Mapping and differential expression analysis from short-read RNA-Seq data in model organisms

Qiong-Yi Zhao , Jacob Gratten , Restuadi Restuadi , Xuan Li

Quant. Biol. ›› 2016, Vol. 4 ›› Issue (1) : 22 -35.

PDF (690KB)
Quant. Biol. ›› 2016, Vol. 4 ›› Issue (1) : 22 -35. DOI: 10.1007/s40484-016-0060-7
Review
Review

Mapping and differential expression analysis from short-read RNA-Seq data in model organisms

Author information +
History +
PDF (690KB)

Abstract

Recent advances in next-generation sequencing technology allow high-throughput RNA sequencing (RNA-Seq) to be widely applied in transcriptomic studies. For model organisms with a reference genome, the first step in analysis of RNA-Seq data involves mapping of short-read sequences to the reference genome. Reference-guided transcriptome assembly is an optional step, which is recommended if the aim is to identify novel transcripts. Following read mapping, the primary interest of biologists in many RNA-Seq studies is the investigation of differential expression between experimental groups. In this review, we discuss recent developments in RNA-Seq data analysis applied to model organisms, including methods and algorithms for direct mapping, reference-guided transcriptome assembly and differential expression analysis, and provide insights for the future direction of RNA-Seq.

Graphical abstract

Keywords

RNA-Seq / mapping / reference-guided transcriptome assembly / differential expression analysis

Cite this article

Download citation ▾
Qiong-Yi Zhao, Jacob Gratten, Restuadi Restuadi, Xuan Li. Mapping and differential expression analysis from short-read RNA-Seq data in model organisms. Quant. Biol., 2016, 4(1): 22-35 DOI:10.1007/s40484-016-0060-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang, E. T., Sandberg, R., LuoS., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, S. F., Schroth, G. P. and Burge, C. B. (2008) Alternative isoform regulation in human tissue transcriptomes. Nature, 456, 470–476

[2]

Wang, Z., Gerstein, M. and Snyder, M. (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet., 10, 57–63

[3]

Nilsen, T. W. and Graveley, B. R. (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature, 463, 457–463

[4]

Graveley, B. R., Brooks, A. N., Carlson, J. W., Duff, M. O., Landolin, J. M., Yang, L., Artieri, C. G., van Baren, M. J., Boley, N., Booth, B. W., (2011) The developmental transcriptome of Drosophila melanogaster. Nature, 471, 473–479

[5]

Barbosa-Morais, N. L., Irimia, M., Pan, Q., Xiong, H. Y., Gueroussov, S., Lee, L. J., Slobodeniuc, V., Kutter, C., Watt, S., Colak, R., (2012) The evolutionary landscape of alternative splicing in vertebrate species. Science, 338, 1587–1593

[6]

Shalek, A. K., Satija, R., Adiconis, X., Gertner, R. S., Gaublomme, J. T., Raychowdhury, R., Schwartz, S., Yosef, N., Malboeuf, C., Lu, D., (2013) Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature, 498, 236–240

[7]

Jaitin, D. A., Kenigsberg, E., Keren-Shaul, H., Elefant, N., Paul, F., Zaretsky, I., Mildner, A., Cohen, N., Jung, S., Tanay, A., (2014) Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science, 343, 776–779

[8]

Shalek, A. K., Satija, R., Shuga, J., Trombetta, J. J., Gennert, D., Lu, D., Chen, P., Gertner, R. S., Gaublomme, J. T., Yosef, N., (2014) Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature, 510, 363–369

[9]

Wang, X. C., Zhao, Q. Y., Ma, C. L., Zhang, Z. H., Cao, H. L., Kong, Y. M., Yue, C., Hao, X. Y., Chen, L., Ma, J. Q., (2013) Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genomics, 14, 415

[10]

Jhaveri, D. J., O’Keeffe, I., Robinson, G. J., Zhao, Q. Y., Zhang, Z. H., Nink, V., Narayanan, R. K., Osborne, G. W., Wray, N. R. and Bartlett, P. F. (2015) Purification of neural precursor cells reveals the presence of distinct, stimulus-specific subpopulations of quiescent precursors in the adult mouse hippocampus. J. Neurosci., 35, 8132–8144

[11]

Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., Salzberg, S. L., Wold, B. J. and Pachter, L. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28, 511–515

[12]

Shao, W., Zhao, Q. Y., Wang, X. Y., Xu, X. Y., Tang, Q., Li, M., Li, X. and Xu, Y. Z. (2012) Alternative splicing and trans-splicing events revealed by analysis of the Bombyx mori transcriptome. RNA, 18, 1395–1407

[13]

Muzzey, D., Sherlock, G. and Weissman, J. S. (2014) Extensive and coordinated control of allele-specific expression by both transcription and translation in Candida albicans. Genome Res., 24, 963–973

[14]

Hong, S., Chen, X., Jin, L. and Xiong, M. (2013) Canonical correlation analysis for RNA-seq co-expression networks. Nucleic Acids Res., 41, e95

[15]

Blanc, V., Park, E., Schaefer, S., Miller, M., Lin, Y., Kennedy, S., BillingA. M., Hamidane, H. B., Graumann, J., MortazaviA., (2014) Genome-wide identification and functional analysis of Apobec-1-mediated C-to-U RNA editing in mouse small intestine and liver. Genome Biol., 15, R79

[16]

Piskol, R., Ramaswami, G. and Li, J. B. (2013) Reliable identification of genomic variants from RNA-seq data. Am. J. Hum. Genet., 93, 641–651

[17]

Garber, M., Grabherr, M. G., Guttman, M. and Trapnell, C. (2011) Computational methods for transcriptome annotation and quantification using RNA-seq. Nat. Methods, 8, 469–477

[18]

Martin, J. A. and Wang, Z. (2011) Next-generation transcriptome assembly. Nat. Rev. Genet., 12, 671–682

[19]

Ozsolak, F. and Milos, P. M. (2011) RNA sequencing: advances, challenges and opportunities. Nat. Rev. Genet., 12, 87–98

[20]

Han, L., Vickers, K. C., Samuels, D. C. and Guo, Y. (2015) Alternative applications for distinct RNA sequencing strategies. Brief. Bioinform., 16, 629–639

[21]

Trapnell, C., Pachter, L. and Salzberg, S. L. (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25, 1105–1111

[22]

Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R. and Salzberg, S. L. (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol., 14, R36

[23]

Kim, D., Langmead, B. and Salzberg, S. L. (2015) HISAT: a fast spliced aligner with low memory requirements. Nat. Methods, 12, 357–360

[24]

Wang, K., Singh, D., Zeng, Z., Coleman, S. J., Huang, Y., Savich, G. L., He, X., Mieczkowski, P., Grimm, S. A., Perou, C. M., (2010) MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res., 38, e178

[25]

Huang, S., Zhang, J., Li, R., Zhang, W., He, Z., Lam, T., Peng, Z., Yiu, S. (2011) SOAPsplice: genome-wide ab initio detection of splice junctions from RNA-Seq Data. Front. Genet., 2,46

[26]

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M. and Gingeras, T. R. (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29, 15–21

[27]

Langmead, B., Trapnell, C., Pop, M. and Salzberg, S. L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol., 10, R25

[28]

Langmead, B. and Salzberg, S. L. (2012) Fast gapped-read alignment with Bowtie 2. Nat. Methods, 9, 357–359

[29]

Li, H. and Durbin, R. (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25, 1754–1760

[30]

Li, H. and Durbin, R. (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 26, 589–595

[31]

Li, H. (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997

[32]

Li, R., Li, Y., Kristiansen, K. and Wang, J. (2008) SOAP: short oligonucleotide alignment program. Bioinformatics, 24, 713–714

[33]

Li, R., Yu, C., Li, Y., Lam, T. W., Yiu, S. M., Kristiansen, K. and Wang, J. (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 25, 1966–1967

[34]

Jnes, J., Hu, F., Lewin, A. and Turro, E. (2015) A comparative study of RNA-seq analysis strategies. Brief. Bioinform., 16, 932–940

