Mapping and differential expression analysis from short-read RNA-Seq data in model organisms

Qiong-Yi Zhao, Jacob Gratten, Restuadi Restuadi, Xuan Li

PDF(690 KB)
PDF(690 KB)
Quant. Biol. ›› 2016, Vol. 4 ›› Issue (1) : 22-35. DOI: 10.1007/s40484-016-0060-7
Review
Review

Mapping and differential expression analysis from short-read RNA-Seq data in model organisms

Author information +
History +

Abstract

Recent advances in next-generation sequencing technology allow high-throughput RNA sequencing (RNA-Seq) to be widely applied in transcriptomic studies. For model organisms with a reference genome, the first step in analysis of RNA-Seq data involves mapping of short-read sequences to the reference genome. Reference-guided transcriptome assembly is an optional step, which is recommended if the aim is to identify novel transcripts. Following read mapping, the primary interest of biologists in many RNA-Seq studies is the investigation of differential expression between experimental groups. In this review, we discuss recent developments in RNA-Seq data analysis applied to model organisms, including methods and algorithms for direct mapping, reference-guided transcriptome assembly and differential expression analysis, and provide insights for the future direction of RNA-Seq.

Graphical abstract

Keywords

RNA-Seq / mapping / reference-guided transcriptome assembly / differential expression analysis

Cite this article

Download citation ▾
Qiong-Yi Zhao, Jacob Gratten, Restuadi Restuadi, Xuan Li. Mapping and differential expression analysis from short-read RNA-Seq data in model organisms. Quant. Biol., 2016, 4(1): 22‒35 https://doi.org/10.1007/s40484-016-0060-7

