L. (2011) Systems biology and the future of medicine. Wiley Interdiscip. Rev. Syst. Biol. Med., 3, 619–627
CrossRef Google scholar
[2]
Trewavas, A. (2006) A Brief History of Systems Biology: "Every object that biology studies is a system of systems." Francois Jacob (1974). Plant Cell Online, 18, 2420–2430
CrossRef Google scholar
[3]
Jaffe, C. C. (2012) Imaging and genomics: is there a synergy? Radiology, 264, 329–331
CrossRef Google scholar
[4]
Lander, E. S. (1996) The new genomics: global views of biology. Science, 274, 536–539
CrossRef Google scholar
[5]
Pritchard, J. K. and Cox, N. J. (2002) The allelic architecture of human disease genes: common disease-common variant...or not? Hum. Mol. Genet., 11, 2417–2423
CrossRef Google scholar
[6]
Strachan, T., Read, A. P. and Strachan, T. (2011) Human Molecular Genetics. 4th ed., New York: Garland Science
[7]
Bush, W. S. and Moore, J. H. (2012) Chapter 11: Genome-Wide Association Studies. PLoS Comput. Biol., 8, e1002822
CrossRef Google scholar
[8]
Moody, G. (2004) Digital code of life: how bioinformatics is revolutionizing science, medicine, and business. Hoboken: Wiley
[9]
Visscher, P. M., Brown, M. A., McCarthy, M. I. and Yang, J. (2012) Five years of GWAS discovery. Am. J. Hum. Genet., 90, 7–24
CrossRef Google scholar
[10]
Li, J., Horstman, B. and Chen, Y. (2011) Detecting epistatic effects in association studies at a genomic level based on an ensemble approach. Bioinformatics, 27, i222–i229
CrossRef Google scholar
[11]
Iles, M. M. (2008) What can genome-wide association studies tell us about the genetics of common disease? PLoS Genet., 4, e33
CrossRef Google scholar
[12]
George, A. L. Jr. (2008) Appraising the value of genomic association studies. J. Am. Soc. Nephrol., 19, 1840–1842
CrossRef Google scholar
[13]
Gibson, G. (2012) Rare and common variants: twenty arguments. Nat. Rev. Genet., 13, 135–145
CrossRef Google scholar
[14]
Bushberg, J. T. (2012) The essential physics of medical imaging. 3rd ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins
[15]
Martí-Bonmatí, L., Sopena, R., Bartumeus, P. and Sopena, P. (2010) Multimodality imaging techniques. Contrast Media Mol. Imaging, 5, 180–189
CrossRef Google scholar
[16]
Padhani, A. R. and Miles, K. A. (2010) Multiparametric imaging of tumor response to therapy. Radiology, 256, 348–364
CrossRef Google scholar
[17]
Jenkinson, M., Bannister, P., Brady, M. and Smith, S. (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17, 825–841
CrossRef Google scholar
[18]
Woods, R. P., Mazziotta, J. C. and Cherry, S. R. (1993) MRI-PET registration with automated algorithm. J. Comput. Assist. Tomogr., 17, 536–546
CrossRef Google scholar
[19]
Martin, K., Ibáñez, L., Avila, L., Barré, S. and Kaspersen, J. H. (2005) Integrating segmentation methods from the Insight Toolkit into a visualization application. Med. Image Anal., 9, 579–593
CrossRef Google scholar
[20]
Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. and Smith, S. M. (2012) Fsl. Neuroimage, 62, 782–790
CrossRef Google scholar
[21]
Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.-C., Pujol, S., Bauer, C., Jennings, D., Fennessy, F., Sonka, M., (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging, 30, 1323–1341
CrossRef Google scholar
[22]
Rosset, A., Spadola, L. and Ratib, O. (2004) OsiriX: an open-source software for navigating in multidimensional DICOM images. J. Digit. Imaging, 17, 205–216
CrossRef Google scholar
[23]
Friston, K. J. (1995) Commentary and opinion: II. Statistical parametric mapping: ontology and current issues. J. Cereb. Blood Flow Metab., 15, 361–370
