Cis-acting regulatory elements: from random screening to quantitative design

Hailin Meng, Yong Wang

PDF(620 KB)
PDF(620 KB)
Quant. Biol. ›› 2015, Vol. 3 ›› Issue (3) : 107-114. DOI: 10.1007/s40484-015-0050-1
REVIEW
REVIEW

Cis-acting regulatory elements: from random screening to quantitative design

Author information +
History +

Abstract

The cis-acting regulatory elements, e.g., promoters and ribosome binding sites (RBSs) with various desired properties, are building blocks widely used in synthetic biology for fine tuning gene expression. In the last decade, acquisition of a controllable regulatory element from a random library has been established and applied to control the protein expression and metabolic flux in different chassis cells. However, more rational strategies are still urgently needed to improve the efficiency and reduce the laborious screening and multifaceted characterizations. Building precise computational models that can predict the activity of regulatory elements and quantitatively design elements with desired strength have been demonstrated tremendous potentiality. Here, recent progress on construction of cis-acting regulatory element library and the quantitative predicting models for design of such elements are reviewed and discussed in detail.

Graphical abstract

Cite this article

Download citation ▾
Hailin Meng, Yong Wang. Cis-acting regulatory elements: from random screening to quantitative design. Quant. Biol., 2015, 3(3): 107‒114 https://doi.org/10.1007/s40484-015-0050-1

