“RADIOTRANSCRIPTOMICS”: A synergy of imaging and transcriptomics in clinical assessment
Amal Katrib, William Hsu, Alex Bui, Yi Xing
“RADIOTRANSCRIPTOMICS”: A synergy of imaging and transcriptomics in clinical assessment
Recent advances in quantitative imaging and “omics” technology have generated a wealth of mineable biological “big data”. With the push towards a P4 “predictive, preventive, personalized, and participatory” approach to medicine, researchers began integrating complementary tools to further tune existing diagnostic and therapeutic models. The field of radiogenomics has long pioneered such multidisciplinary investigations in neuroscience and oncology, correlating genotypic and phenotypic signatures to study structural and functional changes in relation to altered molecular behavior. Given the innate dynamic nature of complex disorders and the role of environmental and epigenetic factors in pathogenesis, the transcriptome can further elucidate serial modifications undetected at the genome level. We therefore propose “radiotranscriptomics” as a new member of the P4 medicine initiative, combining transcriptome information, including gene expression and isoform variation, and quantitative image annotations.
quantitative imaging / transcriptomics / RNA-seq / genomics / image genomics / radiogenomics / systems biology / precision medicine
[1] |
Loscalzo, J. and Barabasi, A. L. (2011) Systems biology and the future of medicine. Wiley Interdiscip. Rev. Syst. Biol. Med., 3, 619–627
CrossRef
Google scholar
|
[2] |
Trewavas, A. (2006) A Brief History of Systems Biology: "Every object that biology studies is a system of systems." Francois Jacob (1974). Plant Cell Online, 18, 2420–2430
CrossRef
Google scholar
|
[3] |
Jaffe, C. C. (2012) Imaging and genomics: is there a synergy? Radiology, 264, 329–331
CrossRef
Google scholar
|
[4] |
Lander, E. S. (1996) The new genomics: global views of biology. Science, 274, 536–539
CrossRef
Google scholar
|
[5] |
Pritchard, J. K. and Cox, N. J. (2002) The allelic architecture of human disease genes: common disease-common variant...or not? Hum. Mol. Genet., 11, 2417–2423
CrossRef
Google scholar
|
[6] |
Strachan, T., Read, A. P. and Strachan, T. (2011) Human Molecular Genetics. 4th ed., New York: Garland Science
|
[7] |
Bush, W. S. and Moore, J. H. (2012) Chapter 11: Genome-Wide Association Studies. PLoS Comput. Biol., 8, e1002822
CrossRef
Google scholar
|
[8] |
Moody, G. (2004) Digital code of life: how bioinformatics is revolutionizing science, medicine, and business. Hoboken: Wiley
|
[9] |
Visscher, P. M., Brown, M. A., McCarthy, M. I. and Yang, J. (2012) Five years of GWAS discovery. Am. J. Hum. Genet., 90, 7–24
CrossRef
Google scholar
|
[10] |
Li, J., Horstman, B. and Chen, Y. (2011) Detecting epistatic effects in association studies at a genomic level based on an ensemble approach. Bioinformatics, 27, i222–i229
CrossRef
Google scholar
|
[11] |
Iles, M. M. (2008) What can genome-wide association studies tell us about the genetics of common disease? PLoS Genet., 4, e33
CrossRef
Google scholar
|
[12] |
George, A. L. Jr. (2008) Appraising the value of genomic association studies. J. Am. Soc. Nephrol., 19, 1840–1842
CrossRef
Google scholar
|
[13] |
