Mapping and differential expression analysis from short-read RNA-Seq data in model organisms
Qiong-Yi Zhao, Jacob Gratten, Restuadi Restuadi, Xuan Li
Mapping and differential expression analysis from short-read RNA-Seq data in model organisms
Recent advances in next-generation sequencing technology allow high-throughput RNA sequencing (RNA-Seq) to be widely applied in transcriptomic studies. For model organisms with a reference genome, the first step in analysis of RNA-Seq data involves mapping of short-read sequences to the reference genome. Reference-guided transcriptome assembly is an optional step, which is recommended if the aim is to identify novel transcripts. Following read mapping, the primary interest of biologists in many RNA-Seq studies is the investigation of differential expression between experimental groups. In this review, we discuss recent developments in RNA-Seq data analysis applied to model organisms, including methods and algorithms for direct mapping, reference-guided transcriptome assembly and differential expression analysis, and provide insights for the future direction of RNA-Seq.
RNA-Seq / mapping / reference-guided transcriptome assembly / differential expression analysis
[1] |
Wang, E. T., Sandberg, R., LuoS., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, S. F., Schroth, G. P. and Burge, C. B. (2008) Alternative isoform regulation in human tissue transcriptomes. Nature, 456, 470–476
CrossRef
Pubmed
Google scholar
|
[2] |
Wang, Z., Gerstein, M. and Snyder, M. (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet., 10, 57–63
CrossRef
Pubmed
Google scholar
|
[3] |
Nilsen, T. W. and Graveley, B. R. (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature, 463, 457–463
CrossRef
Pubmed
Google scholar
|
[4] |
Graveley, B. R., Brooks, A. N., Carlson, J. W., Duff, M. O., Landolin, J. M., Yang, L., Artieri, C. G., van Baren, M. J., Boley, N., Booth, B. W.,
CrossRef
Pubmed
Google scholar
|
[5] |
Barbosa-Morais, N. L., Irimia, M., Pan, Q., Xiong, H. Y., Gueroussov, S., Lee, L. J., Slobodeniuc, V., Kutter, C., Watt, S., Colak, R.,
CrossRef
Pubmed
Google scholar
|
[6] |
Shalek, A. K., Satija, R., Adiconis, X., Gertner, R. S., Gaublomme, J. T., Raychowdhury, R., Schwartz, S., Yosef, N., Malboeuf, C., Lu, D.,
CrossRef
Pubmed
Google scholar
|
[7] |
Jaitin, D. A., Kenigsberg, E., Keren-Shaul, H., Elefant, N., Paul, F., Zaretsky, I., Mildner, A., Cohen, N., Jung, S., Tanay, A.,
CrossRef
Pubmed
Google scholar
|
[8] |
Shalek, A. K., Satija, R., Shuga, J., Trombetta, J. J., Gennert, D., Lu, D., Chen, P., Gertner, R. S., Gaublomme, J. T., Yosef, N.,
Pubmed
|
[9] |
Wang, X. C., Zhao, Q. Y., Ma, C. L., Zhang, Z. H., Cao, H. L., Kong, Y. M., Yue, C., Hao, X. Y., Chen, L., Ma, J. Q.,
CrossRef
Pubmed
Google scholar
|
[10] |
Jhaveri, D. J., O’Keeffe, I., Robinson, G. J., Zhao, Q. Y., Zhang, Z. H., Nink, V., Narayanan, R. K., Osborne, G. W., Wray, N. R. and Bartlett, P. F. (2015) Purification of neural precursor cells reveals the presence of distinct, stimulus-specific subpopulations of quiescent precursors in the adult mouse hippocampus. J. Neurosci., 35, 8132–8144
CrossRef
Pubmed
Google scholar
|
[11] |
Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., Salzberg, S. L., Wold, B. J. and Pachter, L. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28, 511–515
CrossRef
Pubmed
Google scholar
|
[12] |
