A novel method to identify topological domains using Hi-C data

Yang Wang, Yanjian Li, Juntao Gao, Michael Q. Zhang

PDF(1012 KB)
PDF(1012 KB)
Quant. Biol. ›› 2015, Vol. 3 ›› Issue (2) : 81-89. DOI: 10.1007/s40484-015-0047-9
RESEARCH ARTICLE
RESEARCH ARTICLE

A novel method to identify topological domains using Hi-C data

Author information +
History +

Abstract

Over the last decade the 3C-based (Chromosome Conformation Capture, 3C) approaches have been developed to describe the frequency of chromatin interaction. The invention of Hi-C allows us to obtain genome-wide chromatin interaction map. However, it is challenging to develop efficient and robust analytical tools to interpret the Hi-C data. Here we present a new method called Clustering based Hi-C Domain Finder (CHDF), which is based on the difference of interaction intensity inside/outside domains, to identify Hi-C domains. We also compared CHDF with existing methods including Direction Index (DI) and HiCseg. CHDF can define more chromatin domains validated by higher resolution local chromatin structure data (Chromosome Conformation Capture Carbon Copy (5C) data). Using Hi-C data of lower sequencing depth, chromatin structure identified by CHDF is closer to that discovered by data of higher sequencing depth. Furthermore, the implement of CHDF is faster than the other two. Using CHDF, we are potentially able to discover more hints and clues about chromatin structural elements at domain level.

Graphical abstract

Keywords

chromatin domain / Hi-C / dynamic programming

Cite this article

Download citation ▾
Yang Wang, Yanjian Li, Juntao Gao, Michael Q. Zhang. A novel method to identify topological domains using Hi-C data. Quant. Biol., 2015, 3(2): 81‒89 https://doi.org/10.1007/s40484-015-0047-9