Gibson, G. (2012) Rare and common variants: twenty arguments. Nat. Rev. Genet., 13, 135–145
CrossRef
Google scholar
|
[14] |
Bushberg, J. T. (2012) The essential physics of medical imaging. 3rd ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins
|
[15] |
Martí-Bonmatí, L., Sopena, R., Bartumeus, P. and Sopena, P. (2010) Multimodality imaging techniques. Contrast Media Mol. Imaging, 5, 180–189
CrossRef
Google scholar
|
[16] |
Padhani, A. R. and Miles, K. A. (2010) Multiparametric imaging of tumor response to therapy. Radiology, 256, 348–364
CrossRef
Google scholar
|
[17] |
Jenkinson, M., Bannister, P., Brady, M. and Smith, S. (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17, 825–841
CrossRef
Google scholar
|
[18] |
Woods, R. P., Mazziotta, J. C. and Cherry, S. R. (1993) MRI-PET registration with automated algorithm. J. Comput. Assist. Tomogr., 17, 536–546
CrossRef
Google scholar
|
[19] |
Martin, K., Ibáñez, L., Avila, L., Barré, S. and Kaspersen, J. H. (2005) Integrating segmentation methods from the Insight Toolkit into a visualization application. Med. Image Anal., 9, 579–593
CrossRef
Google scholar
|
[20] |
Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. and Smith, S. M. (2012) Fsl. Neuroimage, 62, 782–790
CrossRef
Google scholar
|
[21] |
Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.-C., Pujol, S., Bauer, C., Jennings, D., Fennessy, F., Sonka, M.,
CrossRef
Google scholar
|
[22] |
Rosset, A., Spadola, L. and Ratib, O. (2004) OsiriX: an open-source software for navigating in multidimensional DICOM images. J. Digit. Imaging, 17, 205–216
CrossRef
Google scholar
|
[23] |
Friston, K. J. (1995) Commentary and opinion: II. Statistical parametric mapping: ontology and current issues. J. Cereb. Blood Flow Metab., 15, 361–370
CrossRef
Google scholar
|
[24] |
Filippi, M., Horsfield, M. A., Adèr, H. J., Barkhof, F., Bruzzi, P., Evans, A., Frank, J. A., Grossman, R. I., McFarland, H. F., Molyneux, P.,
CrossRef
Google scholar
|
[25] |
Netsch, T. and van Muiswinkel, A. (2004) Quantitative evaluation of image-based distortion correction in diffusion tensor imaging. IEEE Trans. Med. Imaging, 23, 789–798
CrossRef
Google scholar
|
[26] |
Hutton, C., Bork, A., Josephs, O., Deichmann, R., Ashburner, J. and Turner, R. (2002) Image distortion correction in fMRI: A quantitative evaluation. Neuroimage, 16, 217–240
CrossRef
Google scholar
|
[27] |
Gallardo-Estrella, L.,Lynch, D.A.,Prokop, M., Stinson, D., Zach, J.,Judy, P.F., van Ginneken, B., van Rikxoort, E. M. (2015) Normalizing computed tomography data reconstructed with different filter kernels: effect on emphysema quantification. Eur. Radiol., 26, 478–486
|
[28] |
Fahey, F. H., Kinahan, P. E., Doot, R. K., Kocak, M., Thurston, H. and Poussaint, T. Y. (2010) Variability in PET quantitation within a multicenter consortium. Med. Phys., 37, 3660–3666
CrossRef
Google scholar
|
[29] |
Snook, L., Plewes, C. and Beaulieu, C. (2007) Voxel based versus region of interest analysis in diffusion tensor imaging of neurodevelopment. Neuroimage, 34, 243–252
CrossRef
Google scholar
|
[30] |
Poldrack, R. A. (2007) Region of interest analysis for fMRI. Soc. Cogn. Affect. Neurosci., 2, 67–70
CrossRef
Google scholar
|
[31] |