Shao, W., Zhao, Q. Y., Wang, X. Y., Xu, X. Y., Tang, Q., Li, M., Li, X. and Xu, Y. Z. (2012) Alternative splicing and trans-splicing events revealed by analysis of the Bombyx mori transcriptome. RNA, 18, 1395–1407
CrossRef
Pubmed
Google scholar
|
[13] |
Muzzey, D., Sherlock, G. and Weissman, J. S. (2014) Extensive and coordinated control of allele-specific expression by both transcription and translation in Candida albicans. Genome Res., 24, 963–973
CrossRef
Pubmed
Google scholar
|
[14] |
Hong, S., Chen, X., Jin, L. and Xiong, M. (2013) Canonical correlation analysis for RNA-seq co-expression networks. Nucleic Acids Res., 41, e95
CrossRef
Pubmed
Google scholar
|
[15] |
Blanc, V., Park, E., Schaefer, S., Miller, M., Lin, Y., Kennedy, S., BillingA. M., Hamidane, H. B., Graumann, J., MortazaviA.,
CrossRef
Pubmed
Google scholar
|
[16] |
Piskol, R., Ramaswami, G. and Li, J. B. (2013) Reliable identification of genomic variants from RNA-seq data. Am. J. Hum. Genet., 93, 641–651
CrossRef
Pubmed
Google scholar
|
[17] |
Garber, M., Grabherr, M. G., Guttman, M. and Trapnell, C. (2011) Computational methods for transcriptome annotation and quantification using RNA-seq. Nat. Methods, 8, 469–477
CrossRef
Pubmed
Google scholar
|
[18] |
Martin, J. A. and Wang, Z. (2011) Next-generation transcriptome assembly. Nat. Rev. Genet., 12, 671–682
CrossRef
Pubmed
Google scholar
|
[19] |
Ozsolak, F. and Milos, P. M. (2011) RNA sequencing: advances, challenges and opportunities. Nat. Rev. Genet., 12, 87–98
CrossRef
Pubmed
Google scholar
|
[20] |
Han, L., Vickers, K. C., Samuels, D. C. and Guo, Y. (2015) Alternative applications for distinct RNA sequencing strategies. Brief. Bioinform., 16, 629–639
CrossRef
Pubmed
Google scholar
|
[21] |
Trapnell, C., Pachter, L. and Salzberg, S. L. (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25, 1105–1111
CrossRef
Pubmed
Google scholar
|
[22] |
Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R. and Salzberg, S. L. (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol., 14, R36
CrossRef
Pubmed
Google scholar
|
[23] |
Kim, D., Langmead, B. and Salzberg, S. L. (2015) HISAT: a fast spliced aligner with low memory requirements. Nat. Methods, 12, 357–360
CrossRef
Pubmed
Google scholar
|
[24] |
Wang, K., Singh, D., Zeng, Z., Coleman, S. J., Huang, Y., Savich, G. L., He, X., Mieczkowski, P., Grimm, S. A., Perou, C. M.,
CrossRef
Pubmed
Google scholar
|
[25] |
Huang, S., Zhang, J., Li, R., Zhang, W., He, Z., Lam, T., Peng, Z., Yiu, S. (2011) SOAPsplice: genome-wide ab initio detection of splice junctions from RNA-Seq Data. Front. Genet., 2,46
|
[26] |
Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M. and Gingeras, T. R. (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29, 15–21
CrossRef
Pubmed
Google scholar
|
[27] |
Langmead, B., Trapnell, C., Pop, M. and Salzberg, S. L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol., 10, R25
CrossRef
Pubmed
Google scholar
|
[28] |
Langmead, B. and Salzberg, S. L. (2012) Fast gapped-read alignment with Bowtie 2. Nat. Methods, 9, 357–359
CrossRef
Pubmed
Google scholar
|
[29] |
Li, H. and Durbin, R. (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25, 1754–1760
CrossRef
Pubmed
Google scholar
|
[30] |
Li, H. and Durbin, R. (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 26, 589–595
CrossRef
Pubmed
Google scholar
|
[31] |
Li, H. (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997
|
[32] |