CrossRef Google scholar
[24]
Filippi, M., Horsfield, M. A., Adèr, H. J., Barkhof, F., Bruzzi, P., Evans, A., Frank, J. A., Grossman, R. I., McFarland, H. F., Molyneux, P., (1998) Guidelines for using quantitative measures of brain magnetic resonance imaging abnormalities in monitoring the treatment of multiple sclerosis. Ann. Neurol., 43, 499–506
CrossRef Google scholar
[25]
Netsch, T. and van Muiswinkel, A. (2004) Quantitative evaluation of image-based distortion correction in diffusion tensor imaging. IEEE Trans. Med. Imaging, 23, 789–798
CrossRef Google scholar
[26]
Hutton, C., Bork, A., Josephs, O., Deichmann, R., Ashburner, J. and Turner, R. (2002) Image distortion correction in fMRI: A quantitative evaluation. Neuroimage, 16, 217–240
CrossRef Google scholar
[27]
Gallardo-Estrella, L.,Lynch, D.A.,Prokop, M., Stinson, D., Zach, J.,Judy, P.F., van Ginneken, B., van Rikxoort, E. M. (2015) Normalizing computed tomography data reconstructed with different filter kernels: effect on emphysema quantification. Eur. Radiol., 26, 478–486
[28]
Fahey, F. H., Kinahan, P. E., Doot, R. K., Kocak, M., Thurston, H. and Poussaint, T. Y. (2010) Variability in PET quantitation within a multicenter consortium. Med. Phys., 37, 3660–3666
CrossRef Google scholar
[29]
Snook, L., Plewes, C. and Beaulieu, C. (2007) Voxel based versus region of interest analysis in diffusion tensor imaging of neurodevelopment. Neuroimage, 34, 243–252
CrossRef Google scholar
[30]
Poldrack, R. A. (2007) Region of interest analysis for fMRI. Soc. Cogn. Affect. Neurosci., 2, 67–70
CrossRef Google scholar
[31]
Park, H. J., Kubicki, M., Shenton, M. E., Guimond, A., McCarley, R. W., Maier, S. E., Kikinis, R., Jolesz, F. A., Westin, C.-F. (2003) Spatial normalization of diffusion tensor MRI using multiple channels. Neuroimage, 20, 1995–2009
CrossRef Google scholar
[32]
Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., Watkins, K. E., Ciccarelli, O., Cader, M. Z., Matthews, P. M., (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage, 31, 1487–1505
CrossRef Google scholar
[33]
Buckler, A. J., Bresolin, L., Dunnick, N. R. and Sullivan, D. C. (2011) A collaborative enterprise for multi-stakeholder participation in the advancement of quantitative imaging. Radiology, 258, 906–914
CrossRef Google scholar
[34]
Kumar, V., Gu, Y., Basu, S., Berglund, A., Eschrich, S. A., Schabath, M. B., Forster, K., Aerts, H. J. W. L., Dekker, A., Fenstermacher, D., (2012) Radiomics: the process and the challenges. Magn. Reson. Imaging, 30, 1234–1248
CrossRef Google scholar
[35]
Aerts, H. J., Velazquez, E.R., Leijenaar, R.T., Parmar, C., Grossmann, P., Carvalho, S., Bussink, J., Monshouwer, R., Haibe-Kains, B., Rietveld, D. (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun., 5, 4006
[36]
Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., van Stiphout, R. G. P. M., Granton, P., Zegers, C. M. L., Gillies, R., Boellard, R., Dekker, A., (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur. J. Cancer, 48, 441–446
CrossRef Google scholar
[37]
Medland, S. E., Jahanshad, N., Neale, B. M. and Thompson, P. M. (2014) Whole-genome analyses of whole-brain data: working within an expanded search space. Nat. Neurosci., 17, 791–800
CrossRef Google scholar
[38]
Colen, R., Foster, I., Gatenby, R., Giger, M. E., Gillies, R.,Gutman, D.,Heller, M., Jain, R., Madabhushi, A., Madhavan, S., (2014) NCI Workshop Report: Clinical and computational requirements for correlating imaging phenotypes with genomics signatures. Transl. Oncol., 7, 556–569
CrossRef Google scholar
[39]
