Network-based method to infer the contributions of proteins to the etiology of drug side effects

Rui Li, Ting Chen, Shao Li

PDF(930 KB)
PDF(930 KB)
Quant. Biol. ›› 2015, Vol. 3 ›› Issue (3) : 124-134. DOI: 10.1007/s40484-015-0051-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Network-based method to infer the contributions of proteins to the etiology of drug side effects

Author information +
History +

Abstract

Studying the molecular mechanisms that underlie the relationship between drugs and the side effects they produce is critical for drug discovery and drug development. Currently, however, computational methods are still unavailable to assess drug-protein interactions with the aim of globally inferring the contributions of various classes of proteins toward the etiology of side effects. In this work, we integrated data reflecting drug-side effect relationships, drug-target relationships, and protein-protein interactions to develop a novel network-based probabilistic model, SidePro, to evaluate the contributions of proteins toward the etiology of side effects. For a given side effect, the method applies an expectation---maximization algorithm and a diffusion kernel-based approach to estimate each protein’s contribution. We applied this method to a wide range of side effects and validated the results using cross-validation and records from the Side Effect Resource database. We also studied a specific side effect, nephrotoxicity, which is known to be associated with the irrational use of the Chinese herbal compound triptolide, a diterpenoid epoxide in the Thunder of God Vine, <?A3B2 tf="Times New Roman Bold Italic (TrueType)"?>Tripterygium wilfordii Lei-Gong-Teng. Using triptolide as an example, we scored the target proteins of triptolide using our model and investigated the high-scoring proteins and their related biological processes. The results demonstrated that our model could differentiate between the potential side effect targets and therapeutic targets of triptolide. Overall, the proposed model could accurately pinpoint the molecular mechanisms of drug side effects, thus making contribution to safe and effective drug development.

Graphical abstract

Keywords

network pharmacology / drug targets / side effects / triptolide

Cite this article

Download citation ▾
Rui Li, Ting Chen, Shao Li. Network-based method to infer the contributions of proteins to the etiology of drug side effects. Quant. Biol., 2015, 3(3): 124‒134 https://doi.org/10.1007/s40484-015-0051-0