Li, R., Li, Y., Kristiansen, K. and Wang, J. (2008) SOAP: short oligonucleotide alignment program. Bioinformatics, 24, 713–714
CrossRef
Pubmed
Google scholar
|
[33] |
Li, R., Yu, C., Li, Y., Lam, T. W., Yiu, S. M., Kristiansen, K. and Wang, J. (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 25, 1966–1967
CrossRef
Pubmed
Google scholar
|
[34] |
Jnes, J., Hu, F., Lewin, A. and Turro, E. (2015) A comparative study of RNA-seq analysis strategies. Brief. Bioinform., 16, 932–940
CrossRef
Pubmed
Google scholar
|
[35] |
Robinson, M. D., McCarthy, D. J. and Smyth, G. K. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139–140
CrossRef
Pubmed
Google scholar
|
[36] |
Anders, S. and Huber, W. (2010) Differential expression analysis for sequence count data. Genome Biol., 11, R106
CrossRef
Pubmed
Google scholar
|
[37] |
Love, M. I., Huber, W. and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15, 550
CrossRef
Pubmed
Google scholar
|
[38] |
Li, J. and Tibshirani, R. (2013) Finding consistent patterns: a nonparametric approach for identifying differential expression in RNA-Seq data. Stat. Methods Med. Res., 22, 519–536
CrossRef
Pubmed
Google scholar
|
[39] |
Hardcastle, T. J. and Kelly, K. A. (2010) baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics, 11, 422
CrossRef
Pubmed
Google scholar
|
[40] |
Tarazona, S., García-Alcalde, F., Dopazo, J., Ferrer, A. and Conesa, A. (2011) Differential expression in RNA-seq: a matter of depth. Genome Res., 21, 2213–2223
CrossRef
Pubmed
Google scholar
|
[41] |
Smyth, G. K. (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol., 3, 1–25
|
[42] |
Di, Y. M., Schafer, D. W., Cumbie, J. S. and Chang, J. H. (2011) The NBP negative binomial model for assessing differential gene expression from RNA-Seq. Stat. Appl. Genet. Mol. Biol., 10
CrossRef
Google scholar
|
[43] |
Auer, P. L. and Doerge, R. W. (2011) A two-stage Poisson model for testing RNA-Seq data. Stat. Appl. Genet. Mol. Biol., 10, 1–26
CrossRef
Google scholar
|
[44] |
Leng, N., Dawson, J. A., Thomson, J. A., Ruotti, V., Rissman, A. I., Smits, B. M., Haag, J. D., Gould, M. N., Stewart, R. M. and Kendziorski, C. (2013) EBSeq: an empirical Bayes hierarchical model for inference in RNA-seq experiments. Bioinformatics, 29, 1035–1043
CrossRef
Pubmed
Google scholar
|
[45] |
Guttman, M., Garber, M., Levin, J. Z., Donaghey, J., Robinson, J., Adiconis, X., Fan, L., Koziol, M. J., Gnirke, A., Nusbaum, C.,
CrossRef
Pubmed
Google scholar
|
[46] |
Chen, G., Wang, C., Shi, L., Tong, W., Qu, X., Chen, J., Yang, J., Shi, C., Chen, L., Zhou, P.,
CrossRef
Pubmed
Google scholar
|
[47] |
Roberts, A., Pimentel, H., Trapnell, C. and Pachter, L. (2011) Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics, 27, 2325–2329
CrossRef
Pubmed
Google scholar
|
[48] |
Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q.,
CrossRef
Pubmed
Google scholar
|
[49] |
Pertea, M., Pertea, G. M., Antonescu, C. M., Chang, T. C., Mendell, J. T. and Salzberg, S. L. (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol., 33, 290–295
CrossRef
Pubmed
Google scholar
|
[50] |
Fonseca, N. A., Rung, J., Brazma, A. and Marioni, J. C. (2012) Tools for mapping high-throughput sequencing data. Bioinformatics, 28, 3169–3177
CrossRef
Pubmed
Google scholar
|
[51] |
Li, H. and Homer, N. (2010) A survey of sequence alignment algorithms for next-generation sequencing. Brief. Bioinform., 11, 473–483
CrossRef
