Multiple functional linear model for association analysis of RNA-seq with imaging

Junhai Jiang, Nan Lin, Shicheng Guo, Jinyun Chen, Momiao Xiong

PDF(1380 KB)
PDF(1380 KB)
Quant. Biol. ›› 2015, Vol. 3 ›› Issue (2) : 90-102. DOI: 10.1007/s40484-015-0048-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Multiple functional linear model for association analysis of RNA-seq with imaging

Author information +
History +

Abstract

Emerging integrative analysis of genomic and anatomical imaging data which has not been well developed, provides invaluable information for the holistic discovery of the genomic structure of disease and has the potential to open a new avenue for discovering novel disease susceptibility genes which cannot be identified if they are analyzed separately. A key issue to the success of imaging and genomic data analysis is how to reduce their dimensions. Most previous methods for imaging information extraction and RNA-seq data reduction do not explore imaging spatial information and often ignore gene expression variation at the genomic positional level. To overcome these limitations, we extend functional principle component analysis from one dimension to two dimensions (2DFPCA) for representing imaging data and develop a multiple functional linear model (MFLM) in which functional principal scores of images are taken as multiple quantitative traits and RNA-seq profile across a gene is taken as a function predictor for assessing the association of gene expression with images. The developed method has been applied to image and RNA-seq data of ovarian cancer and kidney renal clear cell carcinoma (KIRC) studies. We identified 24 and 84 genes whose expressions were associated with imaging variations in ovarian cancer and KIRC studies, respectively. Our results showed that many significantly associated genes with images were not differentially expressed, but revealed their morphological and metabolic functions. The results also demonstrated that the peaks of the estimated regression coefficient function in the MFLM often allowed the discovery of splicing sites and multiple isoforms of gene expressions.

Graphical abstract

Keywords

imaging / RNA-seq / imaging genomics / functional principal component analysis / functional linear model

Cite this article

Download citation ▾
Junhai Jiang, Nan Lin, Shicheng Guo, Jinyun Chen, Momiao Xiong. Multiple functional linear model for association analysis of RNA-seq with imaging. Quant. Biol., 2015, 3(2): 90‒102 https://doi.org/10.1007/s40484-015-0048-8

