Multiple functional linear model for association analysis of RNA-seq with imaging

Junhai Jiang , Nan Lin , Shicheng Guo , Jinyun Chen , Momiao Xiong

Quant. Biol. ›› 2015, Vol. 3 ›› Issue (2) : 90 -102.

PDF (1380KB)
Quant. Biol. ›› 2015, Vol. 3 ›› Issue (2) : 90 -102. DOI: 10.1007/s40484-015-0048-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Multiple functional linear model for association analysis of RNA-seq with imaging

Author information +
History +
PDF (1380KB)

Abstract

Emerging integrative analysis of genomic and anatomical imaging data which has not been well developed, provides invaluable information for the holistic discovery of the genomic structure of disease and has the potential to open a new avenue for discovering novel disease susceptibility genes which cannot be identified if they are analyzed separately. A key issue to the success of imaging and genomic data analysis is how to reduce their dimensions. Most previous methods for imaging information extraction and RNA-seq data reduction do not explore imaging spatial information and often ignore gene expression variation at the genomic positional level. To overcome these limitations, we extend functional principle component analysis from one dimension to two dimensions (2DFPCA) for representing imaging data and develop a multiple functional linear model (MFLM) in which functional principal scores of images are taken as multiple quantitative traits and RNA-seq profile across a gene is taken as a function predictor for assessing the association of gene expression with images. The developed method has been applied to image and RNA-seq data of ovarian cancer and kidney renal clear cell carcinoma (KIRC) studies. We identified 24 and 84 genes whose expressions were associated with imaging variations in ovarian cancer and KIRC studies, respectively. Our results showed that many significantly associated genes with images were not differentially expressed, but revealed their morphological and metabolic functions. The results also demonstrated that the peaks of the estimated regression coefficient function in the MFLM often allowed the discovery of splicing sites and multiple isoforms of gene expressions.

Graphical abstract

Keywords

imaging / RNA-seq / imaging genomics / functional principal component analysis / functional linear model

Cite this article

Download citation ▾
Junhai Jiang, Nan Lin, Shicheng Guo, Jinyun Chen, Momiao Xiong. Multiple functional linear model for association analysis of RNA-seq with imaging. Quant. Biol., 2015, 3(2): 90-102 DOI:10.1007/s40484-015-0048-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hibar, D. P., Kohannim, O., Stein, J. L., Chiang, M. C. and Thompson, P. M. (2011) Multilocus genetic analysis of brain images. Front. Genet., 2, 73

[2]

Liu, J. and Calhoun, V. D. (2014) A review of multivariate analyses in imaging genetics. Front. Neuroinform., 8, 29

[3]

Stingo, F. C., Guindani, M., Vannucci, M. and Calhoun, V. D. (2013) An integrative Bayesian modeling approach to imaging genetics. J. Am. Stat. Assoc., 108, 876

[4]

Chi, E. C., Allen, G. I., Zhou, H., Kohannim, O., Lange, K. and Thompson, P. M. (2013) Imagine genetics via sparse canonical correlation analysis. Proceedings / IEEE International Symposium on Biomedical Imaging: from nano to macro IEEE International Symposium on Biomedical Imaging., 740–743.

[5]

Burges, C. J. C. (2010) Dimension reduction: A guided tour. Found. Trends Mach. Learn., 2, 275–365

[6]

Gupta, M. R. and Jacobson, N. N. P. (2006) Wavelet principal component analysis and its application to hyperspectral images. In IEEE Int. Conf. Image Processing, 1585–1588.

[7]

Ramsay, J. O. and Silverman, B. W. (2005) Functional Data Analysis. 2nd edition. Heidelberg: Springer, 147–172.

[8]

Ray, M. and Zhang, W. (2009) Integrating gene expression and phenotypic information to analyze Alzheimer’s disease. J. Alzheimers Dis., 16, 73–84

[9]

Wu, T., Sun, W., Yuan, S., Chen, C. H. and Li, K. C. (2008) A method for analyzing censored survival phenotype with gene expression data. BMC Bioinformatics, 9, 417

[10]

Sun, Z. and Zhu, Y. (2012) Systematic comparison of RNA-Seq normalization methods using measurement error models. Bioinformatics, 28, 2584–2591

[11]

Anders, S., Reyes, A. and Huber, W. (2012) Detecting differential usage of exons from RNA-seq data. Genome Res., 22, 2008–2017

[12]

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., and 1000 Genome Project Data Processing Subgroup. (2009) The sequence alignment/map format and SAMtools. Bioinformatics, 25, 2078–2079

[13]

Delhomme, N., Padioleau, I., Furlong, E. E. and Steinmetz, L. M. (2012) easyRNASeq: a bioconductor package for processing RNA-Seq data. Bioinformatics, 28, 2532–2533

[14]

Lowe, D. G. (1999) Object recognition from local scale-invariant features. The Proceedings of the Seventh IEEE International Conference on Computer Vision, 2, 1150–1157.

[15]

Wu, K., Zhang, L., Lin, Y., Yang, K. and Cheng, Y. (2014) Inhibition of γ-secretase induces G2/M arrest and triggers apoptosis in renal cell carcinoma. Oncol Lett, 8, 55–61

[16]

Williams, J. M., Johnson, A. C., Stelloh, C., Dreisbach, A. W., Franceschini, N., Regner, K. R., Townsend, R. R., Roman, R. J. and Garrett, M. R. (2012) Genetic variants in Arhgef11 are associated with kidney injury in the Dahl salt-sensitive rat. Hypertension, 60, 1157–1168

[17]

Zhang, G., Liu, R., Zhong, Y., Plotnikov, A. N., Zhang, W., Zeng, L., Rusinova, E., Gerona-Nevarro, G., Moshkina, N., Joshua, J., (2012) Down-regulation of NF-κB transcriptional activity in HIV-associated kidney disease by BRD4 inhibition. J. Biol. Chem., 287, 28840–28851

[18]

Hernandez, P. and Tirnauer, J. S. (2010) Tumor suppressor interactions with microtubules: keeping cell polarity and cell division on track. Dis. Model. Mech., 3, 304–315

[19]

Liu, R., Loraine, A. E. and Dickerson, J. A. (2014) Comparisons of computational methods for differential alternative splicing detection using RNA-seq in plant systems. BMC Bioinformatics, 15, 364

[20]

Wang, W., Qin, Z., Feng, Z., Wang, X. and Zhang, X. (2013) Identifying differentially spliced genes from two groups of RNA-seq samples. Gene, 518, 164–170

[21]

Rasetti, R. and Weinberger, D. R. (2011) Intermediate phenotypes in psychiatric disorders. Curr. Opin. Genet. Dev., 21, 340–348

[22]

Della Peruta, M., Martinelli, G., Moratti, E., Pintani, D., Vezzalini, M., Mafficini, A., Grafone, T., Iacobucci, I., Soverini, S., Murineddu, M., (2010) Protein tyrosine phosphatase receptor type γ is a functional tumor suppressor gene specifically downregulated in chronic myeloid leukemia. Cancer Res., 70, 8896–8906

[23]

van Niekerk, C. C. and Poels, L. G. (1999) Reduced expression of protein tyrosine phosphatase gamma in lung and ovarian tumors. Cancer Lett., 137, 61–73

[24]

D’Ambrogio, A., Nagaoka, K. and Richter, J. D. (2013) Translational control of cell growth and malignancy by the CPEBs. Nat. Rev. Cancer, 13, 283–290

[25]

Hansen, C. N., Ketabi, Z., Rosenstierne, M. W., Palle, C., Boesen, H. C. and Norrild, B. (2009) Expression of CPEB, GAPDH and U6snRNA in cervical and ovarian tissue during cancer development. APMIS, 117, 53–59

[26]

Ooishi, R., Shirai, M., Funaba, M. and Murakami, M. (2012) Microphthalmia-associated transcription factor is required for mature myotube formation. Biochim. Biophys. Acta, 1820, 76–83

[27]

Senchenko, V. N., Liu, J., Loginov, W., Bazov, I., Angeloni, D., Seryogin, Y., Ermilova, V., Kazubskaya, T., Garkavtseva, R., Zabarovska, V. I., (2004) Discovery of frequent homozygous deletions in chromosome 3p21.3 LUCA and AP20 regions in renal, lung and breast carcinomas. Oncogene, 23, 5719–5728

[28]

Wu, K., Zhang, L., Lin, Y., Yang, K. and Cheng, Y. (2014) Inhibition of γ-secretase induces G2/M arrest and triggers apoptosis in renal cell carcinoma. Oncol Lett, 8, 55–61

[29]

Williams, J. M., Johnson, A. C., Stelloh, C., Dreisbach, A. W., Franceschini, N., Regner, K. R., Townsend, R. R., Roman, R. J. and Garrett, M. R. (2012) Genetic variants in Arhgef11 are associated with kidney injury in the Dahl salt-sensitive rat. Hypertension, 60, 1157–1168

[30]

Gu, J., Wu, X., Dong, Q., Romeo, M. J., Lin, X., Gutkind, J. S. and Berman, D. M. (2006) A nonsynonymous single-nucleotide polymorphism in the PDZ-Rho guanine nucleotide exchange factor (Ser1416Gly) modulates the risk of lung cancer in Mexican Americans. Cancer, 106, 2707–2715