Pubmed
Google scholar
|
[52] |
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol., 215, 403–410
CrossRef
Pubmed
Google scholar
|
[53] |
Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 25, 3389–3402
CrossRef
Pubmed
Google scholar
|
[54] |
Li, H., Ruan, J. and Durbin, R. (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res., 18, 1851–1858
CrossRef
Pubmed
Google scholar
|
[55] |
Smith, A. D., Xuan, Z. and Zhang, M. Q. (2008) Using quality scores and longer reads improves accuracy of Solexa read mapping. BMC Bioinformatics, 9, 128
CrossRef
Pubmed
Google scholar
|
[56] |
Smith, A. D., Chung, W. Y., Hodges, E., Kendall, J., Hannon, G., Hicks, J., Xuan, Z. and Zhang, M. Q. (2009) Updates to the RMAP short-read mapping software. Bioinformatics, 25, 2841–2842
CrossRef
Pubmed
Google scholar
|
[57] |
Lin, H., Zhang, Z., Zhang, M. Q., Ma, B. and Li, M. (2008) ZOOM! Zillions of oligos mapped. Bioinformatics, 24, 2431–2437
CrossRef
Pubmed
Google scholar
|
[58] |
Jiang, H. and Wong, W. H. (2008) SeqMap: mapping massive amount of oligonucleotides to the genome. Bioinformatics, 24, 2395–2396
CrossRef
Pubmed
Google scholar
|
[59] |
Jokinen, P. and Ukkonen, E. (1991) Two algorithms for approxmate string matching in static texts. Mathematical Foundations of Computer Science 1991. Lect. Notes Comput. Sci., 520, 240–248
CrossRef
Google scholar
|
[60] |
Rumble, S. M., Lacroute, P., Dalca, A. V., Fiume, M., Sidow, A. and Brudno, M. (2009) SHRiMP: accurate mapping of short color-space reads. PLoS Comput. Biol., 5, e1000386
CrossRef
Pubmed
Google scholar
|
[61] |
Weese, D., Emde, A. K., Rausch, T., Döring, A. and Reinert, K. (2009) RazerS—fast read mapping with sensitivity control. Genome Res., 19, 1646–1654
CrossRef
Pubmed
Google scholar
|
[62] |
Weese, D., Holtgrewe, M. and Reinert, K. (2012) RazerS 3: faster, fully sensitive read mapping. Bioinformatics, 28, 2592–2599
CrossRef
Pubmed
Google scholar
|
[63] |
Farrar, M. (2007) Striped Smith-Waterman speeds database searches six times over other SIMD implementations. Bioinformatics, 23, 156–161
CrossRef
Pubmed
Google scholar
|
[64] |
Kurtz, S., Phillippy, A., Delcher, A. L., Smoot, M., Shumway, M., Antonescu, C. and Salzberg, S. L. (2004) Versatile and open software for comparing large genomes. Genome Biol., 5, R12
CrossRef
Pubmed
Google scholar
|
[65] |
Abouelhoda, M. I., Kurtz, S. and Ohlebusch, E. (2004) Replacing suffix trees with enhanced suffix arrays. J. Discrete Algorithms, 2, 53–86
CrossRef
Google scholar
|
[66] |
Ferragina, P. andManzini, G., (2000) Opportunistic data structures with applications.In Proceedings, 41st Annual Symposium, 390–398
|
[67] |
Burrows, M. and Wheeler, D. J. (1994) A block-sorting lossless data compression algorithm. Systems Research Center, 124
|
[68] |
Hoffmann, S., Otto, C., Kurtz, S., Sharma, C. M., Khaitovich, P., Vogel, J., Stadler, P. F. and Hackermüller, J. (2009) Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comput. Biol., 5, e1000502
CrossRef
Pubmed
Google scholar
|
[69] |
Li, B. and Dewey, C. N. (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12, 323
CrossRef
Pubmed
Google scholar
|
[70] |
Malhis, N., Butterfield, Y. S., Ester, M. and Jones, S. J. (2009) Slider—maximum use of probability information for alignment of short sequence reads and SNP detection. Bioinformatics, 25, 6–13
CrossRef
Pubmed
Google scholar
|
[71] |