References

[1]
Wang, E. T., Sandberg, R., LuoS., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, S. F., Schroth, G. P. and Burge, C. B. (2008) Alternative isoform regulation in human tissue transcriptomes. Nature, 456, 470–476
CrossRef Pubmed Google scholar
[2]
Wang, Z., Gerstein, M. and Snyder, M. (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet., 10, 57–63
CrossRef Pubmed Google scholar
[3]
Nilsen, T. W. and Graveley, B. R. (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature, 463, 457–463
CrossRef Pubmed Google scholar
[4]
Graveley, B. R., Brooks, A. N., Carlson, J. W., Duff, M. O., Landolin, J. M., Yang, L., Artieri, C. G., van Baren, M. J., Boley, N., Booth, B. W., (2011) The developmental transcriptome of Drosophila melanogaster. Nature, 471, 473–479
CrossRef Pubmed Google scholar
[5]
Barbosa-Morais, N. L., Irimia, M., Pan, Q., Xiong, H. Y., Gueroussov, S., Lee, L. J., Slobodeniuc, V., Kutter, C., Watt, S., Colak, R., (2012) The evolutionary landscape of alternative splicing in vertebrate species. Science, 338, 1587–1593
CrossRef Pubmed Google scholar
[6]
Shalek, A. K., Satija, R., Adiconis, X., Gertner, R. S., Gaublomme, J. T., Raychowdhury, R., Schwartz, S., Yosef, N., Malboeuf, C., Lu, D., (2013) Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature, 498, 236–240
CrossRef Pubmed Google scholar
[7]
Jaitin, D. A., Kenigsberg, E., Keren-Shaul, H., Elefant, N., Paul, F., Zaretsky, I., Mildner, A., Cohen, N., Jung, S., Tanay, A., (2014) Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science, 343, 776–779
CrossRef Pubmed Google scholar
[8]
Shalek, A. K., Satija, R., Shuga, J., Trombetta, J. J., Gennert, D., Lu, D., Chen, P., Gertner, R. S., Gaublomme, J. T., Yosef, N., (2014) Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature, 510, 363–369
Pubmed
[9]
Wang, X. C., Zhao, Q. Y., Ma, C. L., Zhang, Z. H., Cao, H. L., Kong, Y. M., Yue, C., Hao, X. Y., Chen, L., Ma, J. Q., (2013) Global transcriptome profiles of Camellia sinensis during cold acclimation. BMC Genomics, 14, 415
CrossRef Pubmed Google scholar
[10]
Jhaveri, D. J., O’Keeffe, I., Robinson, G. J., Zhao, Q. Y., Zhang, Z. H., Nink, V., Narayanan, R. K., Osborne, G. W., Wray, N. R. and Bartlett, P. F. (2015) Purification of neural precursor cells reveals the presence of distinct, stimulus-specific subpopulations of quiescent precursors in the adult mouse hippocampus. J. Neurosci., 35, 8132–8144
CrossRef Pubmed Google scholar
[11]
Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., Salzberg, S. L., Wold, B. J. and Pachter, L. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28, 511–515
CrossRef Pubmed Google scholar
[12]
Shao, W., Zhao, Q. Y., Wang, X. Y., Xu, X. Y., Tang, Q., Li, M., Li, X. and Xu, Y. Z. (2012) Alternative splicing and trans-splicing events revealed by analysis of the Bombyx mori transcriptome. RNA, 18, 1395–1407
CrossRef Pubmed Google scholar
[13]
Muzzey, D., Sherlock, G. and Weissman, J. S. (2014) Extensive and coordinated control of allele-specific expression by both transcription and translation in Candida albicans. Genome Res., 24, 963–973
CrossRef Pubmed Google scholar
[14]
Hong, S., Chen, X., Jin, L. and Xiong, M. (2013) Canonical correlation analysis for RNA-seq co-expression networks. Nucleic Acids Res., 41, e95
CrossRef Pubmed Google scholar
[15]
Blanc, V., Park, E., Schaefer, S., Miller, M., Lin, Y., Kennedy, S., BillingA. M., Hamidane, H. B., Graumann, J., MortazaviA., (2014) Genome-wide identification and functional analysis of Apobec-1-mediated C-to-U RNA editing in mouse small intestine and liver. Genome Biol., 15, R79
CrossRef Pubmed Google scholar
[16]
Piskol, R., Ramaswami, G. and Li, J. B. (2013) Reliable identification of genomic variants from RNA-seq data. Am. J. Hum. Genet., 93, 641–651
CrossRef Pubmed Google scholar
[17]
Garber, M., Grabherr, M. G., Guttman, M. and Trapnell, C. (2011) Computational methods for transcriptome annotation and quantification using RNA-seq. Nat. Methods, 8, 469–477
CrossRef Pubmed Google scholar
[18]
Martin, J. A. and Wang, Z. (2011) Next-generation transcriptome assembly. Nat. Rev. Genet., 12, 671–682
CrossRef Pubmed Google scholar
[19]