[31]

Rodriguez-Paredes, M., Martinez de Paz, A., Simó-Riudalbas, L., Sayols, S., Moutinho, C., Moran, S., Villanueva, A., Vázquez-Cedeira, M., Lazo, P. A., Carneiro, F., (2014) Gene amplification of the histone methyltransferase SETDB1 contributes to human lung tumorigenesis. Oncogene, 33, 2807–2813

[32]

Zhou, C., Chen, H., Han, L., Wang, A. and Chen, L. A. (2014) Identification of featured biomarkers in different types of lung cancer with DNA microarray. Mol. Biol. Rep., 41, 6357–6363

[33]

Knobel, P. A., Kotov, I. N., Felley-Bosco, E., Stahel, R. A. and Marti, T. M. (2011) Inhibition of REV3 expression induces persistent DNA damage and growth arrest in cancer cells. Neoplasia, 13, 961–970

[34]

Doles, J., Oliver, T. G., Cameron, E. R., Hsu, G., Jacks, T., Walker, G. C. and Hemann, M. T. (2010) Suppression of Rev3, the catalytic subunit of Polζ, sensitizes drug-resistant lung tumors to chemotherapy. Proc. Natl. Acad. Sci. USA, 107, 20786–20791

[35]

Varadi, V., Bevier, M., Grzybowska, E., Johansson, R., Enquist, K., Henriksson, R., Butkiewicz, D., Pamula-Pilat, J., Tecza, K., Hemminki, K., (2011) Genetic variation in genes encoding for polymerase ζ subunits associates with breast cancer risk, tumour characteristics and survival. Breast Cancer Res. Treat., 129, 235–245

[36]

Chantôme, A., Potier-Cartereau, M., Clarysse, L., Fromont, G., Marionneau-Lambot, S., Guéguinou, M., Pagès, J. C., Collin, C., Oullier, T., Girault, A., (2013) Pivotal role of the lipid Raft SK3-Orai1 complex in human cancer cell migration and bone metastases. Cancer Res., 73, 4852–4861

[37]

Ioana, M., Angelescu, C., Burada, F., Mixich, F., Riza, A., Dumitrescu, T., Alexandru, D., Ciurea, T., Cruce, M. and Saftoiu, A. (2010) MMR gene expression pattern in sporadic colorectal cancer. J Gastrointestin Liver Dis, 19, 155–159

[38]

Yan, Y., Yang, F. Q., Zhang, H. M., Li, J., Li, W., Wang, G. C., Che, J. P., Zheng, J. H. and Liu, M. (2014) Bromodomain 4 protein is a predictor of survival for urothelial carcinoma of bladder. Int. J. Clin. Exp. Pathol., 7, 4231–4238

[39]

Bokhari, A. A., Lee, L. R., Raboteau, D., Hamilton, C. A., Maxwell, G. L., Rodriguez, G. C. and Syed, V. (2014) Progesterone inhibits endometrial cancer invasiveness by inhibiting the TGFβ pathway. Cancer Prev. Res. (Phila.), 7, 1045–1055

[40]

Zhang, B., Jia, W. H., Matsuda, K., Kweon, S. S., Matsuo, K., Xiang, Y. B., Shin, A., Jee, S. H., Kim, D. H., Cai, Q., , (2014) Large-scale genetic study in East Asians identifies six new loci associated with colorectal cancer risk. Nat. Genet., 46, 533–542

[41]

Chen, X., Ran, Z. H., Tong, J. L., Nie, F., Zhu, M. M., Xu, X. T. and Xiao, S. D. (2011) RNA interference (RNAi) of Ufd1 protein can sensitize a hydroxycamptothecin-resistant colon cancer cell line SW1116/HCPT to hydroxycamptothecin. J. Dig. Dis., 12, 110–116

[42]

Hwang, J. and Pallas, D. C. (2014) STRIPAK complexes: structure, biological function, and involvement in human diseases. Int. J. Biochem. Cell Biol., 47, 118–148

[43]

Landau, W. M. and Liu, P. (2013) Dispersion estimation and its effect on test performance in RNA-seq data analysis: a simulation-based comparison of methods. PLoS One, 8, e81415

[44]

Birzele, F., Csaba, G. and Zimmer, R. (2008) Alternative splicing and protein structure evolution. Nucleic Acids Res., 36, 550–558

[45]

Shapiro, I. M., Cheng, A. W., Flytzanis, N. C., Balsamo, M., Condeelis, J. S., Oktay, M. H., Burge, C. B. and Gertler, F. B. (2011) An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype. PLoS Genet., 7, e1002218

[46]

Siegel, R., Naishadham, D. and Jemal, A. (2012) Cancer statistics, 2012. CA Cancer J. Clin., 62, 10–29

[47]

Li, M., Fu, W., Wo, L., Shu, X., Liu, F. and Li, C. (2013) miR-128 and its target genes in tumorigenesis and metastasis. Exp. Cell Res., 319, 3059–3064

[48]

Xu, L., Xiang, J., Shen, J., Zou, X., Zhai, S., Yin, Y., Li, P., Wang, X. and Sun, Q. (2013) Oncogenic MicroRNA-27a is a target for genistein in ovarian cancer cells. Anticancer. Agents Med. Chem., 13, 1126–1132

[49]

Ohyagi-Hara, C., Sawada, K., Kamiura, S., Tomita, Y., Isobe, A., Hashimoto, K., Kinose, Y., Mabuchi, S., Hisamatsu, T., Takahashi, T., (2013) miR-92a inhibits peritoneal dissemination of ovarian cancer cells by inhibiting integrin α5 expression. Am. J. Pathol., 182, 1876–1889

[50]

Corney, D. C., Hwang, C. I., Matoso, A., Vogt, M., Flesken-Nikitin, A., Godwin, A. K., Kamat, A. A., Sood, A. K., Ellenson, L. H., Hermeking, H., (2010) Frequent downregulation of miR-34 family in human ovarian cancers. Clin. Cancer Res., 16, 1119–1128

[51]

Hansen, C. N., Ketabi, Z., Rosenstierne, M. W., Palle, C., Boesen, H. C. and Norrild, B. (2009) Expression of CPEB, GAPDH and U6snRNA in cervical and ovarian tissue during cancer development. APMIS, 117, 53–59

[52]

Park, J. H., Lee, C., Suh, J. H., Chae, J. Y. and Moon, K. C. (2013) Nuclear expression of Smad proteins and its prognostic significance in clear cell renal cell carcinoma. Hum. Pathol., 44, 2047–2054

[53]

Wu, K., Zhang, L., Lin, Y., Yang, K. and Cheng, Y. (2014) Inhibition of γ-secretase induces G2/M arrest and triggers apoptosis in renal cell carcinoma. Oncol Lett, 8, 55–61

[54]

Wu, L. N., Xue, Y. J., Zhang, L. J., Ma, X. M. and Chen, J. F. (2013) Si-RNA mediated knockdown of CELF1 gene suppressed the proliferation of human lung cancer cells. Cancer Cell Int., 13, 115

[55]

Sourbier, C., Lindner, V., Lang, H., Agouni, A., Schordan, E., Danilin, S., Rothhut, S., Jacqmin, D., Helwig, J. J. and Massfelder, T. (2006) The phosphoinositide 3-kinase/Akt pathway: a new target in human renal cell carcinoma therapy. Cancer Res., 66, 5130–5142

[56]

Sourbier, C., Danilin, S., Lindner, V., Steger, J., Rothhut, S., Meyer, N., Jacqmin, D., Helwig, J. J., Lang, H. and Massfelder, T. (2007) Targeting the nuclear factor-kappaB rescue pathway has promising future in human renal cell carcinoma therapy. Cancer Res., 67, 11668–11676

[57]

Huang, D., Ding, Y., Luo, W. M., Bender, S., Qian, C. N., Kort, E., Zhang, Z. F., VandenBeldt, K., Duesbery, N. S., Resau, J. H., (2008) Inhibition of MAPK kinase signaling pathways suppressed renal cell carcinoma growth and angiogenesis in vivo. Cancer Res., 68, 81–88

[58]

Dormoy, V., Danilin, S., Lindner, V., Thomas, L., Rothhut, S., Coquard, C., Helwig, J.J., Jacqmin, D., Lang, H., Massfelder, T. (2009) The sonic hedgehog signaling pathway is reactivated in human renal cell carcinoma and plays orchestral role in tumor growth. Mol. Cancer, 8, 123.2803450.

[59]

Huang, D. W., Sherman, B. T., Tan, Q., Kir, J., Liu, D., Bryant, D., Guo, Y., Stephens, R., Baseler, M. W., Lane, H. C., (2007) DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res., 35, W169–175

[60]

Sagan, H. (1969) Introduction to the Calculus of Variations. New York: Dover Publications, Inc.

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1380KB)

Supplementary files

QB-15048-OF-XMM_suppl_1

QB-15048-XMM-FigureS1

QB-15048-XMM-FigureS2

QB-15048-XMM-FigureS3

QB-15048-XMM-FigureS4

QB-15048-XMM-FigureS5

QB-15048-XMM-TableS1

2388

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/