[35]

Robinson, M. D., McCarthy, D. J. and Smyth, G. K. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139–140

[36]

Anders, S. and Huber, W. (2010) Differential expression analysis for sequence count data. Genome Biol., 11, R106

[37]

Love, M. I., Huber, W. and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15, 550

[38]

Li, J. and Tibshirani, R. (2013) Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-Seq data. Stat. Methods Med. Res., 22, 519–536

[39]

Hardcastle, T. J. and Kelly, K. A. (2010) baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics, 11, 422

[40]

Tarazona, S., García-Alcalde, F., Dopazo, J., Ferrer, A. and Conesa, A. (2011) Differential expression in RNA-seq: a matter of depth. Genome Res., 21, 2213–2223

[41]

Smyth, G. K. (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol., 3, 1–25

[42]

Di, Y. M., Schafer, D. W., Cumbie, J. S. and Chang, J. H. (2011) The NBP negative binomial model for assessing differential gene expression from RNA-Seq. Stat. Appl. Genet. Mol. Biol., 10

[43]

Auer, P. L. and Doerge, R. W. (2011) A two-stage Poisson model for testing RNA-Seq data. Stat. Appl. Genet. Mol. Biol., 10, 1–26

[44]

Leng, N., Dawson, J. A., Thomson, J. A., Ruotti, V., Rissman, A. I., Smits, B. M., Haag, J. D., Gould, M. N., Stewart, R. M. and Kendziorski, C. (2013) EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics, 29, 1035–1043

[45]

Guttman, M., Garber, M., Levin, J. Z., Donaghey, J., Robinson, J., Adiconis, X., Fan, L., Koziol, M. J., Gnirke, A., Nusbaum, C., (2010) Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat. Biotechnol., 28, 503–510

[46]

Chen, G., Wang, C., Shi, L., Tong, W., Qu, X., Chen, J., Yang, J., Shi, C., Chen, L., Zhou, P., (2013) Comprehensively identifying and characterizing the missing gene sequences in human reference genome with integrated analytic approaches. Hum. Genet., 132, 899–911

[47]

Roberts, A., Pimentel, H., Trapnell, C. and Pachter, L. (2011) Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics, 27, 2325–2329

[48]

Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol., 29, 644–652

[49]

Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell, J. T. and Salzberg, S. L. (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol., 33, 290–295

[50]

Fonseca, N. A., Rung, J., Brazma, A. and Marioni, J. C. (2012) Tools for mapping high-throughput sequencing data. Bioinformatics, 28, 3169–3177

[51]

Li, H. and Homer, N. (2010) A survey of sequence alignment algorithms for next-generation sequencing. Brief. Bioinform., 11, 473–483

[52]

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol., 215, 403–410

[53]

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25, 3389–3402

[54]

Li, H., Ruan, J. and Durbin, R. (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res., 18, 1851–1858

[55]

Smith, A. D., Xuan, Z. and Zhang, M. Q. (2008) Using quality scores and longer reads improves accuracy of Solexa read mapping. BMC Bioinformatics, 9, 128

[56]

Smith, A. D., Chung, W. Y., Hodges, E., Kendall, J., Hannon, G., Hicks, J., Xuan, Z. and Zhang, M. Q. (2009) Updates to the RMAP short-read mapping software. Bioinformatics, 25, 2841–2842

[57]

Lin, H., Zhang, Z., Zhang, M. Q., Ma, B. and Li, M. (2008) ZOOM! Zillions of oligos mapped. Bioinformatics, 24, 2431–2437

[58]

Jiang, H. and Wong, W. H. (2008) SeqMap: mapping massive amount of oligonucleotides to the genome. Bioinformatics, 24, 2395–2396

[59]

Jokinen, P. and Ukkonen, E. (1991) Two algorithms for approxmate string matching in static texts. Mathematical Foundations of Computer Science 1991. Lect. Notes Comput. Sci., 520, 240–248

[60]

Rumble, S. M., Lacroute, P., Dalca, A. V., Fiume, M., Sidow, A. and Brudno, M. (2009) SHRiMP: accurate mapping of short color-space reads. PLoS Comput. Biol., 5, e1000386

[61]

Weese, D., Emde, A. K., Rausch, T., Döring, A. and Reinert, K. (2009) RazerS—fast read mapping with sensitivity control. Genome Res., 19, 1646–1654

[62]

Weese, D., Holtgrewe, M. and Reinert, K. (2012) RazerS 3: faster, fully sensitive read mapping. Bioinformatics, 28, 2592–2599

[63]

Farrar, M. (2007) Striped Smith-Waterman speeds database searches six times over other SIMD implementations. Bioinformatics, 23, 156–161

[64]

Kurtz, S., Phillippy, A., Delcher, A. L., Smoot, M., Shumway, M., Antonescu, C. and Salzberg, S. L. (2004) Versatile and open software for comparing large genomes. Genome Biol., 5, R12

[65]

Abouelhoda, M. I., Kurtz, S. and Ohlebusch, E. (2004) Replacing suffix trees with enhanced suffix arrays. J. Discrete Algorithms, 2, 53–86

[66]

Ferragina, P. andManzini, G., (2000) Opportunistic data structures with applications.In Proceedings, 41st Annual Symposium, 390–398

[67]

Burrows, M. and Wheeler, D. J. (1994) A block-sorting lossless data compression algorithm. Systems Research Center, 124

[68]

Hoffmann, S., Otto, C., Kurtz, S., Sharma, C. M., Khaitovich, P., Vogel, J., Stadler, P. F. and Hackermüller, J. (2009) Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comput. Biol., 5, e1000502

[69]

Li, B. and Dewey, C. N. (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12, 323

[70]

Malhis, N., Butterfield, Y. S., Ester, M. and Jones, S. J. (2009) Slider—maximum use of probability information for alignment of short sequence reads and SNP detection. Bioinformatics, 25, 6–13

[71]

Malhis, N. and Jones, S. J. M. (2010) High quality SNP calling using Illumina data at shallow coverage. Bioinformatics, 26, 1029–1035

[72]

Trapnell, C., Hendrickson, D. G., Sauvageau, M., Goff, L., Rinn, J. L. and Pachter, L. (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol., 31, 46–53

[73]

Frazee, A. C., Pertea, G., Jaffe, A. E., Langmead, B., Salzberg, S. L. and Leek, J. T. (2015) Ballgown bridges the gap between transcriptome assembly and expression analysis. Nat. Biotechnol., 33, 243–246

[74]

Robles, J. A., Qureshi, S. E., Stephen, S. J., Wilson, S. R., Burden, C. J. and Taylor, J. M. (2012) Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing. BMC Genomics, 13, 484

[75]

Zhang, Z. H., Jhaveri, D. J., Marshall, V. M., Bauer, D. C., Edson, J., Narayanan, R. K., Robinson, G. J., Lundberg, A. E., Bartlett, P. F., Wray, N. R., (2014) A comparative study of techniques for differential expression analysis on RNA-Seq data. PLoS One, 9, e103207

[76]

Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M. and Gilad, Y. (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res., 18, 1509–1517

[77]

Hoffmann, S., Otto, C., Kurtz, S., Sharma, C. M., Khaitovich, P., Vogel, J., Stadler, P. F. and Hackermüller, J. (2009) Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comput. Biol., 5, e1000502

[78]

Luo, C., Tsementzi, D., Kyrpides, N., Read, T. and Konstantinidis, K. T. (2012) Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. PLoS One, 7, e30087

[79]

Mamedov, T. G., Pienaar, E., Whitney, S. E., TerMaat, J. R., Carvill, G., Goliath, R., Subramanian, A. and Viljoen, H. J. (2008) A fundamental study of the PCR amplification of GC-rich DNA templates. Comput. Biol. Chem., 32, 452–457

[80]

Oshlack, A., Robinson, M. D. and Young, M. D. (2010) From RNA-seq reads to differential expression results. Genome Biol., 11, 220

[81]