Ozsolak, F. and Milos, P. M. (2011) RNA sequencing: advances, challenges and opportunities. Nat. Rev. Genet., 12, 87–98
CrossRef Pubmed Google scholar
[20]
Han, L., Vickers, K. C., Samuels, D. C. and Guo, Y. (2015) Alternative applications for distinct RNA sequencing strategies. Brief. Bioinform., 16, 629–639
CrossRef Pubmed Google scholar
[21]
Trapnell, C., Pachter, L. and Salzberg, S. L. (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25, 1105–1111
CrossRef Pubmed Google scholar
[22]
Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R. and Salzberg, S. L. (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol., 14, R36
CrossRef Pubmed Google scholar
[23]
Kim, D., Langmead, B. and Salzberg, S. L. (2015) HISAT: a fast spliced aligner with low memory requirements. Nat. Methods, 12, 357–360
CrossRef Pubmed Google scholar
[24]
Wang, K., Singh, D., Zeng, Z., Coleman, S. J., Huang, Y., Savich, G. L., He, X., Mieczkowski, P., Grimm, S. A., Perou, C. M., (2010) MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res., 38, e178
CrossRef Pubmed Google scholar
[25]
Huang, S., Zhang, J., Li, R., Zhang, W., He, Z., Lam, T., Peng, Z., Yiu, S. (2011) SOAPsplice: genome-wide ab initio detection of splice junctions from RNA-Seq Data. Front. Genet., 2,46
[26]
Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M. and Gingeras, T. R. (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29, 15–21
CrossRef Pubmed Google scholar
[27]
Langmead, B., Trapnell, C., Pop, M. and Salzberg, S. L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol., 10, R25
CrossRef Pubmed Google scholar
[28]
Langmead, B. and Salzberg, S. L. (2012) Fast gapped-read alignment with Bowtie 2. Nat. Methods, 9, 357–359
CrossRef Pubmed Google scholar
[29]
Li, H. and Durbin, R. (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25, 1754–1760
CrossRef Pubmed Google scholar
[30]
Li, H. and Durbin, R. (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 26, 589–595
CrossRef Pubmed Google scholar
[31]
Li, H. (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997
[32]
Li, R., Li, Y., Kristiansen, K. and Wang, J. (2008) SOAP: short oligonucleotide alignment program. Bioinformatics, 24, 713–714
CrossRef Pubmed Google scholar
[33]
Li, R., Yu, C., Li, Y., Lam, T. W., Yiu, S. M., Kristiansen, K. and Wang, J. (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 25, 1966–1967
CrossRef Pubmed Google scholar
[34]
Jnes, J., Hu, F., Lewin, A. and Turro, E. (2015) A comparative study of RNA-seq analysis strategies. Brief. Bioinform., 16, 932–940
CrossRef Pubmed Google scholar
[35]
Robinson, M. D., McCarthy, D. J. and Smyth, G. K. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139–140
CrossRef Pubmed Google scholar
[36]
Anders, S. and Huber, W. (2010) Differential expression analysis for sequence count data. Genome Biol., 11, R106
CrossRef Pubmed Google scholar
[37]
Love, M. I., Huber, W. and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15, 550
CrossRef Pubmed Google scholar
[38]
Li, J. and Tibshirani, R. (2013) Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-Seq data. Stat. Methods Med. Res., 22, 519–536
CrossRef Pubmed Google scholar
[39]
Hardcastle, T. J. and Kelly, K. A. (2010) baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics, 11, 422
CrossRef Pubmed Google scholar
[40]
Tarazona, S., García-Alcalde, F., Dopazo, J., Ferrer, A. and Conesa, A. (2011) Differential expression in RNA-seq: a matter of depth. Genome Res., 21, 2213–2223
CrossRef Pubmed Google scholar
[41]
Smyth, G. K. (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol., 3, 1–25
[42]
Di, Y. M., Schafer, D. W., Cumbie, J. S. and Chang, J. H. (2011) The NBP negative binomial model for assessing differential gene expression from RNA-Seq. Stat. Appl. Genet. Mol. Biol., 10
CrossRef Google scholar
[43]
Auer, P. L. and Doerge, R. W. (2011) A two-stage Poisson model for testing RNA-Seq data. Stat. Appl. Genet. Mol. Biol., 10, 1–26
CrossRef Google scholar
[44]
Leng, N., Dawson, J. A., Thomson, J. A., Ruotti, V., Rissman, A. I., Smits, B. M., Haag, J. D., Gould, M. N., Stewart, R. M. and Kendziorski, C. (2013) EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics, 29, 1035–1043
CrossRef Pubmed Google scholar