Thompson, P. M., Stein, J. L., Medland, S. E., Hibar, D. P., Vasquez. A. A., Renteria, M. E., Toro, R., Jahanshad, N., Schumann, G., Franke, B. (2014) large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav., 8, 153–182
[40]
Jack, C. R. Jr., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., Borowski, B., Britson, P. J., L Whitwell, J., Ward, C., (2008) The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods. J. Magn. Reson. Imaging, 27, 685–691
CrossRef Google scholar
[41]
Van Essen, D. C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T. E. J., Bucholz, R., Chang, A., Chen, L., Corbetta, M., Curtiss, S. W., (2012) The Human Connectome Project: a data acquisition perspective. Neuroimage, 62, 2222–2231
CrossRef Google scholar
[42]
van Erp, T. G. M., Cannon, T. D., Tran, H. L., Wobbekind, A. D., Huttunen, M., Lonnqvist, J., Kaprio, J., Salonen, O., Valanne, L., Poutanen, V. -P. (2004) Genetic influences on human brain morphology.In Biomedical Imaging: Nano to Macro, IEEE International Symposium, 583–586
[43]
McIntosh, A., Deary, I. and Porteous, D. J. (2014) Two-back makes step forward in brain imaging genomics. Neuron, 81, 959–961
CrossRef Google scholar
[44]
Saykin, A. J., Shen, L., Foroud, T. M., Potkin, S. G., Swaminathan, S., Kim, S., Risacher, S. L., Nho, K., Huentelman, M. J., Craig, D. W., (2010) Alzheimer's Disease Neuroimaging Initiative biomarkers as quantitative phenotypes: Genetics core aims, progress, and plans. Alzheimers Dement., 6, 265–273
CrossRef Google scholar
[45]
Stein, J. L., Medland, S. E., Vasquez, A. A., Hibar, D. P., Senstad, R. E., Winkler, A. M., Toro, R., Appel, K., Bartecek, R., Bergmann, Ø., (2012) Identification of common variants associated with human hippocampal and intracranial volumes. Nat. Genet., 44, 552–561
CrossRef Google scholar
[46]
Kochunov, P., Glahn, D. C., Nichols, T. E., Winkler, A. M., Hong, E. L., Holcomb, H. H., Stein, J. L., Thompson, P. M., Curran, J. E., Carless, M. A., (2011) Genetic analysis of cortical thickness and fractional anisotropy of water diffusion in the brain. Front. Neurosci., 5, 120
CrossRef Google scholar
[47]
Hibar, D. P., Stein, J. L., Renteria, M. E., Arias-Vasquez, A., Desrivières, S., Jahanshad, N., Toro, R., Wittfeld, K., Abramovic, L., Andersson, M., (2015) Common genetic variants influence human subcortical brain structures. Nature, 520, 224–229
CrossRef Google scholar
[48]
Sprooten, E., Fleming, K. M., Thomson, P. A., Bastin, M. E., Whalley, H. C., Hall, J., Sussmann, J. E., McKirdy, J., Blackwood, D., Lawrie, S. M., (2013) White matter integrity as an intermediate phenotype: Exploratory genome-wide association analysis in individuals at high risk of bipolar disorder. Psychiatry Res., 206, 223–231
CrossRef Google scholar
[49]
Hariri, A. R. and Weinberger, D. R. (2003) Imaging genomics. Br. Med. Bull., 65, 259–270
CrossRef Google scholar
[50]
van den Heuvel, M. P., van Soelen, I. L. C., Stam, C. J., Kahn, R. S.,Boomsma, D. I. and Hulshoff Pol, H. E. (2013) Genetic control of functional brain network efficiency in children. Eur. Neuropsychopharmacol., 23, 19–23
CrossRef Google scholar
[51]
Kochunov, P., Jahanshad, N., Marcus, D., Winkler, A., Sprooten, E., Nichols, T. E., Wright, S. N., Hong, L. E., Patel, B., Behrens, T., (2015) Heritability of fractional anisotropy in human white matter: a comparison of Human Connectome Project and ENIGMA-DTI data. Neuroimage, 111, 300–311
CrossRef Google scholar
[52]
Ramanan, V. K., Risacher, S. L., Nho, K., Kim, S., Shen, L., McDonald, B. C., Yoder, K. K., Hutchins, G. D., West, J. D., Tallman, E. F., (2015) GWAS of longitudinal amyloid accumulation on 18F-florbetapir PET in Alzheimer’s disease implicates microglial activation gene IL1RAP. Brain, 138, 3076–3088