Park, H. J., Kubicki, M., Shenton, M. E., Guimond, A., McCarley, R. W., Maier, S. E., Kikinis, R., Jolesz, F. A., Westin, C.-F. (2003) Spatial normalization of diffusion tensor MRI using multiple channels. Neuroimage, 20, 1995–2009
CrossRef
Google scholar
|
[32] |
Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., Watkins, K. E., Ciccarelli, O., Cader, M. Z., Matthews, P. M.,
CrossRef
Google scholar
|
[33] |
Buckler, A. J., Bresolin, L., Dunnick, N. R. and Sullivan, D. C. (2011) A collaborative enterprise for multi-stakeholder participation in the advancement of quantitative imaging. Radiology, 258, 906–914
CrossRef
Google scholar
|
[34] |
Kumar, V., Gu, Y., Basu, S., Berglund, A., Eschrich, S. A., Schabath, M. B., Forster, K., Aerts, H. J. W. L., Dekker, A., Fenstermacher, D.,
CrossRef
Google scholar
|
[35] |
Aerts, H. J., Velazquez, E.R., Leijenaar, R.T., Parmar, C., Grossmann, P., Carvalho, S., Bussink, J., Monshouwer, R., Haibe-Kains, B., Rietveld, D. (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun., 5, 4006
|
[36] |
Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., van Stiphout, R. G. P. M., Granton, P., Zegers, C. M. L., Gillies, R., Boellard, R., Dekker, A.,
CrossRef
Google scholar
|
[37] |
Medland, S. E., Jahanshad, N., Neale, B. M. and Thompson, P. M. (2014) Whole-genome analyses of whole-brain data: working within an expanded search space. Nat. Neurosci., 17, 791–800
CrossRef
Google scholar
|
[38] |
Colen, R., Foster, I., Gatenby, R., Giger, M. E., Gillies, R.,Gutman, D.,Heller, M., Jain, R., Madabhushi, A., Madhavan, S.,
CrossRef
Google scholar
|
[39] |
Thompson, P. M., Stein, J. L., Medland, S. E., Hibar, D. P., Vasquez. A. A., Renteria, M. E., Toro, R., Jahanshad, N., Schumann, G., Franke, B.
|
[40] |
Jack, C. R. Jr., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., Borowski, B., Britson, P. J., L Whitwell, J., Ward, C.,
CrossRef
Google scholar
|
[41] |
Van Essen, D. C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T. E. J., Bucholz, R., Chang, A., Chen, L., Corbetta, M., Curtiss, S. W.,
CrossRef
Google scholar
|
[42] |
van Erp, T. G. M., Cannon, T. D., Tran, H. L., Wobbekind, A. D., Huttunen, M., Lonnqvist, J., Kaprio, J., Salonen, O., Valanne, L., Poutanen, V. -P. (2004) Genetic influences on human brain morphology.In Biomedical Imaging: Nano to Macro, IEEE International Symposium, 583–586
|
[43] |
McIntosh, A., Deary, I. and Porteous, D. J. (2014) Two-back makes step forward in brain imaging genomics. Neuron, 81, 959–961
CrossRef
Google scholar
|
[44] |
Saykin, A. J., Shen, L., Foroud, T. M., Potkin, S. G., Swaminathan, S., Kim, S., Risacher, S. L., Nho, K., Huentelman, M. J., Craig, D. W.,
CrossRef
Google scholar
|
[45] |
Stein, J. L., Medland, S. E., Vasquez, A. A., Hibar, D. P., Senstad, R. E., Winkler, A. M., Toro, R., Appel, K., Bartecek, R., Bergmann, Ø.,
CrossRef
Google scholar
|
[46] |
Kochunov, P., Glahn, D. C., Nichols, T. E., Winkler, A. M., Hong, E. L., Holcomb, H. H., Stein, J. L., Thompson, P. M., Curran, J. E., Carless, M. A.,
CrossRef
Google scholar
|
[47] |
Hibar, D. P., Stein, J. L., Renteria, M. E., Arias-Vasquez, A., Desrivières, S., Jahanshad, N., Toro, R., Wittfeld, K., Abramovic, L., Andersson, M.,
CrossRef
Google scholar
|
[48] |
Sprooten, E., Fleming, K. M., Thomson, P. A., Bastin, M. E., Whalley, H. C., Hall, J., Sussmann, J. E., McKirdy, J., Blackwood, D., Lawrie, S. M.,
