NAD+ and its precursors in human longevity
Jimin Lin, Yanchao Pan, Jiangyun Wang
NAD+ and its precursors in human longevity
Aging is a complex issue due to its nature in progressive physiological and functional decay. As better medicine, technology, and living conditions became accessible to many people, the longevity of human beings increased during the past centuries. Recent research established vital roles for NAD+ and its precursors in protecting and maintaining the redox homeostasis in cells, which might be applicable therapeutically to prevent cell degeneration. Notably, the contribution of NAD+ metabolites to lifespan extension in model systems indicates that the potential beneficial effects of NAD+ precursors. In this mini review, by introducing the background of NAD+-consuming enzymes in “caloric restriction”, we focus on NAD+ and its precursors in diet, with further emphasis on its association with health and diseases. We also provide insights in future utilization of NAD+ and its precursors as nutrition supplement for lifespan extension.
longevity / sirtuins / NAD+ / NAD+ synthesis / NAD+ precursor / nicotinamide riboside
[1] |
Dann, W. J. (1937) Nicotinic acid and vitamin B2. Science, 86, 616–617
CrossRef
Pubmed
Google scholar
|
[2] |
McCay, C. M., Crowell, M. F. and Maynard, L. A. (1989) The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition, 5, 155–171, discussion 172
Pubmed
|
[3] |
Cantó, C. and Auwerx, J. (2009) Caloric restriction, SIRT1 and longevity. Trends Endocrinol. Metab., 20, 325–331
CrossRef
Pubmed
Google scholar
|
[4] |
Koubova, J. and Guarente, L. (2003) How does calorie restriction work? Genes Dev., 17, 313–321
CrossRef
Pubmed
Google scholar
|
[5] |
Lane, M. A., Ingram, D. K. and Roth, G. S. (1999) Calorie restriction in nonhuman primates: effects on diabetes and cardiovascular disease risk. Toxicol. Sci., 52, 41–48
CrossRef
Pubmed
Google scholar
|
[6] |
Schmidt, M. T., Smith, B. C., Jackson, M. D. and Denu, J. M. (2004) Coenzyme specificity of Sir2 protein deacetylases: implications for physiological regulation. J. Biol. Chem., 279, 40122–40129
CrossRef
Pubmed
Google scholar
|
[7] |
Sinclair, D. A. and Guarente, L. (2006) Unlocking the secrets of longevity genes. Sci. Am., 294, 48–57
CrossRef
Pubmed
Google scholar
|
[8] |
Sinclair, D. A. and Guarente, L. (1997) Extrachromosomal rDNA circles—a cause of aging in yeast. Cell, 91, 1033–1042
CrossRef
Pubmed
Google scholar
|
[9] |
Dilova, I., Easlon, E. and Lin, S. J. (2007) Calorie restriction and the nutrient sensing signaling pathways. Cell. Mol. Life Sci., 64, 752–767
CrossRef
Pubmed
Google scholar
|
[10] |
Kaeberlein, M. and Powers, R. W. III (2007) Sir2 and calorie restriction in yeast: a skeptical perspective. Ageing Res. Rev., 6, 128–140
CrossRef
Pubmed
Google scholar
|
[11] |
Rongvaux, A., Andris, F., Van Gool, F. and Leo, O. (2003) Reconstructing eukaryotic NAD metabolism. BioEssays, 25, 683–690
CrossRef
Pubmed
Google scholar
|
[12] |
Bieganowski, P. and Brenner, C. (2004) Discoveries of nicotinamide riboside as a nutrient and conserved NRK genes establish a Preiss-Handler independent route to NAD+ in fungi and humans. Cell, 117, 495–502
CrossRef
Pubmed
Google scholar
|
[13] |
