“RADIOTRANSCRIPTOMICS”: A synergy of imaging and transcriptomics in clinical assessment

Amal Katrib , William Hsu , Alex Bui , Yi Xing

Quant. Biol. ›› 2016, Vol. 4 ›› Issue (1) : 1 -12.

PDF (1018KB)
Quant. Biol. ›› 2016, Vol. 4 ›› Issue (1) : 1 -12. DOI: 10.1007/s40484-016-0061-6

“RADIOTRANSCRIPTOMICS”: A synergy of imaging and transcriptomics in clinical assessment

Author information +
History +
PDF (1018KB)

Abstract

Recent advances in quantitative imaging and “omics” technology have generated a wealth of mineable biological “big data”. With the push towards a P4 “predictive, preventive, personalized, and participatory” approach to medicine, researchers began integrating complementary tools to further tune existing diagnostic and therapeutic models. The field of radiogenomics has long pioneered such multidisciplinary investigations in neuroscience and oncology, correlating genotypic and phenotypic signatures to study structural and functional changes in relation to altered molecular behavior. Given the innate dynamic nature of complex disorders and the role of environmental and epigenetic factors in pathogenesis, the transcriptome can further elucidate serial modifications undetected at the genome level. We therefore propose “radiotranscriptomics” as a new member of the P4 medicine initiative, combining transcriptome information, including gene expression and isoform variation, and quantitative image annotations.

Graphical abstract

Keywords

quantitative imaging / transcriptomics / RNA-seq / genomics / image genomics / radiogenomics / systems biology / precision medicine

Cite this article

Download citation ▾
Amal Katrib, William Hsu, Alex Bui, Yi Xing. “RADIOTRANSCRIPTOMICS”: A synergy of imaging and transcriptomics in clinical assessment. Quant. Biol., 2016, 4(1): 1-12 DOI:10.1007/s40484-016-0061-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Loscalzo, J. and Barabasi, A. L. (2011) Systems biology and the future of medicine. Wiley Interdiscip. Rev. Syst. Biol. Med., 3, 619–627

[2]

Trewavas, A. (2006) A Brief History of Systems Biology: "Every object that biology studies is a system of systems." Francois Jacob (1974). Plant Cell Online, 18, 2420–2430

[3]

Jaffe, C. C. (2012) Imaging and genomics: is there a synergy? Radiology, 264, 329–331

[4]

Lander, E. S. (1996) The new genomics: global views of biology. Science, 274, 536–539

[5]

Pritchard, J. K. and Cox, N. J. (2002) The allelic architecture of human disease genes: common disease-common variant...or not? Hum. Mol. Genet., 11, 2417–2423

[6]

Strachan, T., Read, A. P. and Strachan, T. (2011) Human Molecular Genetics. 4th ed., New York: Garland Science

[7]

Bush, W. S. and Moore, J. H. (2012) Chapter 11: Genome-Wide Association Studies. PLoS Comput. Biol., 8, e1002822

[8]

Moody, G. (2004) Digital code of life: how bioinformatics is revolutionizing science, medicine, and business. Hoboken: Wiley

[9]

Visscher, P. M., Brown, M. A., McCarthy, M. I. and Yang, J. (2012) Five years of GWAS discovery. Am. J. Hum. Genet., 90, 7–24

[10]

Li, J., Horstman, B. and Chen, Y. (2011) Detecting epistatic effects in association studies at a genomic level based on an ensemble approach. Bioinformatics, 27, i222–i229

[11]

Iles, M. M. (2008) What can genome-wide association studies tell us about the genetics of common disease? PLoS Genet., 4, e33

[12]

George, A. L. Jr. (2008) Appraising the value of genomic association studies. J. Am. Soc. Nephrol., 19, 1840–1842

[13]

Gibson, G. (2012) Rare and common variants: twenty arguments. Nat. Rev. Genet., 13, 135–145

[14]

Bushberg, J. T. (2012) The essential physics of medical imaging. 3rd ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins

[15]

Martí-Bonmatí, L., Sopena, R., Bartumeus, P. and Sopena, P. (2010) Multimodality imaging techniques. Contrast Media Mol. Imaging, 5, 180–189