References

[1]
Cremer, T. and Cremer, C. (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet., 2, 292–301
CrossRef Pubmed Google scholar
[2]
Dekker, J., Marti-Renom, M. A. and Mirny, L. A. (2013) Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet., 14, 390–403
CrossRef Pubmed Google scholar
[3]
Betzig, E., Trautman, J. K., Harris, T. D., Weiner, J. S. and Kostelak, R. L. (1991) Breaking the diffraction barrier: optical microscopy on a nanometric scale. Science, 251, 1468–1470
CrossRef Pubmed Google scholar
[4]
Bretschneider, S., Eggeling, C. and Hell, S. W. (2007) Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Phys. Rev. Lett., 98, 218103
CrossRef Pubmed Google scholar
[5]
Langer-Safer, P. R., Levine, M. and Ward, D. C. (1982) Immunological method for mapping genes on Drosophila polytene chromosomes. Proc. Natl. Acad. Sci. USA, 79, 4381–4385
CrossRef Pubmed Google scholar
[6]
Lichter, P., Tang, C. J., Call, K., Hermanson, G., Evans, G. A., Housman, D. and Ward, D. C. (1990) High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science, 247, 64–69
CrossRef Pubmed Google scholar
[7]
Nora, E. P., Lajoie, B. R., Schulz, E. G., Giorgetti, L., Okamoto, I., Servant, N., Piolot, T., van Berkum, N. L., Meisig, J., Sedat, J., (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature, 485, 381–385
CrossRef Pubmed Google scholar
[8]
Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S. and Ren, B. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 485, 376–380
CrossRef Pubmed Google scholar
[9]
Lévy-Leduc, C., Delattre, M., Mary-Huard, T. and Robin, S. (2014) Two-dimensional segmentation for analyzing Hi-C data. Bioinformatics, 30, i386–i392
CrossRef Pubmed Google scholar
[10]
Hu, M., Deng, K., Qin, Z., Dixon, J., Selvaraj, S., Fang, J., Ren, B. and Liu, J. S. (2013) Bayesian inference of spatial organizations of chromosomes. PLoS Comput. Biol., 9, e1002893
CrossRef Pubmed Google scholar
[11]
Tanizawa, H., Iwasaki, O., Tanaka, A., Capizzi, J. R., Wickramasinghe, P., Lee, M., Fu, Z. and Noma, K. (2010) Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation. Nucleic Acids Res., 38, 8164–8177
CrossRef Pubmed Google scholar
[12]
Duan, Z., Andronescu, M., Schutz, K., McIlwain, S., Kim, Y. J., Lee, C., Shendure, J., Fields, S., Blau, C. A. and Noble, W. S. (2010) A three-dimensional model of the yeast genome. Nature, 465, 363–367
CrossRef Pubmed Google scholar
[13]
Rao, S. S. P., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D., Robinson, J. T., Sanborn, A. L., Machol, I., Omer, A. D., Lander, E. S., (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell, 159, 1665–1680
CrossRef Pubmed Google scholar
[14]
Varoquaux, N., Ay, F., Noble, W. S. and Vert, J. P. (2014) A statistical approach for inferring the 3D structure of the genome. Bioinformatics, 30, i26–i33
CrossRef Pubmed Google scholar
[15]
Léger-Silvestre, I., Trumtel, S., Noaillac-Depeyre, J. and Gas, N. (1999) Functional compartmentalization of the nucleus in the budding yeast Saccharomyces cerevisiae. Chromosoma, 108, 103–113
CrossRef Pubmed Google scholar
[16]
Thompson, M., Haeusler, R. A., Good, P. D. and Engelke, D. R. (2003) Nucleolar clustering of dispersed tRNA genes. Science, 302, 1399–1401
CrossRef Pubmed Google scholar
[17]
Haeusler, R. A., Pratt-Hyatt, M., Good, P. D., Gipson, T. A. and Engelke, D. R. (2008) Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes. Genes Dev., 22, 2204–2214
CrossRef Pubmed Google scholar
[18]
Hoang, S. A. and Bekiranov, S. (2013) The network architecture of the Saccharomyces cerevisiae genome. PLoS One, 8, e81972
CrossRef Pubmed Google scholar
[19]
Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O., (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326, 289–293
CrossRef Pubmed Google scholar
[20]
Sexton, T., Yaffe, E., Kenigsberg, E., Bantignies, F., Leblanc, B., Hoichman, M., Parrinello, H., Tanay, A. and Cavalli, G. (2012) Three-dimensional folding and functional organization principles of the Drosophila genome. Cell, 148, 458–472
CrossRef Pubmed Google scholar
[21]
Dostie, J., Richmond, T. A., Arnaout, R. A., Selzer, R. R., Lee, W. L., Honan, T. A., Rubio, E. D., Krumm, A., Lamb, J., Nusbaum, C., (2006) Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res., 16, 1299–1309
CrossRef Pubmed Google scholar
[22]
Phillips-Cremins, J. E., Sauria, M. E. G., Sanyal, A., Gerasimova, T. I., Lajoie, B. R., Bell, J. S. K., Ong, C.-T., Hookway, T. A., Guo, C., Sun, Y., (2013) Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell, 153, 1281–1295
CrossRef Pubmed Google scholar
[23]
Williamson, I., Berlivet, S., Eskeland, R., Boyle, S., Illingworth, R. S., Paquette, D., Dostie, J. and Bickmore, W. A. (2014) Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization. Genes Dev., 28, 2778–2791
CrossRef Pubmed Google scholar
[24]