Belenky, P., Racette, F. G., Bogan, K. L., McClure, J. M., Smith, J. S. and Brenner, C. (2007) Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+. Cell, 129, 473–484
CrossRef
Pubmed
Google scholar
|
[14] |
Belenky, P., Bogan, K. L. and Brenner, C. (2007) NAD+ metabolism in health and disease. Trends Biochem. Sci., 32, 12–19
CrossRef
Pubmed
Google scholar
|
[15] |
Gingrich, W. and Schlenk, F. (1944) Codehydrogenase I and other pyridinium compounds as V-Factor for hemophilus influenzae and H. parainfluenzae. J. Bacteriol., 47, 535–550
Pubmed
|
[16] |
Bogan, K. L. and Brenner, C. (2008) Nicotinic acid, nicotinamide, and nicotinamide riboside: a molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu. Rev. Nutr., 28, 115–130
CrossRef
Pubmed
Google scholar
|
[17] |
DissertationTip (1998) Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline. Washington: National Academy Press
|
[18] |
Hegyi, J., Schwartz, R. A. and Hegyi, V. (2004) Pellagra: dermatitis, dementia, and diarrhea. Int. J. Dermatol., 43, 1–5
CrossRef
Pubmed
Google scholar
|
[19] |
Wilson, S.A. (1914) The Pathology of pellagra. In Proc. R. Soc. Med., 7, 31–41
|
[20] |
Tullius, S. G., Biefer, H. R., Li, S., Trachtenberg, A. J., Edtinger, K., Quante, M., Krenzien, F., Uehara, H., Yang, X., Kissick, H. T., et al. (2014) NAD+ protects against EAE by regulating CD4+ T-cell differentiation. Nat. Commun., 5, 5101
CrossRef
Pubmed
Google scholar
|
[21] |
Slegtenhorst, B. R., Dor, F. J., Rodriguez, H., Voskuil, F. J. and Tullius, S. G. (2014) Ischemia/reperfusion injury and its consequences on immunity and inflammation. Curr. Transplant. Rep., 1, 147–154
CrossRef
Pubmed
Google scholar
|
[22] |
Bernofsky, C. (1980) Physiology aspects of pyridine nucleotide regulation in mammals. Mol. Cell. Biochem., 33, 135–143
CrossRef
Pubmed
Google scholar
|
[23] |
Tempel, W., Rabeh, W. M., Bogan, K. L., Belenky, P., Wojcik, M., Seidle, H. F., Nedyalkova, L., Yang, T., Sauve, A. A., Park, H. W., et al. (2007) Nicotinamide riboside kinase structures reveal new pathways to NAD+. PLoS Biol., 5, e263
CrossRef
Pubmed
Google scholar
|
[24] |
Li, J., Mayne, R. and Wu, C. (1999) A novel muscle-specific beta 1 integrin binding protein (MIBP) that modulates myogenic differentiation. J. Cell Biol., 147, 1391–1398
CrossRef
Pubmed
Google scholar
|
[25] |
Sasaki, Y., Araki, T. and Milbrandt, J. (2006) Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy. J. Neurosci., 26, 8484–8491
CrossRef
Pubmed
Google scholar
|
[26] |
Brown, K. D., Maqsood, S., Huang, J. Y., Pan, Y., Harkcom, W., Li, W., Sauve, A., Verdin, E. and Jaffrey, S. R. (2014) Activation of SIRT3 by the NAD⁺ precursor nicotinamide riboside protects from noise-induced hearing loss. Cell Metab., 20, 1059–1068
CrossRef
Pubmed
Google scholar
|
[27] |
Cantó, C., Houtkooper, R. H., Pirinen, E., Youn, D. Y., Oosterveer, M. H., Cen, Y., Fernandez-Marcos, P. J., Yamamoto, H., Andreux, P. A., Cettour-Rose, P., et al. (2012) The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab., 15, 838–847
CrossRef
Pubmed
Google scholar
|
[28] |
Fukuwatari, T., Ohta, M., Kimtjra, N., Sasaki, R. and Shibata, K. (2004) Conversion ratio of tryptophan to niacin in Japanese women fed a purified diet conforming to the Japanese Dietary Reference Intakes. J. Nutr. Sci. Vitaminol., 50, 385–391
CrossRef
Pubmed
Google scholar
|
[29] |
Knip, M., Douek, I. F., Moore, W. P., Gillmor, H. A, McLean, A. E., Bingley, P. J., Gale, E. A. and the European Nicotinamide Diabetes Intervention Trial Group. (2000) Safety of high-dose nicotinamide: a review. Diabetologia, 43, 1337–1345
CrossRef
Pubmed
Google scholar
|
[30] |
Carson, D. (2004) European Nicotinamide Diabetes Intervention Trial (ENDIT): a randomised controlled trial of intervention before the onset of type 1 diabetes. Lancet, 363, 925–931
CrossRef
Pubmed
Google scholar
|
[31] |
Virág, L. and Szabó, C. (2002) The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol. Rev., 54, 375–429
CrossRef
Pubmed
Google scholar
|
[32] |
Ieraci, A. and Herrera, D. G. (2006) Nicotinamide protects against ethanol-induced apoptotic neurodegeneration in the developing mouse brain. PLoS Med., 3, e101
CrossRef
Pubmed
Google scholar
|
[33] |
Feng, Y., Paul, I. A. and LeBlanc, M. H. (2006) Nicotinamide reduces hypoxic ischemic brain injury in the newborn rat. Brain Res. Bull., 69, 117–122
CrossRef
Pubmed
Google scholar
|
[34] |
Capuzzi, D. M., Morgan, J. M., Brusco, O. A. Jr and Intenzo, C. M. (2000) Niacin dosing: relationship to benefits and adverse effects. Curr. Atheroscler. Rep., 2, 64–71
CrossRef
Pubmed
Google scholar
|
[35] |
Carlson, L. A. (2004) Niaspan, the prolonged release preparation of nicotinic acid (niacin), the broad-spectrum lipid drug. Int. J. Clin. Pract., 58, 706–713
CrossRef
Pubmed
Google scholar
|
[36] |
Kamanna, V. S. and Kashyap, M. L. (2000) Mechanism of action of niacin on lipoprotein metabolism. Curr. Atheroscler. Rep., 2, 36–46
CrossRef
Pubmed
Google scholar
|
[37] |
Hassa, P. O., Haenni, S. S., Elser, M. and Hottiger, M. O. (2006) Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol. Mol. Biol. Rev., 70, 789–829
CrossRef
Pubmed
Google scholar
|
[38] |
Revollo, J. R., Körner, A., Mills, K. F., Satoh, A., Wang, T., Garten, A., Dasgupta, B., Sasaki, Y., Wolberger, C., Townsend, R. R., et al. (2007) Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab., 6, 363–375
CrossRef
Pubmed
Google scholar
|
[39] |
Kirkland, J. B. (2003) Niacin and carcinogenesis. Nutr. Cancer, 46, 110–118
CrossRef
Pubmed
Google scholar
|
[40] |
Reddy, S., Bibby, N. J. and Elliott, R. B. (1990) Early nicotinamide treatment in the NOD mouse: effects on diabetes and insulitis suppression and autoantibody levels. Diabetes Res., 15, 95–102
Pubmed
|
[41] |
Dali-Youcef, N., Lagouge, M., Froelich, S., Koehl, C., Schoonjans, K. and Auwerx, J. (2007) Sirtuins: the ‘magnificent seven’, function, metabolism and longevity. Ann. Med., 39, 335–345
CrossRef
Pubmed
Google scholar
|
[42] |
Westphal, C. H., Dipp, M. A. and Guarente, L. (2007) A therapeutic role for sirtuins in diseases of aging? Trends Biochem. Sci., 32, 555–560
CrossRef
Pubmed
Google scholar
|
[43] |
Zhang, R. (2013) MNADK, a novel liver-enriched mitochondrion-localized NAD kinase. Biol. Open, 2, 432–438
CrossRef
Pubmed
Google scholar
|
[44] |
Zhang, R. (2015) MNADK, a long-awaited human mitochondrion-localized NAD kinase. J. Cell. Physiol., 230, 1697–1701
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |