System identification and parameter estimation in mathematical medicine: examples demonstrated for prostate cancer

Yoshito Hirata, Kai Morino, Taiji Suzuki, Qian Guo, Hiroshi Fukuhara, Kazuyuki Aihara

PDF(155 KB)
PDF(155 KB)
Quant. Biol. ›› 2016, Vol. 4 ›› Issue (1) : 13-19. DOI: 10.1007/s40484-016-0059-0

System identification and parameter estimation in mathematical medicine: examples demonstrated for prostate cancer

Author information +
History +

Abstract

We review our studies on how to identify the most appropriate models of diseases, and how to determine their parameters in a quantitative manner given a short time series of biomarkers, using intermittent androgen deprivation therapy of prostate cancer as an example. Recently, it has become possible to estimate the specific parameters of individual patients within a reasonable time by employing the information concerning other previous patients as a prior. We discuss the importance of using multiple mathematical methods simultaneously to achieve a solid diagnosis and prognosis in the future practice of personalized medicine.

Graphical abstract

Keywords

mathematical medicine / dynamical model / parameter estimation

Cite this article

Download citation ▾
Yoshito Hirata, Kai Morino, Taiji Suzuki, Qian Guo, Hiroshi Fukuhara, Kazuyuki Aihara. System identification and parameter estimation in mathematical medicine: examples demonstrated for prostate cancer. Quant. Biol., 2016, 4(1): 13‒19 https://doi.org/10.1007/s40484-016-0059-0