CrossRef Google scholar
[53]
Jahanshad, N., Kohannim, O., Toga, A. W., McMahon, K. L., de Zubicaray, G. I., Hansell, N. K., Montgomery, G.W., Martin , N.G., Wright, M. J.,Thompson, P.M. (2012) Diffusion Imaging Protocol Effects on Genetic Associations. IN Proc. IEEE Int. Symp. Biomed Imaging, 944–947
[54]
Nair, V. S., Gevaert, O., Davidzon, G., Napel, S., Graves, E. E., Hoang, C. D., Shrager, J. B., Quon, A., Rubin, D. L. and Plevritis, S. K. (2012) Prognostic PET 18F-FDG uptake imaging features are associated with major oncogenomic alterations in patients with resected non-small cell lung cancer. Cancer Res., 72, 3725–3734
CrossRef Google scholar
[55]
Jahanshad, N., Kochunov, P. V., Sprooten, E., Mandl, R. C., Nichols, T. E., Almasy, L., Blangero, J., Brouwer, R. M., Curran, J. E., de Zubicaray, G. I., (2013) Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: a pilot project of the ENIGMA-DTI working group. Neuroimage, 81, 455–469
CrossRef Google scholar
[56]
Thomason, M. E. and Thompson, P. M. (2011) Diffusion imaging, white matter, and psychopathology. Annu. Rev. Clin. Psychol., 7, 63–85
CrossRef Google scholar
[57]
Greaves, M. and Maley, C. C. (2012) Clonal evolution in cancer. Nature, 481, 306–313
CrossRef Google scholar
[58]
Chowdhury, R., Ganeshan, B., Irshad, S., Lawler, K., Eisenblätter, M.,Milewicz, H., Rodriguez-Justo, M., Miles, K., Ellis, P., Groves, A., (2014) The use of molecular imaging combined with genomic techniques to understand the heterogeneity in cancer metastasis. Br. J. Radiol., 87, 20140065
CrossRef Google scholar
[59]
Yamamoto, S., Maki, D. D., Korn, R. L. and Kuo, M. D. (2012) Radiogenomic analysis of breast cancer using MRI: a preliminary study to define the landscape. AJR Am. J. Roentgenol., 199, 654–663
CrossRef Google scholar
[60]
Zinn, P. O., Majadan, B., Sathyan, P., Singh, S. K., Majumder, S., Jolesz, F. A. and Colen, R. R. (2011) Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS One, 6, e25451
CrossRef Google scholar
[61]
Karlo, C. A., Di Paolo, P. L., Chaim, J., Hakimi, A. A., Ostrovnaya, I., Russo, P., Hricak, H., Motzer, R., Hsieh, J. J. and Akin, O. (2014) Radiogenomics of clear cell renal cell carcinoma: associations between CT imaging features and mutations. Radiology, 270, 464–471
CrossRef Google scholar
[62]
Wang, Z., Gerstein, M. and Snyder, M. (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet., 10, 57–63
CrossRef Google scholar
[63]
Dove, A. (1999) Proteomics: translating genomics into products? Nat. Biotechnol., 17, 233–236
CrossRef Google scholar
[64]
Smaczniak, C., Li, N., Boeren, S., America, T., van Dongen, W.,Goerdayal, S. S., de Vries, S., Angenent, G. C. and Kaufmann, K. (2012) Proteomics-based identification of low-abundance signaling and regulatory protein complexes in native plant tissues. Nat. Protoc., 7, 2144–2158
CrossRef Google scholar
[65]
Fiehn, O. (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol. Biol., 48, 155–171
CrossRef Google scholar
[66]
Hitzemann, R., Bottomly, D., Darakjian, P., Walter, N., Iancu, O.,Searles, R., Wilmot, B. and McWeeney, S. (2013) Genes, behavior and next-generation RNA sequencing. Genes Brain Behav., 12, 1–12
CrossRef Google scholar
[67]
Steger, D., Berry, D., Haider, S., Horn, M., Wagner, M., Stocker, R. and Loy, A. (2011) Systematic spatial bias in DNA microarray hybridization is caused by probe spot position-dependent variability in lateral diffusion. PLoS One, 6, e23727
CrossRef Google scholar