CrossRef
Google scholar
|
[49] |
Hariri, A. R. and Weinberger, D. R. (2003) Imaging genomics. Br. Med. Bull., 65, 259–270
CrossRef
Google scholar
|
[50] |
van den Heuvel, M. P., van Soelen, I. L. C., Stam, C. J., Kahn, R. S.,Boomsma, D. I. and Hulshoff Pol, H. E. (2013) Genetic control of functional brain network efficiency in children. Eur. Neuropsychopharmacol., 23, 19–23
CrossRef
Google scholar
|
[51] |
Kochunov, P., Jahanshad, N., Marcus, D., Winkler, A., Sprooten, E., Nichols, T. E., Wright, S. N., Hong, L. E., Patel, B., Behrens, T.,
CrossRef
Google scholar
|
[52] |
Ramanan, V. K., Risacher, S. L., Nho, K., Kim, S., Shen, L., McDonald, B. C., Yoder, K. K., Hutchins, G. D., West, J. D., Tallman, E. F.,
CrossRef
Google scholar
|
[53] |
Jahanshad, N., Kohannim, O., Toga, A. W., McMahon, K. L., de Zubicaray, G. I., Hansell, N. K., Montgomery, G.W., Martin , N.G., Wright, M. J.,Thompson, P.M. (2012) Diffusion Imaging Protocol Effects on Genetic Associations. IN Proc. IEEE Int. Symp. Biomed Imaging, 944–947
|
[54] |
Nair, V. S., Gevaert, O., Davidzon, G., Napel, S., Graves, E. E., Hoang, C. D., Shrager, J. B., Quon, A., Rubin, D. L. and Plevritis, S. K. (2012) Prognostic PET 18F-FDG uptake imaging features are associated with major oncogenomic alterations in patients with resected non-small cell lung cancer. Cancer Res., 72, 3725–3734
CrossRef
Google scholar
|
[55] |
Jahanshad, N., Kochunov, P. V., Sprooten, E., Mandl, R. C., Nichols, T. E., Almasy, L., Blangero, J., Brouwer, R. M., Curran, J. E., de Zubicaray, G. I.,
CrossRef
Google scholar
|
[56] |
Thomason, M. E. and Thompson, P. M. (2011) Diffusion imaging, white matter, and psychopathology. Annu. Rev. Clin. Psychol., 7, 63–85
CrossRef
Google scholar
|
[57] |
Greaves, M. and Maley, C. C. (2012) Clonal evolution in cancer. Nature, 481, 306–313
CrossRef
Google scholar
|
[58] |
Chowdhury, R., Ganeshan, B., Irshad, S., Lawler, K., Eisenblätter, M.,Milewicz, H., Rodriguez-Justo, M., Miles, K., Ellis, P., Groves, A.,
CrossRef
Google scholar
|
[59] |
Yamamoto, S., Maki, D. D., Korn, R. L. and Kuo, M. D. (2012) Radiogenomic analysis of breast cancer using MRI: a preliminary study to define the landscape. AJR Am. J. Roentgenol., 199, 654–663
CrossRef
Google scholar
|
[60] |
Zinn, P. O., Majadan, B., Sathyan, P., Singh, S. K., Majumder, S., Jolesz, F. A. and Colen, R. R. (2011) Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS One, 6, e25451
CrossRef
Google scholar
|
[61] |
Karlo, C. A., Di Paolo, P. L., Chaim, J., Hakimi, A. A., Ostrovnaya, I., Russo, P., Hricak, H., Motzer, R., Hsieh, J. J. and Akin, O. (2014) Radiogenomics of clear cell renal cell carcinoma: associations between CT imaging features and mutations. Radiology, 270, 464–471
CrossRef
Google scholar
|
[62] |
Wang, Z., Gerstein, M. and Snyder, M. (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet., 10, 57–63
CrossRef
Google scholar
|
[63] |
Dove, A. (1999) Proteomics: translating genomics into products? Nat. Biotechnol., 17, 233–236
CrossRef
Google scholar
|
[64] |
Smaczniak, C., Li, N., Boeren, S., America, T., van Dongen, W.,Goerdayal, S. S., de Vries, S., Angenent, G. C. and Kaufmann, K. (2012) Proteomics-based identification of low-abundance signaling and regulatory protein complexes in native plant tissues. Nat. Protoc., 7, 2144–2158
CrossRef
Google scholar
|
[65] |
Fiehn, O. (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol. Biol., 48, 155–171
CrossRef
Google scholar
|
[66] |
Hitzemann, R., Bottomly, D., Darakjian, P., Walter, N., Iancu, O.,Searles, R., Wilmot, B. and McWeeney, S. (2013) Genes, behavior and next-generation RNA sequencing. Genes Brain Behav., 12, 1–12
CrossRef
Google scholar
|
[67] |
Steger, D., Berry, D., Haider, S., Horn, M., Wagner, M., Stocker, R. and Loy, A. (2011) Systematic spatial bias in DNA microarray hybridization is caused by probe spot position-dependent variability in lateral diffusion. PLoS One, 6, e23727
CrossRef
Google scholar
|
[68] |
Hartl, D. L. and Ruvolo, M. (2012) Genetics : analysis of genes and genomes. 8th ed. Burlington: Jones & Bartlett Learning
|
[69] |
Koltai, H. and Weingarten-Baror, C. (2008) Specificity of DNA microarray hybridization: characterization, effectors and approaches for data correction. Nucleic Acids Res., 36, 2395–2405
CrossRef
Google scholar
|
[70] |
Barry, W. T., Kernagis, D. N., Dressman, H. K., Griffis, R. J., Hunter, J. D., Olson, J. A., Marks, J. R., Ginsburg, G. S., Marcom, P. K., Nevins, J. R.,
CrossRef
Google scholar
|
[71] |
Sugano, S. (2009) Introduction: next-generation DNA sequencing and bioinformatics. Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme, 54, 1233–1237
|
[72] |
Coppola, G. (2014) The OMICs : applications in neuroscience. New York: Oxford University Press
|
[73] |
Rapaport, F., Khanin, R.,Liang, Y., Pirun, M., Krek, A., Zumbo, P.,Mason, C. E., Socci, N. D. and Betel, D. (2013) Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol., 14, R95
CrossRef
Google scholar
|
[74] |
Lu, Z. X., Jiang, P. and Xing, Y. (2012) Genetic variation of pre-mRNA alternative splicing in human populations. Wiley Interdiscip. Rev. RNA, 3, 581–592
CrossRef
Google scholar
|
[75] |
Liu, S. L. and Cheng, C. H. (2013) Alternative RNA splicing and cancer. Wiley Interdiscip. Rev. RNA, 4, 547–566
CrossRef
Google scholar
|
[76] |
Damodaran, S., Berger, M. F. and Roychowdhury, S. (2015) Clinical tumor sequencing: opportunities and challenges for precision cancer medicine. Am. Soc. Clin. Oncol. Educ. Book, 35, e175–e182
CrossRef
Google scholar
|
[77] |
Van Keuren-Jensen, K., Keats, J. J. and Craig, D. W. (2014) Bringing RNA-seq closer to the clinic. Nat. Biotechnol., 32, 884–885
CrossRef
Google scholar
|
[78] |
Gonzalez-Angulo, A. M., Hennessy, B. T. and Mills, G. B. (2010) Future of personalized medicine in oncology: a systems biology approach. J. Clin. Oncol., 28, 2777–2783
CrossRef
Google scholar
|
[79] |
Prior, F. W., Clark, K., Commean, P., Freymann, J., Jaffe, C., Kirby, J., Moore, S., Smith, K., Tarbox, L., Vendt, B.
|
[80] |
Gutman, D. A., Cooper, L. A. D., Hwang, S. N., Holder, C. A., Gao, J. J., Aurora, T. D., Dunn, W. D., Jr, Scarpace, L., Mikkelsen, T., Jain, R.,
CrossRef
Google scholar
|
[81] |
Zhang, B. and Horvath, S. (2005) Ageneral framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol., 4, 10.2202/1544-6115.1128
|
[82] |
Patel, A. P., Tirosh, I., Trombetta, J. J., Shalek, A. K., Gillespie, S. M., Wakimoto, H., Cahill, D. P., Nahed, B. V., Curry, W. T., Martuza, R. L.,
CrossRef
Google scholar
|
/
〈 | 〉 |