[16]

Padhani, A. R. and Miles, K. A. (2010) Multiparametric imaging of tumor response to therapy. Radiology, 256, 348–364

[17]

Jenkinson, M., Bannister, P., Brady, M. and Smith, S. (2002) Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17, 825–841

[18]

Woods, R. P., Mazziotta, J. C. and Cherry, S. R. (1993) MRI-PET registration with automated algorithm. J. Comput. Assist. Tomogr., 17, 536–546

[19]

Martin, K., Ibáñez, L., Avila, L., Barré, S. and Kaspersen, J. H. (2005) Integrating segmentation methods from the Insight Toolkit into a visualization application. Med. Image Anal., 9, 579–593

[20]

Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. and Smith, S. M. (2012) Fsl. Neuroimage, 62, 782–790

[21]

Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.-C., Pujol, S., Bauer, C., Jennings, D., Fennessy, F., Sonka, M., (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging, 30, 1323–1341

[22]

Rosset, A., Spadola, L. and Ratib, O. (2004) OsiriX: an open-source software for navigating in multidimensional DICOM images. J. Digit. Imaging, 17, 205–216

[23]

Friston, K. J. (1995) Commentary and opinion: II. Statistical parametric mapping: ontology and current issues. J. Cereb. Blood Flow Metab., 15, 361–370

[24]

Filippi, M., Horsfield, M. A., Adèr, H. J., Barkhof, F., Bruzzi, P., Evans, A., Frank, J. A., Grossman, R. I., McFarland, H. F., Molyneux, P., (1998) Guidelines for using quantitative measures of brain magnetic resonance imaging abnormalities in monitoring the treatment of multiple sclerosis. Ann. Neurol., 43, 499–506

[25]

Netsch, T. and van Muiswinkel, A. (2004) Quantitative evaluation of image-based distortion correction in diffusion tensor imaging. IEEE Trans. Med. Imaging, 23, 789–798

[26]

Hutton, C., Bork, A., Josephs, O., Deichmann, R., Ashburner, J. and Turner, R. (2002) Image distortion correction in fMRI: A quantitative evaluation. Neuroimage, 16, 217–240

[27]

Gallardo-Estrella, L.,Lynch, D.A.,Prokop, M., Stinson, D., Zach, J.,Judy, P.F., van Ginneken, B., van Rikxoort, E. M. (2015) Normalizing computed tomography data reconstructed with different filter kernels: effect on emphysema quantification. Eur. Radiol., 26, 478–486

[28]

Fahey, F. H., Kinahan, P. E., Doot, R. K., Kocak, M., Thurston, H. and Poussaint, T. Y. (2010) Variability in PET quantitation within a multicenter consortium. Med. Phys., 37, 3660–3666

[29]

Snook, L., Plewes, C. and Beaulieu, C. (2007) Voxel based versus region of interest analysis in diffusion tensor imaging of neurodevelopment. Neuroimage, 34, 243–252

[30]

Poldrack, R. A. (2007) Region of interest analysis for fMRI. Soc. Cogn. Affect. Neurosci., 2, 67–70

[31]

Park, H. J., Kubicki, M., Shenton, M. E., Guimond, A., McCarley, R. W., Maier, S. E., Kikinis, R., Jolesz, F. A., Westin, C.-F. (2003) Spatial normalization of diffusion tensor MRI using multiple channels. Neuroimage, 20, 1995–2009

[32]

Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., Watkins, K. E., Ciccarelli, O., Cader, M. Z., Matthews, P. M., (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage, 31, 1487–1505

[33]

Buckler, A. J., Bresolin, L., Dunnick, N. R. and Sullivan, D. C. (2011) A collaborative enterprise for multi-stakeholder participation in the advancement of quantitative imaging. Radiology, 258, 906–914

[34]

Kumar, V., Gu, Y., Basu, S., Berglund, A., Eschrich, S. A., Schabath, M. B., Forster, K., Aerts, H. J. W. L., Dekker, A., Fenstermacher, D., (2012) Radiomics: the process and the challenges. Magn. Reson. Imaging, 30, 1234–1248

[35]

