A novel method to identify topological domains using Hi-C data
Yang Wang, Yanjian Li, Juntao Gao, Michael Q. Zhang
A novel method to identify topological domains using Hi-C data
Over the last decade the 3C-based (Chromosome Conformation Capture, 3C) approaches have been developed to describe the frequency of chromatin interaction. The invention of Hi-C allows us to obtain genome-wide chromatin interaction map. However, it is challenging to develop efficient and robust analytical tools to interpret the Hi-C data. Here we present a new method called Clustering based Hi-C Domain Finder (CHDF), which is based on the difference of interaction intensity inside/outside domains, to identify Hi-C domains. We also compared CHDF with existing methods including Direction Index (DI) and HiCseg. CHDF can define more chromatin domains validated by higher resolution local chromatin structure data (Chromosome Conformation Capture Carbon Copy (5C) data). Using Hi-C data of lower sequencing depth, chromatin structure identified by CHDF is closer to that discovered by data of higher sequencing depth. Furthermore, the implement of CHDF is faster than the other two. Using CHDF, we are potentially able to discover more hints and clues about chromatin structural elements at domain level.
chromatin domain / Hi-C / dynamic programming
[1] |
Cremer, T. and Cremer, C. (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet., 2, 292–301
CrossRef
Pubmed
Google scholar
|
[2] |
Dekker, J., Marti-Renom, M. A. and Mirny, L. A. (2013) Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat. Rev. Genet., 14, 390–403
CrossRef
Pubmed
Google scholar
|
[3] |
Betzig, E., Trautman, J. K., Harris, T. D., Weiner, J. S. and Kostelak, R. L. (1991) Breaking the diffraction barrier: optical microscopy on a nanometric scale. Science, 251, 1468–1470
CrossRef
Pubmed
Google scholar
|
[4] |
Bretschneider, S., Eggeling, C. and Hell, S. W. (2007) Breaking the diffraction barrier in fluorescence microscopy by optical shelving. Phys. Rev. Lett., 98, 218103
CrossRef
Pubmed
Google scholar
|
[5] |
Langer-Safer, P. R., Levine, M. and Ward, D. C. (1982) Immunological method for mapping genes on Drosophila polytene chromosomes. Proc. Natl. Acad. Sci. USA, 79, 4381–4385
CrossRef
Pubmed
Google scholar
|
[6] |
Lichter, P., Tang, C. J., Call, K., Hermanson, G., Evans, G. A., Housman, D. and Ward, D. C. (1990) High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science, 247, 64–69
CrossRef
Pubmed
Google scholar
|
[7] |
Nora, E. P., Lajoie, B. R., Schulz, E. G., Giorgetti, L., Okamoto, I., Servant, N., Piolot, T., van Berkum, N. L., Meisig, J., Sedat, J.,
CrossRef
Pubmed
Google scholar
|
[8] |
Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S. and Ren, B. (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature, 485, 376–380
CrossRef
Pubmed
Google scholar
|
[9] |
Lévy-Leduc, C., Delattre, M., Mary-Huard, T. and Robin, S. (2014) Two-dimensional segmentation for analyzing Hi-C data. Bioinformatics, 30, i386–i392
CrossRef
Pubmed
Google scholar
|
[10] |
Hu, M., Deng, K., Qin, Z., Dixon, J., Selvaraj, S., Fang, J., Ren, B. and Liu, J. S. (2013) Bayesian inference of spatial organizations of chromosomes. PLoS Comput. Biol., 9, e1002893
CrossRef
Pubmed
Google scholar