Malhis, N. and Jones, S. J. M. (2010) High quality SNP calling using Illumina data at shallow coverage. Bioinformatics, 26, 1029–1035
CrossRef
Pubmed
Google scholar
|
[72] |
Trapnell, C., Hendrickson, D. G., Sauvageau, M., Goff, L., Rinn, J. L. and Pachter, L. (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol., 31, 46–53
CrossRef
Pubmed
Google scholar
|
[73] |
Frazee, A. C., Pertea, G., Jaffe, A. E., Langmead, B., Salzberg, S. L. and Leek, J. T. (2015) Ballgown bridges the gap between transcriptome assembly and expression analysis. Nat. Biotechnol., 33, 243–246
CrossRef
Pubmed
Google scholar
|
[74] |
Robles, J. A., Qureshi, S. E., Stephen, S. J., Wilson, S. R., Burden, C. J. and Taylor, J. M. (2012) Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing. BMC Genomics, 13, 484
CrossRef
Pubmed
Google scholar
|
[75] |
Zhang, Z. H., Jhaveri, D. J., Marshall, V. M., Bauer, D. C., Edson, J., Narayanan, R. K., Robinson, G. J., Lundberg, A. E., Bartlett, P. F., Wray, N. R.,
CrossRef
Pubmed
Google scholar
|
[76] |
Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M. and Gilad, Y. (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res., 18, 1509–1517
CrossRef
Pubmed
Google scholar
|
[77] |
Hoffmann, S., Otto, C., Kurtz, S., Sharma, C. M., Khaitovich, P., Vogel, J., Stadler, P. F. and Hackermüller, J. (2009) Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comput. Biol., 5, e1000502
CrossRef
Pubmed
Google scholar
|
[78] |
Luo, C., Tsementzi, D., Kyrpides, N., Read, T. and Konstantinidis, K. T. (2012) Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. PLoS One, 7, e30087
CrossRef
Pubmed
Google scholar
|
[79] |
Mamedov, T. G., Pienaar, E., Whitney, S. E., TerMaat, J. R., Carvill, G., Goliath, R., Subramanian, A. and Viljoen, H. J. (2008) A fundamental study of the PCR amplification of GC-rich DNA templates. Comput. Biol. Chem., 32, 452–457
CrossRef
Pubmed
Google scholar
|
[80] |
Oshlack, A., Robinson, M. D. and Young, M. D. (2010) From RNA-seq reads to differential expression results. Genome Biol., 11, 220
CrossRef
Pubmed
Google scholar
|
[81] |
Hansen, K. D., Brenner, S. E. and Dudoit, S. (2010) Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res., 38, e131
CrossRef
Pubmed
Google scholar
|
[82] |
McIntyre, L. M., Lopiano, K. K., Morse, A. M., Amin, V., Oberg, A. L., Young, L. J. and Nuzhdin, S. V. (2011) RNA-seq: technical variability and sampling. BMC Genomics, 12, 293
CrossRef
Pubmed
Google scholar
|
[83] |
Bullard, J. H., Purdom, E., Hansen, K. D. and Dudoit, S. (2010) Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics, 11, 94
CrossRef
Pubmed
Google scholar
|
[84] |
Robinson, M. D. and Smyth, G. K. (2007) Moderated statistical tests for assessing differences in tag abundance. Bioinformatics, 23, 2881–2887
CrossRef
Pubmed
Google scholar
|
[85] |
Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M. and Snyder, M. (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science, 320, 1344–1349
CrossRef
Pubmed
Google scholar
|
[86] |
Soneson, C. and Delorenzi, M. (2013) A comparison of methods for differential expression analysis of RNA-seq data. BMC Bioinformatics, 14, 91
CrossRef
Pubmed
Google scholar
|
[87] |
Van De Wiel, M. A., Leday, G. G., Pardo, L., Rue, H., Van Der Vaart, A. W. and Van Wieringen, W. N. (2013) Bayesian analysis of RNA sequencing data by estimating multiple shrinkage priors. Biostatistics, 14, 113–128
CrossRef
Pubmed
Google scholar
|
[88] |
Rapaport, F., Khanin, R., Liang, Y., Pirun, M., Krek, A., Zumbo, P., Mason, C. E., Socci, N. D. and Betel, D. (2013) Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol., 14, R95
CrossRef
Pubmed
Google scholar
|
[89] |
Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., Pimentel, H., Salzberg, S. L., Rinn, J. L. and Pachter, L. (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc., 7, 562–578
CrossRef
Pubmed
Google scholar
|
[90] |
Li, J., Witten, D. M., Johnstone, I. M. and Tibshirani, R. (2012) Normalization, testing, and false discovery rate estimation for RNA-sequencing data. Biostatistics, 13, 523–538
CrossRef
Pubmed
Google scholar
|
[91] |
Seyednasrollah, F., Laiho, A. and Elo, L. L. (2015) Comparison of software packages for detecting differential expression in RNA-seq studies. Brief. Bioinform., 16, 59–70
CrossRef
Pubmed
Google scholar
|
[92] |
Liu, Y., Zhou, J. and White, K. P. (2014) RNA-seq differential expression studies: more sequence or more replication? Bioinformatics, 30, 301–304
CrossRef
Pubmed
Google scholar
|
[93] |
Cho, H., Davis, J., Li, X., Smith, K. S., Battle, A. and Montgomery, S. B. (2014) High-resolution transcriptome analysis with long-read RNA sequencing. PLoS One, 9, e108095
CrossRef
Pubmed
Google scholar
|
[94] |
Zavodna, M., Bagshaw, A., Brauning, R. and Gemmell, N. J. (2014) The accuracy, feasibility and challenges of sequencing short tandem repeats using next-generation sequencing platforms. PLoS One, 9, e113862
CrossRef
Pubmed
Google scholar
|
[95] |
Minoche, A. E., Dohm, J. C., Schneider, J., Holtgräwe, D., Viehöver, P., Montfort, M., Sörensen, T. R., Weisshaar, B. and Himmelbauer, H. (2015) Exploiting single-molecule transcript sequencing for eukaryotic gene prediction. Genome Biol., 16, 184
CrossRef
Pubmed
Google scholar
|
[96] |
Westbrook, C. J., Karl, J. A., Wiseman, R. W., Mate, S., Koroleva, G., Garcia, K., Sanchez-Lockhart, M., O’Connor, D. H. and Palacios, G. (2015) No assembly required: Full-length MHC class I allele discovery by PacBio circular consensus sequencing. Hum. Immunol., 76, 891–896
CrossRef
Pubmed
Google scholar
|
[97] |
Gao, Q., Sun, W., Ballegeer, M., Libert, C. and Chen, W. (2015) Predominant contribution of cis-regulatory divergence in the evolution of mouse alternative splicing. Mol. Syst. Biol., 11, 816
CrossRef
Pubmed
Google scholar
|
[98] |
Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., Berka, J., Braverman, M. S., Chen, Y. J., Chen, Z.,
Pubmed
|
[99] |
Korbel, J. O., Urban, A. E., Affourtit, J. P., Godwin, B., Grubert, F., Simons, J. F., Kim, P. M., Palejev, D., Carriero, N. J., Du, L.,
CrossRef
Pubmed
Google scholar
|
[100] |
Wheeler, D. A., Srinivasan, M., Egholm, M., Shen, Y., Chen, L., McGuire, A., He, W., Chen, Y. J., Makhijani, V., Roth, G. T.,
CrossRef
Pubmed
Google scholar
|
[101] |
Droege, M. and Hill, B. (2008) The Genome Sequencer FLX System—longer reads, more applications, straight forward bioinformatics and more complete data sets. J. Biotechnol., 136, 3–10
CrossRef
Pubmed
Google scholar
|
[102] |
Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P., Bettman, B.,
CrossRef
Pubmed
Google scholar
|
[103] |
Uemura, S., Aitken, C. E., Korlach, J., Flusberg, B. A., Turner, S. W. and Puglisi, J. D. (2010) Real-time tRNA transit on single translating ribosomes at codon resolution. Nature, 464, 1012–1017
CrossRef
Pubmed
Google scholar
|
[104] |