[68]
Hartl, D. L. and Ruvolo, M. (2012) Genetics : analysis of genes and genomes. 8th ed. Burlington: Jones & Bartlett Learning
[69]
Koltai, H. and Weingarten-Baror, C. (2008) Specificity of DNA microarray hybridization: characterization, effectors and approaches for data correction. Nucleic Acids Res., 36, 2395–2405
CrossRef Google scholar
[70]
Barry, W. T., Kernagis, D. N., Dressman, H. K., Griffis, R. J., Hunter, J. D., Olson, J. A., Marks, J. R., Ginsburg, G. S., Marcom, P. K., Nevins, J. R., (2010) Intratumor heterogeneity and precision of microarray-based predictors of breast cancer biology and clinical outcome. J. Clin. Oncol., 28, 2198–2206
CrossRef Google scholar
[71]
Sugano, S. (2009) Introduction: next-generation DNA sequencing and bioinformatics. Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme, 54, 1233–1237
[72]
Coppola, G. (2014) The OMICs : applications in neuroscience. New York: Oxford University Press
[73]
Rapaport, F., Khanin, R.,Liang, Y., Pirun, M., Krek, A., Zumbo, P.,Mason, C. E., Socci, N. D. and Betel, D. (2013) Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol., 14, R95
CrossRef Google scholar
[74]
Lu, Z. X., Jiang, P. and Xing, Y. (2012) Genetic variation of pre-mRNA alternative splicing in human populations. Wiley Interdiscip. Rev. RNA, 3, 581–592
CrossRef Google scholar
[75]
Liu, S. L. and Cheng, C. H. (2013) Alternative RNA splicing and cancer. Wiley Interdiscip. Rev. RNA, 4, 547–566
CrossRef Google scholar
[76]
Damodaran, S., Berger, M. F. and Roychowdhury, S. (2015) Clinical tumor sequencing: opportunities and challenges for precision cancer medicine. Am. Soc. Clin. Oncol. Educ. Book, 35, e175–e182
CrossRef Google scholar
[77]
Van Keuren-Jensen, K., Keats, J. J. and Craig, D. W. (2014) Bringing RNA-seq closer to the clinic. Nat. Biotechnol., 32, 884–885
CrossRef Google scholar
[78]
Gonzalez-Angulo, A. M., Hennessy, B. T. and Mills, G. B. (2010) Future of personalized medicine in oncology: a systems biology approach. J. Clin. Oncol., 28, 2777–2783
CrossRef Google scholar
[79]
Prior, F. W., Clark, K., Commean, P., Freymann, J., Jaffe, C., Kirby, J., Moore, S., Smith, K., Tarbox, L., Vendt, B. (2013) TCIA: An information resource to enable open science. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2013, 1282–1285
[80]
Gutman, D. A., Cooper, L. A. D., Hwang, S. N., Holder, C. A., Gao, J. J., Aurora, T. D., Dunn, W. D., Jr, Scarpace, L., Mikkelsen, T., Jain, R., (2013) MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology, 267, 560–569
CrossRef Google scholar
[81]
Zhang, B. and Horvath, S. (2005) Ageneral framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol., 4, 10.2202/1544-6115.1128
[82]
Patel, A. P., Tirosh, I., Trombetta, J. J., Shalek, A. K., Gillespie, S. M., Wakimoto, H., Cahill, D. P., Nahed, B. V., Curry, W. T., Martuza, R. L., (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science, 344, 1396–1401
CrossRef Google scholar

ACKNOWLEDGEMENTS

This study is supported by National Institutes of Health grants (R01GM105431 and R01NS076631 to Y. X.; R01CA157553 to W. H. and A. B.). Y. X. is supported by an Alfred Sloan Research Fellowship. A. K. is supported by NIH-NCI Biomedical Big Data Training Program at UCLA (T32CA201160).
The authors Amal Katrib, William Hsu, Alex Bui and Yi Xing declare that they have no conflict of interests.
This article does not contain any studies with human or animal subjects performed by any of the authors.
Funding
 

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1018 KB)

Accesses

Citations

Detail

Sections
Recommended

/