References

[1]
Scheiber, J., Chen, B., Milik, M., Sukuru, S. C. K., Bender, A., Mikhailov, D., Whitebread, S., Hamon, J., Azzaoui, K., Urban, L., et al. (2009) Gaining insight into off-target mediated effects of drug candidates with a comprehensive systems chemical biology analysis. J. Chem. Inf. Model, 49, 308–317
CrossRef Pubmed Google scholar
[2]
Berger, S. I. and Iyengar, R. (2011) Role of systems pharmacology in understanding drug adverse events. Wiley Interdiscip. Rev. Syst. Biol. Med., 3, 129–135
CrossRef Pubmed Google scholar
[3]
Roses, A. D. (2004) Pharmacogenetics and drug development: the path to safer and more effective drugs. Nat. Rev. Genet., 5, 645–656
CrossRef Pubmed Google scholar
[4]
Stevens, J. L. and Baker, T. K. (2009) The future of drug safety testing: expanding the view and narrowing the focus. Drug Discov. Today, 14, 162–167
CrossRef Pubmed Google scholar
[5]
Shah, R. R. (2006) Can pharmacogenetics help rescue drugs withdrawn from the market? Pharmacogenomics, 7, 889–908
CrossRef Pubmed Google scholar
[6]
Zhang, W., Roederer, M. W., Chen, W.-Q., Fan, L. and Zhou, H.-H. (2012) Pharmacogenetics of drugs withdrawn from the market. Pharmacogenomics, 13, 223–231
CrossRef Pubmed Google scholar
[7]
Liebler, D. C. and Guengerich, F. P. (2005) Elucidating mechanisms of drug-induced toxicity. Nat. Rev. Drug Discov., 4, 410–420
CrossRef Pubmed Google scholar
[8]
Li, R., Ma, T., Gu, J., Liang, X. and Li, S. (2013) Imbalanced network biomarkers for traditional Chinese medicine Syndrome in gastritis patients. Sci. Rep., 3, 1543
CrossRef Pubmed Google scholar
[9]
Zhao, S. and Li, S. (2010) Network-based relating pharmacological and genomic spaces for drug target identification. PLoS One, 5, e11764
CrossRef Pubmed Google scholar
[10]
Zhang, B., Wang, X. and Li, S. (2013) An integrative platform of TCM network pharmacology and its application on an herbal formula, Qing-Luo-Yin. Evid-Based Compl. Alt. Med., 2013, 456747
CrossRef Pubmed Google scholar
[11]
Li, S., Zhang, B., Jiang, D., Wei, Y. and Zhang, N. (2010) Herb network construction and co-module analysis for uncovering the combination rule of traditional Chinese herbal formulae. BMC Bioinformatics, 11, S6
CrossRef Pubmed Google scholar
[12]
Li, S., Zhang, B. and Zhang, N. (2011) Network target for screening synergistic drug combinations with application to traditional Chinese medicine. BMC Syst Biol, 5, S10
CrossRef Pubmed Google scholar
[13]
Liang, X., Li, H. and Li, S. (2014) A novel network pharmacology approach to analyse traditional herbal formulae: the Liu-Wei-Di-Huang pill as a case study. Mol. Biosyst., 10, 1014–1022
CrossRef Pubmed Google scholar
[14]
Scheiber, J., Jenkins, J. L., Sukuru, S. C. K., Bender, A., Mikhailov, D., Milik, M., Azzaoui, K., Whitebread, S., Hamon, J., Urban, L., et al. (2009) Mapping adverse drug reactions in chemical space. J. Med. Chem., 52, 3103–3107
CrossRef Pubmed Google scholar
[15]
Lee, S., Lee, K. H., Song, M. and Lee, D. (2011) Building the process-drug-side effect network to discover the relationship between biological processes and side effects. BMC Bioinformatics, 12, S2
CrossRef Pubmed Google scholar
[16]
Wallach, I., Jaitly, N. and Lilien, R. (2010) A structure-based approach for mapping adverse drug reactions to the perturbation of underlying biological pathways. PLoS One, 5, e12063
CrossRef Pubmed Google scholar
[17]
Atias, N. and Sharan, R. (2011) An algorithmic framework for predicting side effects of drugs. J. Comput. Biol., 18, 207–218
CrossRef Pubmed Google scholar
[18]
Huang, L. C., Wu, X. and Chen, J. Y. (2013) Predicting adverse drug reaction profiles by integrating protein interaction networks with drug structures. Proteomics, 13, 313–324
CrossRef Pubmed Google scholar
[19]
Yamanishi, Y., Pauwels, E. and Kotera, M. (2012) Drug side-effect prediction based on the integration of chemical and biological spaces. J. Chem. Inf. Model, 52, 3284–3292
CrossRef Pubmed Google scholar
[20]
Huang, L. C., Wu, X. and Chen, J. Y. (2011) Predicting adverse side effects of drugs. BMC Genomics, 12, S11
CrossRef Pubmed Google scholar
[21]
Mizutani, S., Pauwels, E., Stoven, V., Goto, S. and Yamanishi, Y. (2012) Relating drug-protein interaction network with drug side effects. Bioinformatics, 28, i522–i528
CrossRef Pubmed Google scholar
[22]
Kuhn, M., Al Banchaabouchi, M., Campillos, M., Jensen, L. J., Gross, C., Gavin, A.-C. and Bork, P. (2013) Systematic identification of proteins that elicit drug side effects. Mol. Syst. Biol., 9, 663
CrossRef Pubmed Google scholar
[23]
Lounkine, E., Keiser, M. J., Whitebread, S., Mikhailov, D., Hamon, J., Jenkins, J. L., Lavan, P., Weber, E., Doak, A. K., Côté, S., et al. (2012) Large-scale prediction and testing of drug activity on side-effect targets. Nature, 486, 361–367
Pubmed
[24]
Wallach, I., Jaitly, N. and Lilien, R. (2010) A structure-based approach for mapping adverse drug reactions to the perturbation of underlying biological pathways. PLoS One, 5, e12063
CrossRef Pubmed Google scholar
[25]
Kuhn, M., Campillos, M., Letunic, I., Jensen, L. J. and Bork, P. (2010) A side effect resource to capture phenotypic effects of drugs. Mol. Syst. Biol., 6, 343
CrossRef Pubmed Google scholar
[26]
Vanherweghem, J. L., Depierreux, M., Tielemans, C., Abramowicz, D., Dratwa, M., Jadoul, M., Richard, C., Vandervelde, D., Verbeelen, D., Vanhaelen-Fastre, R., et al. (1993) Rapidly progressive interstitial renal fibrosis in young women: association with slimming regimen including Chinese herbs. Lancet, 341, 387–391
CrossRef Pubmed Google scholar
[27]
Allard, T., Wenner, T., Greten, H. J. and Efferth, T. (2013) Mechanisms of herb-induced nephrotoxicity. Curr. Med. Chem., 20, 2812–2819
CrossRef Pubmed Google scholar
[28]
Nowack, R., et al. (2011) Herbal treatments of glomerulonephritis and chronic renal failure: Review and recommendations for research. J. Pharm. Phyt., 3, 124–136
[29]
Knox, C., Law, V., Jewison, T., Liu, P., Ly, S., Frolkis, A., Pon, A., Banco, K., Mak, C., Neveu, V., et al. (2011) DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res., 39, D1035–D1041
CrossRef Pubmed Google scholar
[30]
Kuhn, M., Szklarczyk, D., Franceschini, A., von Mering, C., Jensen, L. J. and Bork, P. (2012) STITCH 3: zooming in on protein-chemical interactions. Nucleic Acids Res., 40, D876–D880
CrossRef Pubmed Google scholar
[31]
Peri, S., Navarro, J. D., Amanchy, R., Kristiansen, T. Z., Jonnalagadda, C. K., Surendranath, V., Niranjan, V., Muthusamy, B., Gandhi, T. K., Gronborg, M., et al. (2003) Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res., 13, 2363–2371
CrossRef Pubmed Google scholar
[32]
Bader, G. D., Donaldson, I., Wolting, C., Ouellette, B. F., Pawson, T. and Hogue, C. W. (2001) BIND — The Biomolecular Interaction Network Database. Nucleic Acids Res., 29, 242–245
CrossRef Pubmed Google scholar
[33]
Kerrien, S., Aranda, B., Breuza, L., Bridge, A., Broackes-Carter, F., Chen, C., Duesbury, M., Dumousseau, M., Feuermann, M., Hinz, U., et al. (2012) The IntAct molecular interaction database in 2012. Nucleic Acids Res., 40, D841–D846
CrossRef Pubmed Google scholar
[34]
Licata, L., Briganti, L., Peluso, D., Perfetto, L., Iannuccelli, M., Galeota, E., Sacco, F., Palma, A., Nardozza, A. P., Santonico, E., et al. (2012) MINT, the molecular interaction database: 2012 update. Nucleic Acids Res., 40, D857–D861
CrossRef Pubmed Google scholar
[35]
Brown, K. R. and Jurisica, I. (2005) Online predicted human interaction database. Bioinformatics, 21, 2076–2082
CrossRef Pubmed Google scholar
[36]
Szaszák, M., Chen, H.-D., Chen, H.-C., Baukal, A., Hunyady, L. and Catt, K. J. (2008) Identification of the invariant chain (CD74) as an angiotensin AGTR1-interacting protein. J. Endocrinol., 199, 165– 176
CrossRef Pubmed Google scholar
[37]
Basile, D. P., Liapis, H. and Hammerman, M. R. (1997) Expression of bcl-2 and bax in regenerating rat renal tubules following ischemic injury. Am. J. Physiol., 272, F640–F647
Pubmed
[38]
Zhou, H., Miyaji, T., Kato, A., Fujigaki, Y., Sano, K. and Hishida, A. (1999) Attenuation of cisplatin-induced acute renal failure is associated with less apoptotic cell death. J. Lab. Clin. Med., 134, 649–658
CrossRef Pubmed Google scholar
[39]
Qiu, L.-Q., Sinniah, R. and I-Hong Hsu, S. (2004) Downregulation of Bcl-2 by podocytes is associated with progressive glomerular injury and clinical indices of poor renal prognosis in human IgA nephropathy. J. Am. Soc. Nephrol., 15, 79–90
CrossRef Pubmed Google scholar
[40]
Harris, R. C. (2006) COX-2 and the kidney. J. Cardiovasc. Pharmacol., 47, S37–S42
CrossRef Pubmed Google scholar
[41]
Fujihara, C. K., Antunes, G. R., Mattar, A. L., Andreoli, N., Malheiros, D. M., Noronha, I. L., Zatz, R. and Zatz, R. (2003) Cyclooxygenase-2 (COX-2) inhibition limits abnormal COX-2 expression and progressive injury in the remnant kidney. Kidney Int., 64, 2172–2181
CrossRef Pubmed Google scholar
[42]
Kondor, R. I. and Lafferty, J. D. (2002) Diffusion kernels on graphs and other discrete input spaces. Proceedings, ICML, 2, 315–322 
[43]
Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA, 102, 15545–15550
CrossRef Pubmed Google scholar
[44]
Chang, C.-C. and Lin, C.-J. (2011) LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol., 2, 27nbsp;
CrossRef Google scholar
[45]
Lin, C.-J. and Weng, R. C. (2004) Simple probabilistic predictions for support vector regression. Technical report, National Taiwan University, Taipei. 

ACKNOWLEDGEMENTS

This work is supported by National Natural Science Foundation of China (Nos. 81225025 and 91229201), and Tsinghua National Laboratory of Information Science and Technology (TNLIST) Big Data Grant.
COMPLIANCE WITH ETHICS GUIDELINES
The authors Rui Li, Ting Chen and Shao Li declare they have no conflict of interests.ƒThis article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(930 KB)

Accesses

Citations

Detail

Sections
Recommended

/