[45]
Guttman, M., Garber, M., Levin, J. Z., Donaghey, J., Robinson, J., Adiconis, X., Fan, L., Koziol, M. J., Gnirke, A., Nusbaum, C., (2010) Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat. Biotechnol., 28, 503–510
CrossRef Pubmed Google scholar
[46]
Chen, G., Wang, C., Shi, L., Tong, W., Qu, X., Chen, J., Yang, J., Shi, C., Chen, L., Zhou, P., (2013) Comprehensively identifying and characterizing the missing gene sequences in human reference genome with integrated analytic approaches. Hum. Genet., 132, 899–911
CrossRef Pubmed Google scholar
[47]
Roberts, A., Pimentel, H., Trapnell, C. and Pachter, L. (2011) Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics, 27, 2325–2329
CrossRef Pubmed Google scholar
[48]
Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol., 29, 644–652
CrossRef Pubmed Google scholar
[49]
Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell, J. T. and Salzberg, S. L. (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol., 33, 290–295
CrossRef Pubmed Google scholar
[50]
Fonseca, N. A., Rung, J., Brazma, A. and Marioni, J. C. (2012) Tools for mapping high-throughput sequencing data. Bioinformatics, 28, 3169–3177
CrossRef Pubmed Google scholar
[51]
Li, H. and Homer, N. (2010) A survey of sequence alignment algorithms for next-generation sequencing. Brief. Bioinform., 11, 473–483
CrossRef Pubmed Google scholar
[52]
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol., 215, 403–410
CrossRef Pubmed Google scholar
[53]
Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25, 3389–3402
CrossRef Pubmed Google scholar
[54]
Li, H., Ruan, J. and Durbin, R. (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res., 18, 1851–1858
CrossRef Pubmed Google scholar
[55]
Smith, A. D., Xuan, Z. and Zhang, M. Q. (2008) Using quality scores and longer reads improves accuracy of Solexa read mapping. BMC Bioinformatics, 9, 128
CrossRef Pubmed Google scholar
[56]
Smith, A. D., Chung, W. Y., Hodges, E., Kendall, J., Hannon, G., Hicks, J., Xuan, Z. and Zhang, M. Q. (2009) Updates to the RMAP short-read mapping software. Bioinformatics, 25, 2841–2842
CrossRef Pubmed Google scholar
[57]
Lin, H., Zhang, Z., Zhang, M. Q., Ma, B. and Li, M. (2008) ZOOM! Zillions of oligos mapped. Bioinformatics, 24, 2431–2437
CrossRef Pubmed Google scholar
[58]
Jiang, H. and Wong, W. H. (2008) SeqMap: mapping massive amount of oligonucleotides to the genome. Bioinformatics, 24, 2395–2396
CrossRef Pubmed Google scholar
[59]
Jokinen, P. and Ukkonen, E. (1991) Two algorithms for approxmate string matching in static texts. Mathematical Foundations of Computer Science 1991. Lect. Notes Comput. Sci., 520, 240–248
CrossRef Google scholar
[60]
Rumble, S. M., Lacroute, P., Dalca, A. V., Fiume, M., Sidow, A. and Brudno, M. (2009) SHRiMP: accurate mapping of short color-space reads. PLoS Comput. Biol., 5, e1000386
CrossRef Pubmed Google scholar
[61]
Weese, D., Emde, A. K., Rausch, T., Döring, A. and Reinert, K. (2009) RazerS—fast read mapping with sensitivity control. Genome Res., 19, 1646–1654
CrossRef Pubmed Google scholar
[62]
Weese, D., Holtgrewe, M. and Reinert, K. (2012) RazerS 3: faster, fully sensitive read mapping. Bioinformatics, 28, 2592–2599
CrossRef Pubmed Google scholar
[63]
Farrar, M. (2007) Striped Smith-Waterman speeds database searches six times over other SIMD implementations. Bioinformatics, 23, 156–161
CrossRef Pubmed Google scholar
[64]
Kurtz, S., Phillippy, A., Delcher, A. L., Smoot, M., Shumway, M., Antonescu, C. and Salzberg, S. L. (2004) Versatile and open software for comparing large genomes. Genome Biol., 5, R12
CrossRef Pubmed Google scholar
[65]
Abouelhoda, M. I., Kurtz, S. and Ohlebusch, E. (2004) Replacing suffix trees with enhanced suffix arrays. J. Discrete Algorithms, 2, 53–86
CrossRef Google scholar
[66]
Ferragina, P. andManzini, G., (2000) Opportunistic data structures with applications.In Proceedings, 41st Annual Symposium, 390–398
[67]
Burrows, M. and Wheeler, D. J. (1994) A block-sorting lossless data compression algorithm. Systems Research Center, 124
[68]
Hoffmann, S., Otto, C., Kurtz, S., Sharma, C. M., Khaitovich, P., Vogel, J., Stadler, P. F. and Hackermüller, J. (2009) Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comput. Biol., 5, e1000502
CrossRef Pubmed Google scholar
[69]
Li, B. and Dewey, C. N. (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12, 323
CrossRef Pubmed Google scholar
[70]
Malhis, N., Butterfield, Y. S., Ester, M. and Jones, S. J. (2009) Slider—maximum use of probability information for alignment of short sequence reads and SNP detection. Bioinformatics, 25, 6–13
CrossRef Pubmed Google scholar
[71]
Malhis, N. and Jones, S. J. M. (2010) High quality SNP calling using Illumina data at shallow coverage. Bioinformatics, 26, 1029–1035
CrossRef Pubmed Google scholar
[72]
Trapnell, C., Hendrickson, D. G., Sauvageau, M., Goff, L., Rinn, J. L. and Pachter, L. (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol., 31, 46–53
CrossRef Pubmed Google scholar
[73]
Frazee, A. C., Pertea, G., Jaffe, A. E., Langmead, B., Salzberg, S. L. and Leek, J. T. (2015) Ballgown bridges the gap between transcriptome assembly and expression analysis. Nat. Biotechnol., 33, 243–246
CrossRef Pubmed Google scholar
[74]
Robles, J. A., Qureshi, S. E., Stephen, S. J., Wilson, S. R., Burden, C. J. and Taylor, J. M. (2012) Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing. BMC Genomics, 13, 484
CrossRef Pubmed Google scholar
[75]
Zhang, Z. H., Jhaveri, D. J., Marshall, V. M., Bauer, D. C., Edson, J., Narayanan, R. K., Robinson, G. J., Lundberg, A. E., Bartlett, P. F., Wray, N. R., (2014) A comparative study of techniques for differential expression analysis on RNA-Seq data. PLoS One, 9, e103207
CrossRef Pubmed Google scholar
[76]
Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M. and Gilad, Y. (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res., 18, 1509–1517
CrossRef Pubmed Google scholar
[77]
Hoffmann, S., Otto, C., Kurtz, S., Sharma, C. M., Khaitovich, P., Vogel, J., Stadler, P. F. and Hackermüller, J. (2009) Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comput. Biol., 5, e1000502
CrossRef Pubmed Google scholar
[78]
Luo, C., Tsementzi, D., Kyrpides, N., Read, T. and Konstantinidis, K. T. (2012) Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. PLoS One, 7, e30087
CrossRef Pubmed Google scholar
[79]
Mamedov, T. G., Pienaar, E., Whitney, S. E., TerMaat, J. R., Carvill, G., Goliath, R., Subramanian, A. and Viljoen, H. J. (2008) A fundamental study of the PCR amplification of GC-rich DNA templates. Comput. Biol. Chem., 32, 452–457
CrossRef Pubmed Google scholar
[80]
Oshlack, A., Robinson, M. D. and Young, M. D. (2010) From RNA-seq reads to differential expression results. Genome Biol., 11, 220
CrossRef Pubmed Google scholar
[81]
Hansen, K. D., Brenner, S. E. and Dudoit, S. (2010) Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res., 38, e131
CrossRef Pubmed Google scholar
[82]
McIntyre, L. M., Lopiano, K. K., Morse, A. M., Amin, V., Oberg, A. L., Young, L. J. and Nuzhdin, S. V. (2011) RNA-seq: technical variability and sampling. BMC Genomics, 12, 293
CrossRef Pubmed Google scholar
[83]
Bullard, J. H., Purdom, E., Hansen, K. D. and Dudoit, S. (2010) Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics, 11, 94
CrossRef Pubmed Google scholar
[84]
Robinson, M. D. and Smyth, G. K. (2007) Moderated statistical tests for assessing differences in tag abundance. Bioinformatics, 23, 2881–2887
CrossRef Pubmed Google scholar
[85]
Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M. and Snyder, M. (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science, 320, 1344–1349
CrossRef Pubmed Google scholar
[86]
Soneson, C. and Delorenzi, M. (2013) A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics, 14, 91
CrossRef Pubmed Google scholar
[87]
Van De Wiel, M. A., Leday, G. G., Pardo, L., Rue, H., Van Der Vaart, A. W. and Van Wieringen, W. N. (2013) Bayesian analysis of RNA sequencing data by estimating multiple shrinkage priors. Biostatistics, 14, 113–128
CrossRef Pubmed Google scholar
[88]
Rapaport, F., Khanin, R., Liang, Y., Pirun, M., Krek, A., Zumbo, P., Mason, C. E., Socci, N. D. and Betel, D. (2013) Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol., 14, R95
CrossRef Pubmed Google scholar
[89]
Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., Pimentel, H., Salzberg, S. L., Rinn, J. L. and Pachter, L. (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc., 7, 562–578
CrossRef Pubmed Google scholar
[90]
Li, J., Witten, D. M., Johnstone, I. M. and Tibshirani, R. (2012) Normalization, testing, and false discovery rate estimation for RNA-sequencing data. Biostatistics, 13, 523–538
CrossRef Pubmed Google scholar
[91]
Seyednasrollah, F., Laiho, A. and Elo, L. L. (2015) Comparison of software packages for detecting differential expression in RNA-seq studies. Brief. Bioinform., 16, 59–70
CrossRef Pubmed Google scholar
[92]
Liu, Y., Zhou, J. and White, K. P. (2014) RNA-seq differential expression studies: more sequence or more replication? Bioinformatics, 30, 301–304
CrossRef Pubmed Google scholar
[93]
Cho, H., Davis, J., Li, X., Smith, K. S., Battle, A. and Montgomery, S. B. (2014) High-resolution transcriptome analysis with long-read RNA sequencing. PLoS One, 9, e108095
CrossRef Pubmed Google scholar
[94]
Zavodna, M., Bagshaw, A., Brauning, R. and Gemmell, N. J. (2014) The accuracy, feasibility and challenges of sequencing short tandem repeats using next-generation sequencing platforms. PLoS One, 9, e113862
CrossRef Pubmed Google scholar
[95]
Minoche, A. E., Dohm, J. C., Schneider, J., Holtgräwe, D., Viehöver, P., Montfort, M., Sörensen, T. R., Weisshaar, B. and Himmelbauer, H. (2015) Exploiting single-molecule transcript sequencing for eukaryotic gene prediction. Genome Biol., 16, 184
CrossRef Pubmed Google scholar
[96]
Westbrook, C. J., Karl, J. A., Wiseman, R. W., Mate, S., Koroleva, G., Garcia, K., Sanchez-Lockhart, M., O’Connor, D. H. and Palacios, G. (2015) No assembly required: Full-length MHC class I allele discovery by PacBio circular consensus sequencing. Hum. Immunol., 76, 891–896
CrossRef Pubmed Google scholar
[97]
Gao, Q., Sun, W., Ballegeer, M., Libert, C. and Chen, W. (2015) Predominant contribution of cis-regulatory divergence in the evolution of mouse alternative splicing. Mol. Syst. Biol., 11, 816
CrossRef Pubmed Google scholar
[98]
Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., Berka, J., Braverman, M. S., Chen, Y. J., Chen, Z., (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437, 376–380
Pubmed
[99]
Korbel, J. O., Urban, A. E., Affourtit, J. P., Godwin, B., Grubert, F., Simons, J. F., Kim, P. M., Palejev, D., Carriero, N. J., Du, L., (2007) Paired-end mapping reveals extensive structural variation in the human genome. Science, 318, 420–426
CrossRef Pubmed Google scholar
[100]
Wheeler, D. A., Srinivasan, M., Egholm, M., Shen, Y., Chen, L., McGuire, A., He, W., Chen, Y. J., Makhijani, V., Roth, G. T., (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature, 452, 872–876
CrossRef Pubmed Google scholar
[101]
Droege, M. and Hill, B. (2008) The Genome Sequencer FLX System—longer reads, more applications, straight forward bioinformatics and more complete data sets. J. Biotechnol., 136, 3–10
CrossRef Pubmed Google scholar
[102]
Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P., Bettman, B., (2009) Real-time DNA sequencing from single polymerase molecules. Science, 323, 133–138
CrossRef Pubmed Google scholar
[103]
Uemura, S., Aitken, C. E., Korlach, J., Flusberg, B. A., Turner, S. W. and Puglisi, J. D. (2010) Real-time tRNA transit on single translating ribosomes at codon resolution. Nature, 464, 1012–1017
CrossRef Pubmed Google scholar
[104]
Macaulay, I. C., Haerty, W., Kumar, P., Li, Y. I., Hu, T. X., Teng, M. J., Goolam, M., Saurat, N., Coupland, P., Shirley, L. M., (2015) G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat. Methods, 12, 519–522
CrossRef Pubmed Google scholar
[105]
Stoddart, D., Heron, A. J., Mikhailova, E., Maglia, G. and Bayley, H. (2009) Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc. Natl. Acad. Sci. USA, 106, 7702–7707
CrossRef Pubmed Google scholar
[106]
Olasagasti, F., Lieberman, K. R., Benner, S., Cherf, G. M., Dahl, J. M., Deamer, D. W. and Akeson, M. (2010) Replication of individual DNA molecules under electronic control using a protein nanopore. Nat. Nanotechnol., 5, 798–806
CrossRef Pubmed Google scholar
[107]
Laver, T., Harrison, J., O’Neill, P. A., Moore, K., Farbos, A., Paszkiewicz, K. and Studholme, D. J. (2015) Assessing the performance of the Oxford Nanopore Technologies MinION. Biomol. Detect. Quantif., 3, 1–8
CrossRef Google scholar
[108]
Pendleton, M., Sebra, R., Pang, A. W., Ummat, A., Franzen, O., Rausch, T., Stütz, A. M., Stedman, W., Anantharaman, T., Hastie, A., (2015) Assembly and diploid architecture of an individual human genome via single-molecule technologies. Nat. Methods, 12, 780–786
CrossRef Pubmed Google scholar
[109]
Buettner, F., Natarajan, K. N., Casale, F. P., Proserpio, V., Scialdone, A., Theis, F. J., Teichmann, S. A., Marioni, J. C. and Stegle, O. (2015) Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol., 33, 155–160
CrossRef Pubmed Google scholar
[110]
Dalerba, P., Kalisky, T., Sahoo, D., Rajendran, P. S., Rothenberg, M. E., Leyrat, A. A., Sim, S., Okamoto, J., Johnston, D. M., Qian, D., (2011) Single-cell dissection of transcriptional heterogeneity in human colon tumors. Nat. Biotechnol., 29, 1120–1127
CrossRef Pubmed Google scholar
[111]
Levsky, J. M., Shenoy, S. M., Pezo, R. C. and Singer, R. H. (2002) Single-cell gene expression profiling. Science, 297, 836–840
CrossRef Pubmed Google scholar
[112]
Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A. and Tyagi, S. (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods, 5, 877–879
CrossRef Pubmed Google scholar
[113]
Taniguchi, Y., Choi, P. J., Li, G. W., Chen, H., Babu, M., Hearn, J., Emili, A. and Xie, X. S. (2010) Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science, 329, 533–538
CrossRef Pubmed Google scholar
[114]
Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X., Bodeau, J., Tuch, B. B., Siddiqui, A., (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods, 6, 377–382
CrossRef Pubmed Google scholar
[115]
Hashimshony, T., Wagner, F., Sher, N. and Yanai, I. (2012) CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Reports, 2, 666–673
CrossRef Pubmed Google scholar
[116]
Picelli, S., Björklund, Å. K., Faridani, O. R., Sagasser, S., Winberg, G. and Sandberg, R. (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods, 10, 1096–1098
CrossRef Pubmed Google scholar
[117]
Klein, A. M., Mazutis, L., Akartuna, I., Tallapragada, N., Veres, A., Li, V., Peshkin, L., Weitz, D. A. and Kirschner, M. W. (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell, 161, 1187–1201
CrossRef Pubmed Google scholar
[118]
Macosko, E. Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., Tirosh, I., Bialas, A. R., Kamitaki, N., Martersteck, E. M., (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell, 161, 1202–1214
CrossRef Pubmed Google scholar
[119]
Pollen, A. A., Nowakowski, T. J., Shuga, J., Wang, X., Leyrat, A. A., Lui, J. H., Li, N., Szpankowski, L., Fowler, B., Chen, P., (2014) Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat. Biotechnol., 32, 1053–1058
CrossRef Pubmed Google scholar
[120]
Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel P., Li, S. Morse, M., Lennon, N. J., Livak K. J., Mikkelsen, T. S., Rinn, J. L. (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol, 32, 381–386

ABBREVIATIONS

RNA-Seq, high-throughput cDNA sequencing; NGS, next-generation sequencing; SIMD, single-instruction multiple-data; FM-index, full-text index in minute space; DEG, differentially expressed gene; DET, differentially expressed transcript; NB, negative binomial; SMRT, single molecule real-time; cDNA, complementary DNA; Iso-Seq, the isoform sequencing; RNA-FISH, fluorescent In Situ hybridization targeting ribonucleic acid molecules; FACS, fluorescence-activated cell sorting.

ACKNOWLEDGEMENTS

The authors would like to thank Ms. Jennifer Whitehead for critical reading of the manuscript. This work is supported by the National Health and Medical Research Council project grants (Nos. APP1067795 and APP1087889), National Basic Research Program of China (No. 2012CB316501) and National Natural Science Foundation of China (No. 31571310).

COMPLIANCE WITH ETHICS GUIDELINES

The authors Qiong-Yi Zhao, Jacob Gratten, Restuadi Restuadi and Xuan Li declare that they have no conflict of interest.
This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(690 KB)

Accesses

Citations

Detail

Sections
Recommended

/