References

[1]
Hibar, D. P., Kohannim, O., Stein, J. L., Chiang, M. C. and Thompson, P. M. (2011) Multilocus genetic analysis of brain images. Front. Genet., 2, 73
CrossRef Pubmed Google scholar
[2]
Liu, J. and Calhoun, V. D. (2014) A review of multivariate analyses in imaging genetics. Front. Neuroinform., 8, 29
CrossRef Pubmed Google scholar
[3]
Stingo, F. C., Guindani, M., Vannucci, M. and Calhoun, V. D. (2013) An integrative Bayesian modeling approach to imaging genetics. J. Am. Stat. Assoc., 108, 876
CrossRef Pubmed Google scholar
[4]
Chi, E. C., Allen, G. I., Zhou, H., Kohannim, O., Lange, K. and Thompson, P. M. (2013) Imagine genetics via sparse canonical correlation analysis. Proceedings / IEEE International Symposium on Biomedical Imaging: from nano to macro IEEE International Symposium on Biomedical Imaging., 740–743.
[5]
Burges, C. J. C. (2010) Dimension reduction: A guided tour. Found. Trends Mach. Learn., 2, 275–365
CrossRef Google scholar
[6]
Gupta, M. R. and Jacobson, N. N. P. (2006) Wavelet principal component analysis and its application to hyperspectral images. In IEEE Int. Conf. Image Processing, 1585–1588.
[7]
Ramsay, J. O. and Silverman, B. W. (2005) Functional Data Analysis. 2nd edition. Heidelberg: Springer, 147–172.
[8]
Ray, M. and Zhang, W. (2009) Integrating gene expression and phenotypic information to analyze Alzheimer’s disease. J. Alzheimers Dis., 16, 73–84
Pubmed
[9]
Wu, T., Sun, W., Yuan, S., Chen, C. H. and Li, K. C. (2008) A method for analyzing censored survival phenotype with gene expression data. BMC Bioinformatics, 9, 417
CrossRef Pubmed Google scholar
[10]
Sun, Z. and Zhu, Y. (2012) Systematic comparison of RNA-Seq normalization methods using measurement error models. Bioinformatics, 28, 2584–2591
CrossRef Pubmed Google scholar
[11]
Anders, S., Reyes, A. and Huber, W. (2012) Detecting differential usage of exons from RNA-seq data. Genome Res., 22, 2008–2017
CrossRef Pubmed Google scholar
[12]
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., and 1000 Genome Project Data Processing Subgroup. (2009) The sequence alignment/map format and SAMtools. Bioinformatics, 25, 2078–2079
CrossRef Pubmed Google scholar
[13]
Delhomme, N., Padioleau, I., Furlong, E. E. and Steinmetz, L. M. (2012) easyRNASeq: a bioconductor package for processing RNA-Seq data. Bioinformatics, 28, 2532–2533
CrossRef Pubmed Google scholar
[14]
Lowe, D. G. (1999) Object recognition from local scale-invariant features. The Proceedings of the Seventh IEEE International Conference on Computer Vision, 2, 1150–1157.
[15]
Wu, K., Zhang, L., Lin, Y., Yang, K. and Cheng, Y. (2014) Inhibition of γ-secretase induces G2/M arrest and triggers apoptosis in renal cell carcinoma. Oncol Lett, 8, 55–61
Pubmed
[16]
Williams, J. M., Johnson, A. C., Stelloh, C., Dreisbach, A. W., Franceschini, N., Regner, K. R., Townsend, R. R., Roman, R. J. and Garrett, M. R. (2012) Genetic variants in Arhgef11 are associated with kidney injury in the Dahl salt-sensitive rat. Hypertension, 60, 1157–1168
CrossRef Pubmed Google scholar
[17]
Zhang, G., Liu, R., Zhong, Y., Plotnikov, A. N., Zhang, W., Zeng, L., Rusinova, E., Gerona-Nevarro, G., Moshkina, N., Joshua, J., (2012) Down-regulation of NF-κB transcriptional activity in HIV-associated kidney disease by BRD4 inhibition. J. Biol. Chem., 287, 28840–28851
CrossRef Pubmed Google scholar
[18]
Hernandez, P. and Tirnauer, J. S. (2010) Tumor suppressor interactions with microtubules: keeping cell polarity and cell division on track. Dis. Model. Mech., 3, 304–315
CrossRef Pubmed Google scholar
[19]
Liu, R., Loraine, A. E. and Dickerson, J. A. (2014) Comparisons of computational methods for differential alternative splicing detection using RNA-seq in plant systems. BMC Bioinformatics, 15, 364
CrossRef Pubmed Google scholar
[20]
Wang, W., Qin, Z., Feng, Z., Wang, X. and Zhang, X. (2013) Identifying differentially spliced genes from two groups of RNA-seq samples. Gene, 518, 164–170
CrossRef Pubmed Google scholar
[21]
Rasetti, R. and Weinberger, D. R. (2011) Intermediate phenotypes in psychiatric disorders. Curr. Opin. Genet. Dev., 21, 340–348
CrossRef Pubmed Google scholar
[22]
Della Peruta, M., Martinelli, G., Moratti, E., Pintani, D., Vezzalini, M., Mafficini, A., Grafone, T., Iacobucci, I., Soverini, S., Murineddu, M., (2010) Protein tyrosine phosphatase receptor type γ is a functional tumor suppressor gene specifically downregulated in chronic myeloid leukemia. Cancer Res., 70, 8896–8906
CrossRef Pubmed Google scholar
[23]
van Niekerk, C. C. and Poels, L. G. (1999) Reduced expression of protein tyrosine phosphatase gamma in lung and ovarian tumors. Cancer Lett., 137, 61–73
CrossRef Pubmed Google scholar
[24]
D’Ambrogio, A., Nagaoka, K. and Richter, J. D. (2013) Translational control of cell growth and malignancy by the CPEBs. Nat. Rev. Cancer, 13, 283–290
CrossRef Pubmed Google scholar
[25]
Hansen, C. N., Ketabi, Z., Rosenstierne, M. W., Palle, C., Boesen, H. C. and Norrild, B. (2009) Expression of CPEB, GAPDH and U6snRNA in cervical and ovarian tissue during cancer development. APMIS, 117, 53–59
CrossRef Pubmed Google scholar
[26]
Ooishi, R., Shirai, M., Funaba, M. and Murakami, M. (2012) Microphthalmia-associated transcription factor is required for mature myotube formation. Biochim. Biophys. Acta, 1820, 76–83
CrossRef Pubmed Google scholar
[27]
Senchenko, V. N., Liu, J., Loginov, W., Bazov, I., Angeloni, D., Seryogin, Y., Ermilova, V., Kazubskaya, T., Garkavtseva, R., Zabarovska, V. I., (2004) Discovery of frequent homozygous deletions in chromosome 3p21.3 LUCA and AP20 regions in renal, lung and breast carcinomas. Oncogene, 23, 5719–5728
CrossRef Pubmed Google scholar
[28]
Wu, K., Zhang, L., Lin, Y., Yang, K. and Cheng, Y. (2014) Inhibition of γ-secretase induces G2/M arrest and triggers apoptosis in renal cell carcinoma. Oncol Lett, 8, 55–61
Pubmed
[29]
Williams, J. M., Johnson, A. C., Stelloh, C., Dreisbach, A. W., Franceschini, N., Regner, K. R., Townsend, R. R., Roman, R. J. and Garrett, M. R. (2012) Genetic variants in Arhgef11 are associated with kidney injury in the Dahl salt-sensitive rat. Hypertension, 60, 1157–1168
CrossRef Pubmed Google scholar
[30]
Gu, J., Wu, X., Dong, Q., Romeo, M. J., Lin, X., Gutkind, J. S. and Berman, D. M. (2006) A nonsynonymous single-nucleotide polymorphism in the PDZ-Rho guanine nucleotide exchange factor (Ser1416Gly) modulates the risk of lung cancer in Mexican Americans. Cancer, 106, 2707–2715
CrossRef Pubmed Google scholar
[31]
Rodriguez-Paredes, M., Martinez de Paz, A., Simó-Riudalbas, L., Sayols, S., Moutinho, C., Moran, S., Villanueva, A., Vázquez-Cedeira, M., Lazo, P. A., Carneiro, F., (2014) Gene amplification of the histone methyltransferase SETDB1 contributes to human lung tumorigenesis. Oncogene, 33, 2807–2813
CrossRef Pubmed Google scholar
[32]
Zhou, C., Chen, H., Han, L., Wang, A. and Chen, L. A. (2014) Identification of featured biomarkers in different types of lung cancer with DNA microarray. Mol. Biol. Rep., 41, 6357–6363
CrossRef Pubmed Google scholar
[33]
Knobel, P. A., Kotov, I. N., Felley-Bosco, E., Stahel, R. A. and Marti, T. M. (2011) Inhibition of REV3 expression induces persistent DNA damage and growth arrest in cancer cells. Neoplasia, 13, 961–970
CrossRef Pubmed Google scholar
[34]
Doles, J., Oliver, T. G., Cameron, E. R., Hsu, G., Jacks, T., Walker, G. C. and Hemann, M. T. (2010) Suppression of Rev3, the catalytic subunit of Polζ, sensitizes drug-resistant lung tumors to chemotherapy. Proc. Natl. Acad. Sci. USA, 107, 20786–20791