Hansen, K. D., Brenner, S. E. and Dudoit, S. (2010) Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res., 38, e131

[82]

McIntyre, L. M., Lopiano, K. K., Morse, A. M., Amin, V., Oberg, A. L., Young, L. J. and Nuzhdin, S. V. (2011) RNA-seq: technical variability and sampling. BMC Genomics, 12, 293

[83]

Bullard, J. H., Purdom, E., Hansen, K. D. and Dudoit, S. (2010) Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics, 11, 94

[84]

Robinson, M. D. and Smyth, G. K. (2007) Moderated statistical tests for assessing differences in tag abundance. Bioinformatics, 23, 2881–2887

[85]

Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M. and Snyder, M. (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science, 320, 1344–1349

[86]

Soneson, C. and Delorenzi, M. (2013) A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics, 14, 91

[87]

Van De Wiel, M. A., Leday, G. G., Pardo, L., Rue, H., Van Der Vaart, A. W. and Van Wieringen, W. N. (2013) Bayesian analysis of RNA sequencing data by estimating multiple shrinkage priors. Biostatistics, 14, 113–128

[88]

Rapaport, F., Khanin, R., Liang, Y., Pirun, M., Krek, A., Zumbo, P., Mason, C. E., Socci, N. D. and Betel, D. (2013) Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol., 14, R95

[89]

Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., Pimentel, H., Salzberg, S. L., Rinn, J. L. and Pachter, L. (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc., 7, 562–578

[90]

Li, J., Witten, D. M., Johnstone, I. M. and Tibshirani, R. (2012) Normalization, testing, and false discovery rate estimation for RNA-sequencing data. Biostatistics, 13, 523–538

[91]

Seyednasrollah, F., Laiho, A. and Elo, L. L. (2015) Comparison of software packages for detecting differential expression in RNA-seq studies. Brief. Bioinform., 16, 59–70

[92]

Liu, Y., Zhou, J. and White, K. P. (2014) RNA-seq differential expression studies: more sequence or more replication? Bioinformatics, 30, 301–304

[93]

Cho, H., Davis, J., Li, X., Smith, K. S., Battle, A. and Montgomery, S. B. (2014) High-resolution transcriptome analysis with long-read RNA sequencing. PLoS One, 9, e108095

[94]

Zavodna, M., Bagshaw, A., Brauning, R. and Gemmell, N. J. (2014) The accuracy, feasibility and challenges of sequencing short tandem repeats using next-generation sequencing platforms. PLoS One, 9, e113862

[95]

Minoche, A. E., Dohm, J. C., Schneider, J., Holtgräwe, D., Viehöver, P., Montfort, M., Sörensen, T. R., Weisshaar, B. and Himmelbauer, H. (2015) Exploiting single-molecule transcript sequencing for eukaryotic gene prediction. Genome Biol., 16, 184

[96]

Westbrook, C. J., Karl, J. A., Wiseman, R. W., Mate, S., Koroleva, G., Garcia, K., Sanchez-Lockhart, M., O’Connor, D. H. and Palacios, G. (2015) No assembly required: Full-length MHC class I allele discovery by PacBio circular consensus sequencing. Hum. Immunol., 76, 891–896

[97]

Gao, Q., Sun, W., Ballegeer, M., Libert, C. and Chen, W. (2015) Predominant contribution of cis-regulatory divergence in the evolution of mouse alternative splicing. Mol. Syst. Biol., 11, 816

[98]

Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., Berka, J., Braverman, M. S., Chen, Y. J., Chen, Z., (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437, 376–380

[99]

Korbel, J. O., Urban, A. E., Affourtit, J. P., Godwin, B., Grubert, F., Simons, J. F., Kim, P. M., Palejev, D., Carriero, N. J., Du, L., (2007) Paired-end mapping reveals extensive structural variation in the human genome. Science, 318, 420–426

[100]

Wheeler, D. A., Srinivasan, M., Egholm, M., Shen, Y., Chen, L., McGuire, A., He, W., Chen, Y. J., Makhijani, V., Roth, G. T., (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature, 452, 872–876

[101]