References

[1]
De Mey, M., Maertens, J., Lequeux, G. J., Soetaert, W. K. and Vandamme, E. J. (2007) Construction and model-based analysis of a promoter library for E. coli: an indispensable tool for metabolic engineering. BMC Biotechnol., 7, 34
CrossRef Pubmed Google scholar
[2]
Meng, H., Wang, J., Xiong, Z., Xu, F., Zhao, G. and Wang, Y. (2013) Quantitative design of regulatory elements based on high-precision strength prediction using artificial neural network. PLoS One, 8, e60288
CrossRef Pubmed Google scholar
[3]
Wang, J., Meng, H., Xiong, Z. and Wang, Y. (2013) Design and construction of artificial biological systems for complex natural products biosynthesis. Chinese J. Biotech. (in Chinese), 29, 1146–1160
Pubmed
[4]
Rhodius, V. A. and Mutalik, V. K. (2010) Predicting strength and function for promoters of the Escherichia coli alternative sigma factor, σE. Proc. Natl. Acad. Sci. USA, 107, 2854–2859
CrossRef Pubmed Google scholar
[5]
Salis, H. M., Mirsky, E. A. and Voigt, C. A. (2009) Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol., 27, 946–950
CrossRef Pubmed Google scholar
[6]
Canton, B., Labno, A. and Endy, D. (2008) Refinement and standardization of synthetic biological parts and devices. Nat. Biotechnol., 26, 787–793
CrossRef Pubmed Google scholar
[7]
Yuan, Y., Liu, B., Xie, P., Zhang, M. Q., Li, Y., Xie, Z. and Wang, X. (2015) Model-guided quantitative analysis of microRNA-mediated regulation on competing endogenous RNAs using a synthetic gene circuit. Proc. Natl. Acad. Sci. USA, 112, 3158–3163
CrossRef Pubmed Google scholar
[8]
Qi, L., Haurwitz, R. E., Shao, W., Doudna, J. A. and Arkin, A. P. (2012) RNA processing enables predictable programming of gene expression. Nat. Biotechnol., 30, 1002–1006
CrossRef Pubmed Google scholar
[9]
Alper, H., Fischer, C., Nevoigt, E. and Stephanopoulos, G. (2005) Tuning genetic control through promoter engineering. Proc. Natl. Acad. Sci. USA, 102, 12678–12683
CrossRef Pubmed Google scholar
[10]
Wong, W. W., Tsai, T. Y. and Liao, J. C. (2007) Single-cell zeroth-order protein degradation enhances the robustness of synthetic oscillator. Mol. Syst. Biol., 3, 130
CrossRef Pubmed Google scholar
[11]
Yamanishi, M., Ito, Y., Kintaka, R., Imamura, C., Katahira, S., Ikeuchi, A., Moriya, H. and Matsuyama, T. (2013) A genome-wide activity assessment of terminator regions in Saccharomyces cerevisiae provides a ″terminatome″ toolbox. ACS Synth. Biol., 2, 337–347
CrossRef Pubmed Google scholar
[12]
Siegl, T., Tokovenko, B., Myronovskyi, M. and Luzhetskyy, A. (2013) Design, construction and characterisation of a synthetic promoter library for fine-tuned gene expression in actinomycetes. Metab. Eng., 19, 98–106doi:10.1016/j.ymben.2013.07.006.
Pubmed
[13]
Qin, X., Qian, J., Yao, G., Zhuang, Y., Zhang, S. and Chu, J. (2011) GAP promoter library for fine-tuning of gene expression in Pichia pastoris. Appl. Environ. Microbiol., 77, 3600–3608
CrossRef Pubmed Google scholar
[14]
Mutalik, V. K., Guimaraes, J. C., Cambray, G., Lam, C., Christoffersen, M. J., Mai, Q. A., Tran, A. B., Paull, M., Keasling, J. D., Arkin, A. P., (2013) Precise and reliable gene expression via standard transcription and translation initiation elements. Nat. Methods, 10, 354–360
CrossRef Pubmed Google scholar
[15]
Brewster, R. C., Jones, D. L. and Phillips, R. (2012) Tuning promoter strength through RNA polymerase binding site design in Escherichia coli. PLoS Comput. Biol., 8, e1002811
CrossRef Pubmed Google scholar
[16]
Na, D., Lee, S. and Lee, D. (2010) Mathematical modeling of translation initiation for the estimation of its efficiency to computationally design mRNA sequences with desired expression levels in prokaryotes. BMC Syst. Biol., 4, 71
CrossRef Pubmed Google scholar
[17]
Juven-Gershon, T., Cheng, S. and Kadonaga, J. T. (2006) Rational design of a super core promoter that enhances gene expression. Nat. Methods, 3, 917–922
CrossRef Pubmed Google scholar
[18]
Vilar, J. M. (2010) Accurate prediction of gene expression by integration of DNA sequence statistics with detailed modeling of transcription regulation. Biophys. J., 99, 2408–2413
CrossRef Pubmed Google scholar
[19]
Na, D. and Lee, D. (2010) RBSDesigner: software for designing synthetic ribosome binding sites that yields a desired level of protein expression. Bioinformatics, 26, 2633–2634
CrossRef Pubmed Google scholar
[20]
Nishikata, K., Cox, R. S. 3rd, Shimoyama, S., Yoshida, Y., Matsui, M., Makita, Y. and Toyoda, T. (2014) Database construction for PromoterCAD: synthetic promoter design for mammals and plants. ACS Synth. Biol., 3, 192–196
CrossRef Pubmed Google scholar
[21]
Cox, R. S. 3rd, Nishikata, K., Shimoyama, S., Yoshida, Y., Matsui, M., Makita, Y. and Toyoda, T. (2013) PromoterCAD: Data-driven design of plant regulatory DNA. Nucleic Acids Res., 41, W569-W574