Macaulay, I. C., Haerty, W., Kumar, P., Li, Y. I., Hu, T. X., Teng, M. J., Goolam, M., Saurat, N., Coupland, P., Shirley, L. M.,
CrossRef
Pubmed
Google scholar
|
[105] |
Stoddart, D., Heron, A. J., Mikhailova, E., Maglia, G. and Bayley, H. (2009) Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore. Proc. Natl. Acad. Sci. USA, 106, 7702–7707
CrossRef
Pubmed
Google scholar
|
[106] |
Olasagasti, F., Lieberman, K. R., Benner, S., Cherf, G. M., Dahl, J. M., Deamer, D. W. and Akeson, M. (2010) Replication of individual DNA molecules under electronic control using a protein nanopore. Nat. Nanotechnol., 5, 798–806
CrossRef
Pubmed
Google scholar
|
[107] |
Laver, T., Harrison, J., O’Neill, P. A., Moore, K., Farbos, A., Paszkiewicz, K. and Studholme, D. J. (2015) Assessing the performance of the Oxford Nanopore Technologies MinION. Biomol. Detect. Quantif., 3, 1–8
CrossRef
Google scholar
|
[108] |
Pendleton, M., Sebra, R., Pang, A. W., Ummat, A., Franzen, O., Rausch, T., Stütz, A. M., Stedman, W., Anantharaman, T., Hastie, A.,
CrossRef
Pubmed
Google scholar
|
[109] |
Buettner, F., Natarajan, K. N., Casale, F. P., Proserpio, V., Scialdone, A., Theis, F. J., Teichmann, S. A., Marioni, J. C. and Stegle, O. (2015) Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol., 33, 155–160
CrossRef
Pubmed
Google scholar
|
[110] |
Dalerba, P., Kalisky, T., Sahoo, D., Rajendran, P. S., Rothenberg, M. E., Leyrat, A. A., Sim, S., Okamoto, J., Johnston, D. M., Qian, D.,
CrossRef
Pubmed
Google scholar
|
[111] |
Levsky, J. M., Shenoy, S. M., Pezo, R. C. and Singer, R. H. (2002) Single-cell gene expression profiling. Science, 297, 836–840
CrossRef
Pubmed
Google scholar
|
[112] |
Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A. and Tyagi, S. (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods, 5, 877–879
CrossRef
Pubmed
Google scholar
|
[113] |
Taniguchi, Y., Choi, P. J., Li, G. W., Chen, H., Babu, M., Hearn, J., Emili, A. and Xie, X. S. (2010) Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science, 329, 533–538
CrossRef
Pubmed
Google scholar
|
[114] |
Tang, F., Barbacioru, C., Wang, Y., Nordman, E., Lee, C., Xu, N., Wang, X., Bodeau, J., Tuch, B. B., Siddiqui, A.,
CrossRef
Pubmed
Google scholar
|
[115] |
Hashimshony, T., Wagner, F., Sher, N. and Yanai, I. (2012) CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Reports, 2, 666–673
CrossRef
Pubmed
Google scholar
|
[116] |
Picelli, S., Björklund, Å. K., Faridani, O. R., Sagasser, S., Winberg, G. and Sandberg, R. (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods, 10, 1096–1098
CrossRef
Pubmed
Google scholar
|
[117] |
Klein, A. M., Mazutis, L., Akartuna, I., Tallapragada, N., Veres, A., Li, V., Peshkin, L., Weitz, D. A. and Kirschner, M. W. (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell, 161, 1187–1201
CrossRef
Pubmed
Google scholar
|
[118] |
Macosko, E. Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., Tirosh, I., Bialas, A. R., Kamitaki, N., Martersteck, E. M.,
CrossRef
Pubmed
Google scholar
|
[119] |
Pollen, A. A., Nowakowski, T. J., Shuga, J., Wang, X., Leyrat, A. A., Lui, J. H., Li, N., Szpankowski, L., Fowler, B., Chen, P.,
CrossRef
Pubmed
Google scholar
|
[120] |
Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel P., Li, S. Morse, M., Lennon, N. J., Livak K. J., Mikkelsen, T. S., Rinn, J. L. (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol, 32, 381–386
|
/
〈 | 〉 |