Aerts, H. J., Velazquez, E.R., Leijenaar, R.T., Parmar, C., Grossmann, P., Carvalho, S., Bussink, J., Monshouwer, R., Haibe-Kains, B., Rietveld, D. (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun., 5, 4006

[36]

Lambin, P., Rios-Velazquez, E., Leijenaar, R., Carvalho, S., van Stiphout, R. G. P. M., Granton, P., Zegers, C. M. L., Gillies, R., Boellard, R., Dekker, A., (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur. J. Cancer, 48, 441–446

[37]

Medland, S. E., Jahanshad, N., Neale, B. M. and Thompson, P. M. (2014) Whole-genome analyses of whole-brain data: working within an expanded search space. Nat. Neurosci., 17, 791–800

[38]

Colen, R., Foster, I., Gatenby, R., Giger, M. E., Gillies, R.,Gutman, D.,Heller, M., Jain, R., Madabhushi, A., Madhavan, S., (2014) NCI Workshop Report: Clinical and computational requirements for correlating imaging phenotypes with genomics signatures. Transl. Oncol., 7, 556–569

[39]

Thompson, P. M., Stein, J. L., Medland, S. E., Hibar, D. P., Vasquez. A. A., Renteria, M. E., Toro, R., Jahanshad, N., Schumann, G., Franke, B. (2014) large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav., 8, 153–182

[40]

Jack, C. R. Jr., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., Borowski, B., Britson, P. J., L Whitwell, J., Ward, C., (2008) The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods. J. Magn. Reson. Imaging, 27, 685–691

[41]

Van Essen, D. C., Ugurbil, K., Auerbach, E., Barch, D., Behrens, T. E. J., Bucholz, R., Chang, A., Chen, L., Corbetta, M., Curtiss, S. W., (2012) The Human Connectome Project: a data acquisition perspective. Neuroimage, 62, 2222–2231

[42]

van Erp, T. G. M., Cannon, T. D., Tran, H. L., Wobbekind, A. D., Huttunen, M., Lonnqvist, J., Kaprio, J., Salonen, O., Valanne, L., Poutanen, V. -P. (2004) Genetic influences on human brain morphology.In Biomedical Imaging: Nano to Macro, IEEE International Symposium, 583–586

[43]

McIntosh, A., Deary, I. and Porteous, D. J. (2014) Two-back makes step forward in brain imaging genomics. Neuron, 81, 959–961

[44]

Saykin, A. J., Shen, L., Foroud, T. M., Potkin, S. G., Swaminathan, S., Kim, S., Risacher, S. L., Nho, K., Huentelman, M. J., Craig, D. W., (2010) Alzheimer's Disease Neuroimaging Initiative biomarkers as quantitative phenotypes: Genetics core aims, progress, and plans. Alzheimers Dement., 6, 265–273

[45]

Stein, J. L., Medland, S. E., Vasquez, A. A., Hibar, D. P., Senstad, R. E., Winkler, A. M., Toro, R., Appel, K., Bartecek, R., Bergmann, Ø., (2012) Identification of common variants associated with human hippocampal and intracranial volumes. Nat. Genet., 44, 552–561

[46]

Kochunov, P., Glahn, D. C., Nichols, T. E., Winkler, A. M., Hong, E. L., Holcomb, H. H., Stein, J. L., Thompson, P. M., Curran, J. E., Carless, M. A., (2011) Genetic analysis of cortical thickness and fractional anisotropy of water diffusion in the brain. Front. Neurosci., 5, 120

[47]

Hibar, D. P., Stein, J. L., Renteria, M. E., Arias-Vasquez, A., Desrivières, S., Jahanshad, N., Toro, R., Wittfeld, K., Abramovic, L., Andersson, M., (2015) Common genetic variants influence human subcortical brain structures. Nature, 520, 224–229

[48]

Sprooten, E., Fleming, K. M., Thomson, P. A., Bastin, M. E., Whalley, H. C., Hall, J., Sussmann, J. E., McKirdy, J., Blackwood, D., Lawrie, S. M., (2013) White matter integrity as an intermediate phenotype: Exploratory genome-wide association analysis in individuals at high risk of bipolar disorder. Psychiatry Res., 206, 223–231