CrossRef Pubmed Google scholar
[22]
Ham, T. S., Dmytriv, Z., Plahar, H., Chen, J., Hillson, N. J. and Keasling, J. D. (2012) Design, implementation and practice of JBEI-ICE: an open source biological part registry platform and tools. Nucleic Acids Res., 40, e141
CrossRef Pubmed Google scholar
[23]
Jensen, P. R. and Hammer, K. (1998) Artificial promoters for metabolic optimization. Biotechnol. Bioeng., 58, 191–195
CrossRef Pubmed Google scholar
[24]
Jensen, P. R. and Hammer, K. (1998) The sequence of spacers between the consensus sequences modulates the strength of prokaryotic promoters. Appl. Environ. Microbiol., 64, 82–87
Pubmed
[25]
Andersen, H. W., Pedersen, M. B., Hammer, K. and Jensen, P. R. (2001) Lactate dehydrogenase has no control on lactate production but has a strong negative control on formate production in Lactococcus lactis. Eur. J. Biochem., 268, 6379–6389
CrossRef Pubmed Google scholar
[26]
Bakke, I., Berg, L., Aune, T. E., Brautaset, T., Sletta, H., Tøndervik, A. and Valla, S. (2009) Random mutagenesis of the PM promoter as a powerful strategy for improvement of recombinant-gene expression. Appl. Environ. Microbiol., 75, 2002–2011
CrossRef Pubmed Google scholar
[27]
Solem, C. and Jensen, P. R. (2002) Modulation of gene expression made easy. Appl. Environ. Microbiol., 68, 2397–2403
CrossRef Pubmed Google scholar
[28]
Solem, C., Koebmann, B. J. and Jensen, P. R. (2003) Glyceraldehyde-3-phosphate dehydrogenase has no control over glycolytic flux in Lactococcus lactis MG1363. J. Bacteriol., 185, 1564–1571
CrossRef Pubmed Google scholar
[29]
Curran, K. A., Morse, N. J., Markham, K. A., Wagman, A. M., Gupta, A. and Alper, H. S. (2015) Short synthetic terminators for improved heterologous gene expression in yeast. ACS Synth. Biol., 4, 824–832
CrossRef Pubmed Google scholar
[30]
De Mey, M., Maertens, J., Boogmans, S., Soetaert, W. K., Vandamme, E. J., Cunin, R. and Foulquié-Moreno, M. R. (2010) Promoter knock-in: a novel rational method for the fine tuning of genes. BMC Biotechnol., 10, 26
CrossRef Pubmed Google scholar
[31]
Stormo, G. D. (2000) DNA binding sites: representation and discovery. Bioinformatics, 16, 16–23
CrossRef Pubmed Google scholar
[32]
Kakumani, R., Devabhaktuni, V. and Ahmad, M. (2008) A two-stage neural network based technique for protein secondary structure prediction. Conf. Proc. IEEE Eng. Med. Biol. Soc., 2008, 1355–1358
Pubmed
[33]
Qu, W., Sui, H., Yang, B. and Qian, W. (2011) Improving protein secondary structure prediction using a multi-modal BP method. Comput. Biol. Med., 41, 946–959
CrossRef Pubmed Google scholar
[34]
Capriotti, E., Fariselli, P. and Casadio, R. (2004) A neural-network-based method for predicting protein stability changes upon single point mutations. Bioinformatics, 20, i63–i68
CrossRef Pubmed Google scholar
[35]
Koessler, D. R., Knisley, D. J., Knisley, J. and Haynes, T. (2010) A predictive model for secondary RNA structure using graph theory and a neural network. BMC Bioinformatics, 11, S21
CrossRef Pubmed Google scholar
[36]
Wang, J., Ungar, L. H., Tseng, H. and Hannenhalli, S. (2007) MetaProm: a neural network based meta-predictor for alternative human promoter prediction. BMC Genomics, 8, 374
CrossRef Pubmed Google scholar
[37]
Askary, A., Masoudi-Nejad, A., Sharafi, R., Mizbani, A., Parizi, S. N. and Purmasjedi, M. (2009) N4: a precise and highly sensitive promoter predictor using neural network fed by nearest neighbors. Genes Genet. Syst., 84, 425–430
CrossRef Pubmed Google scholar
[38]
de Avila E Silva, S., Gerhardt, G. J. and Echeverrigaray, S. (2011) Rules extraction from neural networks applied to the prediction and recognition of prokaryotic promoters. Genet. Mol. Biol., 34, 353–360
CrossRef Pubmed Google scholar
[39]
Lou, C., Stanton, B., Chen, Y. J., Munsky, B. and Voigt, C. A. (2012) Ribozyme-based insulator parts buffer synthetic circuits from genetic context. Nat. Biotechnol., 30, 1137–1142
CrossRef Pubmed Google scholar

ACKNOWLEDGEMENTS

This work was supported by the National Basic Research Program of China (973 Program, grant No. 2012CB721104), the National High Technology Research and Development Program (863 Program, grant No. 2012AA02A701), the National Natural Science Foundation of China (grant Nos. 31170101 and 31301017), and the Natural Science Foundation of Guangdong Province, China (grant No. 2015A030310317).
COMPLIANCE WITH ETHICS GUIDELINES
The authors Hailin Meng and Yong Wang declare they have no conflict of interests.
This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2015 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(620 KB)

Accesses

Citations

Detail

Sections
Recommended

/