CrossRef Pubmed Google scholar
[35]
Varadi, V., Bevier, M., Grzybowska, E., Johansson, R., Enquist, K., Henriksson, R., Butkiewicz, D., Pamula-Pilat, J., Tecza, K., Hemminki, K., (2011) Genetic variation in genes encoding for polymerase ζ subunits associates with breast cancer risk, tumour characteristics and survival. Breast Cancer Res. Treat., 129, 235–245
CrossRef Pubmed Google scholar
[36]
Chantôme, A., Potier-Cartereau, M., Clarysse, L., Fromont, G., Marionneau-Lambot, S., Guéguinou, M., Pagès, J. C., Collin, C., Oullier, T., Girault, A., (2013) Pivotal role of the lipid Raft SK3-Orai1 complex in human cancer cell migration and bone metastases. Cancer Res., 73, 4852–4861
CrossRef Pubmed Google scholar
[37]
Ioana, M., Angelescu, C., Burada, F., Mixich, F., Riza, A., Dumitrescu, T., Alexandru, D., Ciurea, T., Cruce, M. and Saftoiu, A. (2010) MMR gene expression pattern in sporadic colorectal cancer. J Gastrointestin Liver Dis, 19, 155–159
Pubmed
[38]
Yan, Y., Yang, F. Q., Zhang, H. M., Li, J., Li, W., Wang, G. C., Che, J. P., Zheng, J. H. and Liu, M. (2014) Bromodomain 4 protein is a predictor of survival for urothelial carcinoma of bladder. Int. J. Clin. Exp. Pathol., 7, 4231–4238
Pubmed
[39]
Bokhari, A. A., Lee, L. R., Raboteau, D., Hamilton, C. A., Maxwell, G. L., Rodriguez, G. C. and Syed, V. (2014) Progesterone inhibits endometrial cancer invasiveness by inhibiting the TGFβ pathway. Cancer Prev. Res. (Phila.), 7, 1045–1055
CrossRef Pubmed Google scholar
[40]
Zhang, B., Jia, W. H., Matsuda, K., Kweon, S. S., Matsuo, K., Xiang, Y. B., Shin, A., Jee, S. H., Kim, D. H., Cai, Q., , (2014) Large-scale genetic study in East Asians identifies six new loci associated with colorectal cancer risk. Nat. Genet., 46, 533–542
CrossRef Pubmed Google scholar
[41]
Chen, X., Ran, Z. H., Tong, J. L., Nie, F., Zhu, M. M., Xu, X. T. and Xiao, S. D. (2011) RNA interference (RNAi) of Ufd1 protein can sensitize a hydroxycamptothecin-resistant colon cancer cell line SW1116/HCPT to hydroxycamptothecin. J. Dig. Dis., 12, 110–116
CrossRef Pubmed Google scholar
[42]
Hwang, J. and Pallas, D. C. (2014) STRIPAK complexes: structure, biological function, and involvement in human diseases. Int. J. Biochem. Cell Biol., 47, 118–148
CrossRef Pubmed Google scholar
[43]
Landau, W. M. and Liu, P. (2013) Dispersion estimation and its effect on test performance in RNA-seq data analysis: a simulation-based comparison of methods. PLoS One, 8, e81415
CrossRef Pubmed Google scholar
[44]
Birzele, F., Csaba, G. and Zimmer, R. (2008) Alternative splicing and protein structure evolution. Nucleic Acids Res., 36, 550–558
CrossRef Pubmed Google scholar
[45]
Shapiro, I. M., Cheng, A. W., Flytzanis, N. C., Balsamo, M., Condeelis, J. S., Oktay, M. H., Burge, C. B. and Gertler, F. B. (2011) An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype. PLoS Genet., 7, e1002218
CrossRef Pubmed Google scholar
[46]
Siegel, R., Naishadham, D. and Jemal, A. (2012) Cancer statistics, 2012. CA Cancer J. Clin., 62, 10–29
CrossRef Pubmed Google scholar
[47]
Li, M., Fu, W., Wo, L., Shu, X., Liu, F. and Li, C. (2013) miR-128 and its target genes in tumorigenesis and metastasis. Exp. Cell Res., 319, 3059–3064
CrossRef Pubmed Google scholar
[48]
Xu, L., Xiang, J., Shen, J., Zou, X., Zhai, S., Yin, Y., Li, P., Wang, X. and Sun, Q. (2013) Oncogenic MicroRNA-27a is a target for genistein in ovarian cancer cells. Anticancer. Agents Med. Chem., 13, 1126–1132
CrossRef Pubmed Google scholar
[49]
Ohyagi-Hara, C., Sawada, K., Kamiura, S., Tomita, Y., Isobe, A., Hashimoto, K., Kinose, Y., Mabuchi, S., Hisamatsu, T., Takahashi, T., (2013) miR-92a inhibits peritoneal dissemination of ovarian cancer cells by inhibiting integrin α5 expression. Am. J. Pathol., 182, 1876–1889
CrossRef Pubmed Google scholar
[50]
Corney, D. C., Hwang, C. I., Matoso, A., Vogt, M., Flesken-Nikitin, A., Godwin, A. K., Kamat, A. A., Sood, A. K., Ellenson, L. H., Hermeking, H., (2010) Frequent downregulation of miR-34 family in human ovarian cancers. Clin. Cancer Res., 16, 1119–1128
CrossRef Pubmed Google scholar
[51]
Hansen, C. N., Ketabi, Z., Rosenstierne, M. W., Palle, C., Boesen, H. C. and Norrild, B. (2009) Expression of CPEB, GAPDH and U6snRNA in cervical and ovarian tissue during cancer development. APMIS, 117, 53–59
CrossRef Pubmed Google scholar
[52]
Park, J. H., Lee, C., Suh, J. H., Chae, J. Y. and Moon, K. C. (2013) Nuclear expression of Smad proteins and its prognostic significance in clear cell renal cell carcinoma. Hum. Pathol., 44, 2047–2054
CrossRef Pubmed Google scholar
[53]
Wu, K., Zhang, L., Lin, Y., Yang, K. and Cheng, Y. (2014) Inhibition of γ-secretase induces G2/M arrest and triggers apoptosis in renal cell carcinoma. Oncol Lett, 8, 55–61
Pubmed
[54]
Wu, L. N., Xue, Y. J., Zhang, L. J., Ma, X. M. and Chen, J. F. (2013) Si-RNA mediated knockdown of CELF1 gene suppressed the proliferation of human lung cancer cells. Cancer Cell Int., 13, 115
CrossRef Pubmed Google scholar
[55]
Sourbier, C., Lindner, V., Lang, H., Agouni, A., Schordan, E., Danilin, S., Rothhut, S., Jacqmin, D., Helwig, J. J. and Massfelder, T. (2006) The phosphoinositide 3-kinase/Akt pathway: a new target in human renal cell carcinoma therapy. Cancer Res., 66, 5130–5142
CrossRef Pubmed Google scholar
[56]
Sourbier, C., Danilin, S., Lindner, V., Steger, J., Rothhut, S., Meyer, N., Jacqmin, D., Helwig, J. J., Lang, H. and Massfelder, T. (2007) Targeting the nuclear factor-kappaB rescue pathway has promising future in human renal cell carcinoma therapy. Cancer Res., 67, 11668–11676
CrossRef Pubmed Google scholar
[57]
Huang, D., Ding, Y., Luo, W. M., Bender, S., Qian, C. N., Kort, E., Zhang, Z. F., VandenBeldt, K., Duesbery, N. S., Resau, J. H., (2008) Inhibition of MAPK kinase signaling pathways suppressed renal cell carcinoma growth and angiogenesis in vivo. Cancer Res., 68, 81–88
CrossRef Pubmed Google scholar
[58]
Dormoy, V., Danilin, S., Lindner, V., Thomas, L., Rothhut, S., Coquard, C., Helwig, J.J., Jacqmin, D., Lang, H., Massfelder, T. (2009) The sonic hedgehog signaling pathway is reactivated in human renal cell carcinoma and plays orchestral role in tumor growth. Mol. Cancer, 8, 123.2803450.
[59]
Huang, D. W., Sherman, B. T., Tan, Q., Kir, J., Liu, D., Bryant, D., Guo, Y., Stephens, R., Baseler, M. W., Lane, H. C., (2007) DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res., 35, W169–175
CrossRef Pubmed Google scholar
[60]
Sagan, H. (1969) Introduction to the Calculus of Variations. New York: Dover Publications, Inc.

ACKNOWLEDGEMENTS

The project described was supported by grants 1R01AR057120–01, 1R01HL106034-01 and 1R01 MH101054 from the National Institutes of Health, NHLBI and NIMH, respectively. The authors wish to acknowledge the contributions of the research institutions, study investigators, field staff and study participants in creating the TCGA datasets for biomedical research.
COMPLIANCE WITH ETHICS GUIDELINES
The authors Junhai Jiang, Nan Lin, Shicheng Guo, Jinyun Chen and Momiao Xiong declare that they have no conflict of interest.
Junhai Jiang, Nan Lin, Shicheng Guo, Jinyun Chen and Momiao Xiong conformed to the Helsinki Declaration of 1875, as revised in 2000(5) concerning Human and Animal Rights, and that they followed out policy concerning Informed Consent as shown on Springer.com.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1380 KB)

Accesses

Citations

Detail

Sections
Recommended

/