[49]

Hariri, A. R. and Weinberger, D. R. (2003) Imaging genomics. Br. Med. Bull., 65, 259–270

[50]

van den Heuvel, M. P., van Soelen, I. L. C., Stam, C. J., Kahn, R. S.,Boomsma, D. I. and Hulshoff Pol, H. E. (2013) Genetic control of functional brain network efficiency in children. Eur. Neuropsychopharmacol., 23, 19–23

[51]

Kochunov, P., Jahanshad, N., Marcus, D., Winkler, A., Sprooten, E., Nichols, T. E., Wright, S. N., Hong, L. E., Patel, B., Behrens, T., (2015) Heritability of fractional anisotropy in human white matter: a comparison of Human Connectome Project and ENIGMA-DTI data. Neuroimage, 111, 300–311

[52]

Ramanan, V. K., Risacher, S. L., Nho, K., Kim, S., Shen, L., McDonald, B. C., Yoder, K. K., Hutchins, G. D., West, J. D., Tallman, E. F., (2015) GWAS of longitudinal amyloid accumulation on 18F-florbetapir PET in Alzheimer’s disease implicates microglial activation gene IL1RAP. Brain, 138, 3076–3088

[53]

Jahanshad, N., Kohannim, O., Toga, A. W., McMahon, K. L., de Zubicaray, G. I., Hansell, N. K., Montgomery, G.W., Martin , N.G., Wright, M. J.,Thompson, P.M. (2012) Diffusion Imaging Protocol Effects on Genetic Associations. IN Proc. IEEE Int. Symp. Biomed Imaging, 944–947

[54]

Nair, V. S., Gevaert, O., Davidzon, G., Napel, S., Graves, E. E., Hoang, C. D., Shrager, J. B., Quon, A., Rubin, D. L. and Plevritis, S. K. (2012) Prognostic PET 18F-FDG uptake imaging features are associated with major oncogenomic alterations in patients with resected non-small cell lung cancer. Cancer Res., 72, 3725–3734

[55]

Jahanshad, N., Kochunov, P. V., Sprooten, E., Mandl, R. C., Nichols, T. E., Almasy, L., Blangero, J., Brouwer, R. M., Curran, J. E., de Zubicaray, G. I., (2013) Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: a pilot project of the ENIGMA-DTI working group. Neuroimage, 81, 455–469

[56]

Thomason, M. E. and Thompson, P. M. (2011) Diffusion imaging, white matter, and psychopathology. Annu. Rev. Clin. Psychol., 7, 63–85

[57]

Greaves, M. and Maley, C. C. (2012) Clonal evolution in cancer. Nature, 481, 306–313

[58]

Chowdhury, R., Ganeshan, B., Irshad, S., Lawler, K., Eisenblätter, M.,Milewicz, H., Rodriguez-Justo, M., Miles, K., Ellis, P., Groves, A., (2014) The use of molecular imaging combined with genomic techniques to understand the heterogeneity in cancer metastasis. Br. J. Radiol., 87, 20140065

[59]

Yamamoto, S., Maki, D. D., Korn, R. L. and Kuo, M. D. (2012) Radiogenomic analysis of breast cancer using MRI: a preliminary study to define the landscape. AJR Am. J. Roentgenol., 199, 654–663

[60]

Zinn, P. O., Majadan, B., Sathyan, P., Singh, S. K., Majumder, S., Jolesz, F. A. and Colen, R. R. (2011) Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS One, 6, e25451

[61]

Karlo, C. A., Di Paolo, P. L., Chaim, J., Hakimi, A. A., Ostrovnaya, I., Russo, P., Hricak, H., Motzer, R., Hsieh, J. J. and Akin, O. (2014) Radiogenomics of clear cell renal cell carcinoma: associations between CT imaging features and mutations. Radiology, 270, 464–471

[62]

Wang, Z., Gerstein, M. and Snyder, M. (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet., 10, 57–63

[63]

Dove, A. (1999) Proteomics: translating genomics into products? Nat. Biotechnol., 17, 233–236

[64]

Smaczniak, C., Li, N., Boeren, S., America, T., van Dongen, W.,Goerdayal, S. S., de Vries, S., Angenent, G. C. and Kaufmann, K. (2012) Proteomics-based identification of low-abundance signaling and regulatory protein complexes in native plant tissues. Nat. Protoc., 7, 2144–2158

[65]

Fiehn, O. (2002) Metabolomics—the link between genotypes and phenotypes. Plant Mol. Biol., 48, 155–171

[66]

Hitzemann, R., Bottomly, D., Darakjian, P., Walter, N., Iancu, O.,Searles, R., Wilmot, B. and McWeeney, S. (2013) Genes, behavior and next-generation RNA sequencing. Genes Brain Behav., 12, 1–12

[67]

Steger, D., Berry, D., Haider, S., Horn, M., Wagner, M., Stocker, R. and Loy, A. (2011) Systematic spatial bias in DNA microarray hybridization is caused by probe spot position-dependent variability in lateral diffusion. PLoS One, 6, e23727

[68]

Hartl, D. L. and Ruvolo, M. (2012) Genetics : analysis of genes and genomes. 8th ed. Burlington: Jones & Bartlett Learning

[69]

Koltai, H. and Weingarten-Baror, C. (2008) Specificity of DNA microarray hybridization: characterization, effectors and approaches for data correction. Nucleic Acids Res., 36, 2395–2405

[70]

Barry, W. T., Kernagis, D. N., Dressman, H. K., Griffis, R. J., Hunter, J. D., Olson, J. A., Marks, J. R., Ginsburg, G. S., Marcom, P. K., Nevins, J. R., (2010) Intratumor heterogeneity and precision of microarray-based predictors of breast cancer biology and clinical outcome. J. Clin. Oncol., 28, 2198–2206

[71]

Sugano, S. (2009) Introduction: next-generation DNA sequencing and bioinformatics. Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme, 54, 1233–1237

[72]

Coppola, G. (2014) The OMICs : applications in neuroscience. New York: Oxford University Press

[73]

Rapaport, F., Khanin, R.,Liang, Y., Pirun, M., Krek, A., Zumbo, P.,Mason, C. E., Socci, N. D. and Betel, D. (2013) Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol., 14, R95

[74]

Lu, Z. X., Jiang, P. and Xing, Y. (2012) Genetic variation of pre-mRNA alternative splicing in human populations. Wiley Interdiscip. Rev. RNA, 3, 581–592

[75]

Liu, S. L. and Cheng, C. H. (2013) Alternative RNA splicing and cancer. Wiley Interdiscip. Rev. RNA, 4, 547–566

[76]

Damodaran, S., Berger, M. F. and Roychowdhury, S. (2015) Clinical tumor sequencing: opportunities and challenges for precision cancer medicine. Am. Soc. Clin. Oncol. Educ. Book, 35, e175–e182

[77]

Van Keuren-Jensen, K., Keats, J. J. and Craig, D. W. (2014) Bringing RNA-seq closer to the clinic. Nat. Biotechnol., 32, 884–885

[78]

Gonzalez-Angulo, A. M., Hennessy, B. T. and Mills, G. B. (2010) Future of personalized medicine in oncology: a systems biology approach. J. Clin. Oncol., 28, 2777–2783

[79]

Prior, F. W., Clark, K., Commean, P., Freymann, J., Jaffe, C., Kirby, J., Moore, S., Smith, K., Tarbox, L., Vendt, B. (2013) TCIA: An information resource to enable open science. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2013, 1282–1285

[80]

Gutman, D. A., Cooper, L. A. D., Hwang, S. N., Holder, C. A., Gao, J. J., Aurora, T. D., Dunn, W. D., Jr, Scarpace, L., Mikkelsen, T., Jain, R., (2013) MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. Radiology, 267, 560–569

[81]

Zhang, B. and Horvath, S. (2005) Ageneral framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol., 4, 10.2202/1544-6115.1128

[82]

Patel, A. P., Tirosh, I., Trombetta, J. J., Shalek, A. K., Gillespie, S. M., Wakimoto, H., Cahill, D. P., Nahed, B. V., Curry, W. T., Martuza, R. L., (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science, 344, 1396–1401

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1018KB)

2787

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/