References

[1]
Ideta, A. M., Tanaka, G., Takeuchi, T. and Aihara,K. (2008) A mathematical model of intermittent androgen suppression for prostate cancer. J. Nonlinear Sci., 18, 593–614
CrossRef Google scholar
[2]
Shimada,T. and Aihara,K. (2008) A nonlinear model with competition between prostate tumor cells and its application to intermittent androgen suppression therapy of prostate cancer. Math. Biosci., 214, 134–139
CrossRef Pubmed Google scholar
[3]
Hirata,Y., Bruchovsky,N. and Aihara,K. (2010) Development of a mathematical model that predicts the outcome of hormone therapy for prostate cancer. J. Theor. Biol., 264, 517–527
CrossRef Pubmed Google scholar
[4]
Jain,H. V., Clinton,S. K., Bhinder,A. and Friedman, A. (2011) Mathematical modeling of prostate cancer progression in response to androgen ablation therapy. Proc. Natl. Acad. Sci. U.S.A., 108, 19701–19706
CrossRef Pubmed Google scholar
[5]
Portz, T., Kuang,Y. and Nagy,J. D. (2012) A clinical data validated mathematical model of prostate cancer growth under intermittent androgen suppression therapy. AIP Adv., 2, 011002
CrossRef Google scholar
[6]
Akakura, K., Bruchovsky, N., Goldenberg, S. L., Rennie, P. S., Buckley, A. R. and Sullivan, L. D. (1993) Effects of intermittent androgen suppression on androgen-dependent tumors. Apoptosis and serum prostate-specific antigen. Cancer, 71, 2782–2790
CrossRef Pubmed Google scholar
[7]
Bruchovsky, N., Klotz, L., Crook, J., Malone, S., Ludgate, C., Morris, W. J., Gleave, M. E. and Goldenberg, S. L. (2006) Final results of the Canadian prospective phase II trial of intermittent androgen suppression for men in biochemical recurrence after radiotherapy for locally advanced prostate cancer: clinical parameters. Cancer, 107, 389–395
CrossRef Pubmed Google scholar
[8]
Bruchovsky,N., Klotz, L., Crook, J. and Goldenberg, S. L. (2007) Locally advanced prostate cancer—biochemical results from a prospective phase II study of intermittent androgen suppression for men with evidence of prostate-specific antigen recurrence after radiotherapy. Cancer, 109, 858–867
CrossRef Pubmed Google scholar
[9]
Crook, J. M., O’Callaghan, C. J., Duncan, G., Dearnaley, D. P., Higano, C. S., Horwitz, E. M., Frymire, E., Malone, S., Chin, J., Nabid, A., (2012) Intermittent androgen suppression for rising PSA level after radiotherapy. N. Engl. J. Med., 367, 895–903
CrossRef Pubmed Google scholar
[10]
Hussain, M., Tangen, C. M., Berry, D. L., Higano, C. S., Crawford, E. D., Liu, G., Wilding, G., Prescott, S., Kanaga Sundaram, S., Small, E. J., (2013) Intermittent versus continuous androgen deprivation in prostate cancer. N. Engl. J. Med., 368, 1314–1325
CrossRef Pubmed Google scholar
[11]
Morino, K., Hirata, Y., Tomioka, R., Kashima, H., Yamanishi, K., Hayashi, N., Egawa, S. and Aihara, K. (2015) Predicting disease progression from short biomarker series using expert advice algorithm. Sci. Rep., 5, 8953
CrossRef Pubmed Google scholar
[12]
Hirata, Y., Morino, K., Akakura, K., Higano, C. S., Bruchovsky, N., Gambol, T., Hall, S., Tanaka, G. and Aihara, K. (2015) Intermittent androgen suppression: Estimating parameters for individual patients based on initial PSA data in response to androgen deprivation therapy. PLoS ONE, 10, e0130372
CrossRef Pubmed Google scholar
[13]
Suzuki, T., Bruchovsky, N. and Aihara, K. (2010) Piecewise affine systems modelling for optimizing hormone therapy of prostate cancer. Philos Trans A Math Phys Eng Sci, 368, 5045–5059
CrossRef Pubmed Google scholar
[14]
Hirata, Y., di Bernardo, M., Bruchovsky, N. and Aihara, K. (2010) Hybrid optimal scheduling for intermittent androgen suppression of prostate cancer. Chaos, 20, 045125
CrossRef Pubmed Google scholar
[15]
Hirata, Y., Azuma, S. and Aihara, K. (2014) Model predictive control for optimally scheduling intermittent androgen suppression of prostate cancer. Methods, 67, 278–281
CrossRef Pubmed Google scholar
[16]
Tanaka, G., Hirata, Y., Goldenberg, S. L., Bruchovsky, N. and Aihara, K. (2010) Mathematical modelling of prostate cancer growth and its application to hormone therapy. Philos Trans A Math Phys Eng Sci, 368, 5029–5044
CrossRef Pubmed Google scholar
[17]
Kuramae, H., Hirata, Y., Bruchovsky, N., Aihara, K. and Suzuki, H. (2011) Nonlinear systems identification by combining regression with bootstrap resampling. Chaos, 21, 043121
CrossRef Pubmed Google scholar
[18]
Hirata, Y., Akakura, K., Higano, C. S., Bruchovsky, N. and Aihara, K. (2012) Quantitative mathematical modeling of PSA dynamics of prostate cancer patients treated with intermittent androgen suppression. J. Mol. Cell Biol., 4, 127–132
CrossRef Pubmed Google scholar
[19]
Guo, Q., Lu, Z., Hirata, Y. and Aihara, K. (2013) Parameter estimation and optimal scheduling algorithm for a mathematical model of intermittent androgen suppression therapy for prostate cancer. Chaos, 23, 043125
CrossRef Pubmed Google scholar
[20]
Suzuki, T. and Aihara, K. (2013) Nonlinear system identification for prostate cancer and optimality of intermittent androgen suppression therapy. Math. Biosci., 245, 40–48
CrossRef Pubmed Google scholar
[21]
Suzuki, Y., Sakai, D., Nomura, T., Hirata, Y. and Aihara, K. (2014) A new protocol for intermittent androgen suppression therapy of prostate cancer with unstable saddle-point dynamics. J. Theor. Biol., 350, 1–16
CrossRef Pubmed Google scholar
[22]
Tao, Y., Guo, Q. and Aihara, K. (2015) A partial differential equation model and its reduction to an ordinary differential equation model for prostate tumor growth under intermittenthormone therapy. J. Math. Biol., 69, 817–838
CrossRef Pubmed Google scholar
[23]
Cover, T. M. and Thomas, J. A. (1991) Elements of Information Theory. New York: Wiley Interscience Publication

ACKNOWLEDGEMENTS

This research is partially supported by the Platform Project for Supporting in Drug Discovery and Life Science Research(Platform for Dynamic Approaches to Living System)from the Ministry of Education, Culture, Sports, Scienceand Technology(MEXT) and Japan Agency for Medical Research and Development (AMED), and CREST, JST. This research is also partially supported by JSPS KAKENHI Grant No. 15H05707.T. S. is supported by MEXT Kakenhi (25730013, 25120012, and 26280009) and JST-PRESTO. Q. G. is supported by Natural Science Foundation of Shanghai (No. 14ZR1431300).
The authorYoshito Hirata, Kai Morino, Taiji Suzuki, Qian Guo, Hiroshi Fukuhara and Kazuyuki Aiharadeclare thatthey have no conflict of interests.
This article does not contain any studies with human or animal subjects performed by any of the authors.
Funding
 

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(155 KB)

Accesses

Citations

Detail

Sections
Recommended

/