Droege, M. and Hill, B. (2008) The Genome Sequencer FLX System—longer reads, more applications, straight forward bioinformatics and more complete data sets. J. Biotechnol., 136, 3–10

[102]

Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P., Bettman, B., (2009) Real-time DNA sequencing from single polymerase molecules. Science, 323, 133–138

[103]

Uemura, S., Aitken, C. E., Korlach, J., Flusberg, B. A., Turner, S. W. and Puglisi, J. D. (2010) Real-time tRNA transit on single translating ribosomes at codon resolution. Nature, 464, 1012–1017

[104]

Macaulay, I. C., Haerty, W., Kumar, P., Li, Y. I., Hu, T. X., Teng, M. J., Goolam, M., Saurat, N., Coupland, P., Shirley, L. M., (2015) G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat. Methods, 12, 519–522

[105]

Stoddart, D., Heron, A. J., Mikhailova, E., Maglia, G. and Bayley, H. (2009) Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc. Natl. Acad. Sci. USA, 106, 7702–7707

[106]

Olasagasti, F., Lieberman, K. R., Benner, S., Cherf, G. M., Dahl, J. M., Deamer, D. W. and Akeson, M. (2010) Replication of individual DNA molecules under electronic control using a protein nanopore. Nat. Nanotechnol., 5, 798–806

[107]

Laver, T., Harrison, J., O’Neill, P. A., Moore, K., Farbos, A., Paszkiewicz, K. and Studholme, D. J. (2015) Assessing the performance of the Oxford Nanopore Technologies MinION. Biomol. Detect. Quantif., 3, 1–8

[108]

Pendleton, M., Sebra, R., Pang, A. W., Ummat, A., Franzen, O., Rausch, T., Stütz, A. M., Stedman, W., Anantharaman, T., Hastie, A., (2015) Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nat. Methods, 12, 780–786

[109]

Buettner, F., Natarajan, K. N., Casale, F. P., Proserpio, V., Scialdone, A., Theis, F. J., Teichmann, S. A., Marioni, J. C. and Stegle, O. (2015) Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol., 33, 155–160

[110]

Dalerba, P., Kalisky, T., Sahoo, D., Rajendran, P. S., Rothenberg, M. E., Leyrat, A. A., Sim, S., Okamoto, J., Johnston, D. M., Qian, D., (2011) Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat. Biotechnol., 29, 1120–1127

[111]

Levsky, J. M., Shenoy, S. M., Pezo, R. C. and Singer, R. H. (2002) Single-cell gene expression profiling. Science, 297, 836–840

[112]

Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A. and Tyagi, S. (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods, 5, 877–879

[113]

Taniguchi, Y., Choi, P. J., Li, G. W., Chen, H., Babu, M., Hearn, J., Emili, A. and Xie, X. S. (2010) Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science, 329, 533–538

[114]

Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X., Bodeau, J., Tuch, B. B., Siddiqui, A., (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods, 6, 377–382

[115]

Hashimshony, T., Wagner, F., Sher, N. and Yanai, I. (2012) CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Reports, 2, 666–673

[116]

Picelli, S., Björklund, Å. K., Faridani, O. R., Sagasser, S., Winberg, G. and Sandberg, R. (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods, 10, 1096–1098

[117]

Klein, A. M., Mazutis, L., Akartuna, I., Tallapragada, N., Veres, A., Li, V., Peshkin, L., Weitz, D. A. and Kirschner, M. W. (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell, 161, 1187–1201

[118]

Macosko, E. Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., Tirosh, I., Bialas, A. R., Kamitaki, N., Martersteck, E. M., (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell, 161, 1202–1214

[119]

Pollen, A. A., Nowakowski, T. J., Shuga, J., Wang, X., Leyrat, A. A., Lui, J. H., Li, N., Szpankowski, L., Fowler, B., Chen, P., (2014) Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat. Biotechnol., 32, 1053–1058

[120]

Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel P., Li, S. Morse, M., Lennon, N. J., Livak K. J., Mikkelsen, T. S., Rinn, J. L. (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol, 32, 381–386

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (690KB)

1956

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/