Handoko, L., Xu, H., Li, G., Ngan, C. Y., Chew, E., Schnapp, M., Lee, C. W. H., Ye, C., Ping, J. L. H., Mulawadi, F., (2011) CTCF-mediated functional chromatin interactome in pluripotent cells. Nat. Genet., 43, 630–638
CrossRef Pubmed Google scholar
[25]
Duggal, G., Wang, H. and Kingsford, C. (2014) Higher-order chromatin domains link eQTLs with the expression of far-away genes. Nucleic Acids Res., 42, 87–96
CrossRef Pubmed Google scholar
[26]
Gaffney, D. J., Veyrieras, J. B., Degner, J. F., Pique-Regi, R., Pai, A. A., Crawford, G. E., Stephens, M., Gilad, Y. and Pritchard, J. K. (2012) Dissecting the regulatory architecture of gene expression QTLs. Genome Biol., 13, R7
CrossRef Pubmed Google scholar
[27]
Dimas, A. S., Deutsch, S., Stranger, B. E., Montgomery, S. B., Borel, C., Attar-Cohen, H., Ingle, C., Beazley, C., Gutierrez Arcelus, M., Sekowska, M., (2009) Common regulatory variation impacts gene expression in a cell type-dependent manner. Science, 325, 1246–1250
CrossRef Pubmed Google scholar
[28]
Veyrieras, J. B., Kudaravalli, S., Kim, S. Y., Dermitzakis, E. T., Gilad, Y., Stephens, M. and Pritchard, J. K. (2008) High-resolution mapping of expression-QTLs yields insight into human gene regulation. PLoS Genet., 4, e1000214
CrossRef Pubmed Google scholar
[29]
Zeller, T., Wild, P., Szymczak, S., Rotival, M., Schillert, A., Castagne, R., Maouche, S., Germain, M., Lackner, K., Rossmann, H., (2010) Genetics and beyond—the transcriptome of human monocytes and disease susceptibility. PLoS One, 5, e10693
CrossRef Pubmed Google scholar
[30]
Myers, A. J., Gibbs, J. R., Webster, J. A., Rohrer, K., Zhao, A., Marlowe, L., Kaleem, M., Leung, D., Bryden, L., Nath, P., (2007) A survey of genetic human cortical gene expression. Nat. Genet., 39, 1494–1499
CrossRef Pubmed Google scholar
[31]
Schadt, E. E., Molony, C., Chudin, E., Hao, K., Yang, X., Lum, P. Y., Kasarskis, A., Zhang, B., Wang, S., Suver, C., (2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biol., 6, e107
CrossRef Pubmed Google scholar
[32]
Pickrell, J. K., Marioni, J. C., Pai, A. A., Degner, J. F., Engelhardt, B. E., Nkadori, E., Veyrieras, J. B., Stephens, M., Gilad, Y. and Pritchard, J. K. (2010) Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature, 464, 768–772
CrossRef Pubmed Google scholar
[33]
Stranger, B. E., Nica, A. C., Forrest, M. S., Dimas, A., Bird, C. P., Beazley, C., Ingle, C. E., Dunning, M., Flicek, P., Koller, D., (2007) Population genomics of human gene expression. Nat. Genet., 39, 1217–1224
CrossRef Pubmed Google scholar
[34]
Innocenti, F., Cooper, G. M., Stanaway, I. B., Gamazon, E. R., Smith, J. D., Mirkov, S., Ramirez, J., Liu, W., Lin, Y. S., Moloney, C., (2011) Identification, replication, and functional fine-mapping of expression quantitative trait loci in primary human liver tissue. PLoS Genet., 7, e1002078
CrossRef Pubmed Google scholar
[35]
Phillips-Cremins, J. E. (2014) Unraveling architecture of the pluripotent genome. Curr. Opin. Cell Biol., 28, 96–104
CrossRef Pubmed Google scholar
[36]
Bellman, R. and Kotkin, B. (1961) On the Approximation of Curves by Line Segments Using Dynamic Programming. Commun. ACM, 4, 284
CrossRef Google scholar
[37]
Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein, B. E., Nusbaum, C., Myers, R. M., Brown, M., Li, W., (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol., 9, R137
CrossRef Pubmed Google scholar
[38]
Kent, W. J., Sugnet, C. W., Furey, T. S., Roskin, K. M., Pringle, T. H., Zahler, A. M. and Haussler, D. (2002) The human genome browser at UCSC. Genome Res., 12, 996–1006
[39]
Ziebarth, J. D., Bhattacharya, A. and Cui, Y. (2013) CTCFBSDB 2.0: a database for CTCF-binding sites and genome organization. Nucleic Acids Res., 41, D188–D194
CrossRef Pubmed Google scholar
[40]
Yue, F., Cheng, Y., Breschi, A., Vierstra, J., Wu, W., Ryba, T., Sandstrom, R., Ma, Z., Davis, C., Pope, B. D., , (2014) A comparative encyclopedia of DNA elements in the mouse genome. Nature, 515, 355–364
CrossRef Pubmed Google scholar
[41]
Bernstein, B. E., Stamatoyannopoulos, J. A., Costello, J. F., Ren, B., Milosavljevic, A., Meissner, A., Kellis, M., Marra, M. A., Beaudet, A. L., Ecker, J. R., (2010) The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol., 28, 1045–1048
CrossRef Pubmed Google scholar
[42]
Li, H. and Durbin, R. (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25, 1754–1760
CrossRef Pubmed Google scholar
[43]
Yaffe, E. and Tanay, A. (2011) Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat. Genet., 43, 1059–1065
CrossRef Pubmed Google scholar

ACKNOWLEDGEMENTS

This work is supported by National Key Basic Research Project (973 program, 2012CB316503) and the National Natural Science Foundation of China (Nos. 31361163004 and 91019016).
COMPLIANCE WITH ETHICS GUIDELINES
The authors Yang Wang, Yanjian Li, Juntao Gao and Michael Q. Zhang declare they have no conflict of interest.
This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1012 KB)

Accesses

Citations

Detail

Sections
Recommended

/