|
[11] |
Tanizawa, H., Iwasaki, O., Tanaka, A., Capizzi, J. R., Wickramasinghe, P., Lee, M., Fu, Z. and Noma, K. (2010) Mapping of long-range associations throughout the fission yeast genome reveals global genome organization linked to transcriptional regulation. Nucleic Acids Res., 38, 8164–8177
CrossRef
Pubmed
Google scholar
|
[12] |
Duan, Z., Andronescu, M., Schutz, K., McIlwain, S., Kim, Y. J., Lee, C., Shendure, J., Fields, S., Blau, C. A. and Noble, W. S. (2010) A three-dimensional model of the yeast genome. Nature, 465, 363–367
CrossRef
Pubmed
Google scholar
|
[13] |
Rao, S. S. P., Huntley, M. H., Durand, N. C., Stamenova, E. K., Bochkov, I. D., Robinson, J. T., Sanborn, A. L., Machol, I., Omer, A. D., Lander, E. S.,
CrossRef
Pubmed
Google scholar
|
[14] |
Varoquaux, N., Ay, F., Noble, W. S. and Vert, J. P. (2014) A statistical approach for inferring the 3D structure of the genome. Bioinformatics, 30, i26–i33
CrossRef
Pubmed
Google scholar
|
[15] |
Léger-Silvestre, I., Trumtel, S., Noaillac-Depeyre, J. and Gas, N. (1999) Functional compartmentalization of the nucleus in the budding yeast Saccharomyces cerevisiae. Chromosoma, 108, 103–113
CrossRef
Pubmed
Google scholar
|
[16] |
Thompson, M., Haeusler, R. A., Good, P. D. and Engelke, D. R. (2003) Nucleolar clustering of dispersed tRNA genes. Science, 302, 1399–1401
CrossRef
Pubmed
Google scholar
|
[17] |
Haeusler, R. A., Pratt-Hyatt, M., Good, P. D., Gipson, T. A. and Engelke, D. R. (2008) Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes. Genes Dev., 22, 2204–2214
CrossRef
Pubmed
Google scholar
|
[18] |
Hoang, S. A. and Bekiranov, S. (2013) The network architecture of the Saccharomyces cerevisiae genome. PLoS One, 8, e81972
CrossRef
Pubmed
Google scholar
|
[19] |
Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O.,
CrossRef
Pubmed
Google scholar
|
[20] |
Sexton, T., Yaffe, E., Kenigsberg, E., Bantignies, F., Leblanc, B., Hoichman, M., Parrinello, H., Tanay, A. and Cavalli, G. (2012) Three-dimensional folding and functional organization principles of the Drosophila genome. Cell, 148, 458–472
CrossRef
Pubmed
Google scholar
|
[21] |
Dostie, J., Richmond, T. A., Arnaout, R. A., Selzer, R. R., Lee, W. L., Honan, T. A., Rubio, E. D., Krumm, A., Lamb, J., Nusbaum, C.,
CrossRef
Pubmed
Google scholar
|
[22] |
Phillips-Cremins, J. E., Sauria, M. E. G., Sanyal, A., Gerasimova, T. I., Lajoie, B. R., Bell, J. S. K., Ong, C.-T., Hookway, T. A., Guo, C., Sun, Y.,
CrossRef
Pubmed
Google scholar
|
[23] |
Williamson, I., Berlivet, S., Eskeland, R., Boyle, S., Illingworth, R. S., Paquette, D., Dostie, J. and Bickmore, W. A. (2014) Spatial genome organization: contrasting views from chromosome conformation capture and fluorescence in situ hybridization. Genes Dev., 28, 2778–2791
CrossRef
Pubmed
Google scholar
|
[24] |
Handoko, L., Xu, H., Li, G., Ngan, C. Y., Chew, E., Schnapp, M., Lee, C. W. H., Ye, C., Ping, J. L. H., Mulawadi, F.,
CrossRef
Pubmed
Google scholar
|
[25] |
Duggal, G., Wang, H. and Kingsford, C. (2014) Higher-order chromatin domains link eQTLs with the expression of far-away genes. Nucleic Acids Res., 42, 87–96
CrossRef
Pubmed
Google scholar
|
[26] |
Gaffney, D. J., Veyrieras, J. B., Degner, J. F., Pique-Regi, R., Pai, A. A., Crawford, G. E., Stephens, M., Gilad, Y. and Pritchard, J. K. (2012) Dissecting the regulatory architecture of gene expression QTLs. Genome Biol., 13, R7
CrossRef
Pubmed
Google scholar
|
[27] |
Dimas, A. S., Deutsch, S., Stranger, B. E., Montgomery, S. B., Borel, C., Attar-Cohen, H., Ingle, C., Beazley, C., Gutierrez Arcelus, M., Sekowska, M.,
CrossRef
Pubmed
Google scholar
|
[28] |
Veyrieras, J. B., Kudaravalli, S., Kim, S. Y., Dermitzakis, E. T., Gilad, Y., Stephens, M. and Pritchard, J. K. (2008) High-resolution mapping of expression-QTLs yields insight into human gene regulation. PLoS Genet., 4, e1000214
CrossRef
Pubmed
Google scholar
|
[29] |
Zeller, T., Wild, P., Szymczak, S., Rotival, M., Schillert, A., Castagne, R., Maouche, S., Germain, M., Lackner, K., Rossmann, H.,
CrossRef
Pubmed
Google scholar
|
[30] |
Myers, A. J., Gibbs, J. R., Webster, J. A., Rohrer, K., Zhao, A., Marlowe, L., Kaleem, M., Leung, D., Bryden, L., Nath, P.,
CrossRef
Pubmed
Google scholar
|
[31] |
Schadt, E. E., Molony, C., Chudin, E., Hao, K., Yang, X., Lum, P. Y., Kasarskis, A., Zhang, B., Wang, S., Suver, C.,
CrossRef
Pubmed
Google scholar
|
[32] |
Pickrell, J. K., Marioni, J. C., Pai, A. A., Degner, J. F., Engelhardt, B. E., Nkadori, E., Veyrieras, J. B., Stephens, M., Gilad, Y. and Pritchard, J. K. (2010) Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature, 464, 768–772
CrossRef
Pubmed
Google scholar
|
[33] |
Stranger, B. E., Nica, A. C., Forrest, M. S., Dimas, A., Bird, C. P., Beazley, C., Ingle, C. E., Dunning, M., Flicek, P., Koller, D.,
CrossRef
Pubmed
Google scholar
|
[34] |
Innocenti, F., Cooper, G. M., Stanaway, I. B., Gamazon, E. R., Smith, J. D., Mirkov, S., Ramirez, J., Liu, W., Lin, Y. S., Moloney, C.,
CrossRef
Pubmed
Google scholar
|
[35] |
Phillips-Cremins, J. E. (2014) Unraveling architecture of the pluripotent genome. Curr. Opin. Cell Biol., 28, 96–104
CrossRef
Pubmed
Google scholar
|
[36] |
Bellman, R. and Kotkin, B. (1961) On the Approximation of Curves by Line Segments Using Dynamic Programming. Commun. ACM, 4, 284
CrossRef
Google scholar
|
[37] |
Zhang, Y., Liu, T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein, B. E., Nusbaum, C., Myers, R. M., Brown, M., Li, W.,
CrossRef
Pubmed
Google scholar
|
[38] |
Kent, W. J., Sugnet, C. W., Furey, T. S., Roskin, K. M., Pringle, T. H., Zahler, A. M. and Haussler, D. (2002) The human genome browser at UCSC. Genome Res., 12, 996–1006
|
[39] |
Ziebarth, J. D., Bhattacharya, A. and Cui, Y. (2013) CTCFBSDB 2.0: a database for CTCF-binding sites and genome organization. Nucleic Acids Res., 41, D188–D194
CrossRef
Pubmed
Google scholar
|
[40] |
Yue, F., Cheng, Y., Breschi, A., Vierstra, J., Wu, W., Ryba, T., Sandstrom, R., Ma, Z., Davis, C., Pope, B. D.,
CrossRef
Pubmed
Google scholar
|
[41] |
Bernstein, B. E., Stamatoyannopoulos, J. A., Costello, J. F., Ren, B., Milosavljevic, A., Meissner, A., Kellis, M., Marra, M. A., Beaudet, A. L., Ecker, J. R.,
CrossRef
Pubmed
Google scholar
|
[42] |
Li, H. and Durbin, R. (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25, 1754–1760
CrossRef
Pubmed
Google scholar
|
[43] |
Yaffe, E. and Tanay, A. (2011) Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat. Genet., 43, 1059–1065
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |