Parameter asymmetry and time-scale separation in core genetic commitment circuits

Hongguang Xi, Marc Turcotte

PDF(3750 KB)
PDF(3750 KB)
Quant. Biol. ›› 2015, Vol. 3 ›› Issue (1) : 19-45. DOI: 10.1007/s40484-015-0042-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Parameter asymmetry and time-scale separation in core genetic commitment circuits

Author information +
History +

Abstract

Theory allows studying why Evolution might select core genetic commitment circuit topologies over alternatives. The nonlinear dynamics of the underlying gene regulation together with the unescapable subtle interplay of intrinsic biochemical noise impact the range of possible evolutionary choices. The question of why certain genetic regulation circuits might present robustness to phenotype-delivery breaking over others, is therefore of high interest. Here, the behavior of systematically more complex commitment circuits is studied, in the presence of intrinsic noise, with a focus on two aspects relevant to biology: parameter asymmetry and time-scale separation. We show that phenotype delivery is broken in simple two- and three-gene circuits. In the two-gene circuit, we show how stochastic potential wells of different depths break commitment. In the three-gene circuit, we show that the onset of oscillations breaks the commitment phenotype in a systematic way. Finally, we also show that higher dimensional circuits (four-gene and five-gene circuits) may be intrinsically more robust.

Graphical abstract

Keywords

systems biology / theoretical biology / gene regulation / nonlinear dynamics / stochasticity

Cite this article

Download citation ▾
Hongguang Xi, Marc Turcotte. Parameter asymmetry and time-scale separation in core genetic commitment circuits. Quant. Biol., 2015, 3(1): 19‒45 https://doi.org/10.1007/s40484-015-0042-1

References

[1]
Waddington, C. H. (1957) The Strategy of the Genes. London: Routledge
[2]
Ferrell, J. E. Jr. (2012) Bistability, bifurcations, and Waddington’s epigenetic landscape. Curr. Biol., 22, R458–R466
CrossRef Pubmed Google scholar
[3]
Strogatz, S. H. (1994) Nonlinear Dynamics and Chaos. Cambridge: Perseus Books Publishing
[4]
Jaeger, J., Monk, N. (2014) Bioattractors: Dynamical systems theory and the evolution of regulatory processes. J. Physiol., 592, 2267–2281
[5]
Çağatay, T., Turcotte, M., Elowitz, M. B., Garcia-Ojalvo, J. and Süel, G. M. (2009) Architecture-dependent noise discriminates functionally analogous differentiation circuits. Cell, 139, 512–522
CrossRef Pubmed Google scholar
[6]
Elowitz, M. B., Levine, A. J., Siggia, E. D. and Swain, P. S. (2002) Stochastic gene expression in a single cell. Science, 297, 1183–1186
CrossRef Pubmed Google scholar
[7]
Süel, G. M., Garcia-Ojalvo, J., Liberman, L. M. and Elowitz, M. B. (2006) An excitable gene regulatory circuit induces transient cellular differentiation. Nature, 440, 545–550
CrossRef Pubmed Google scholar
[8]
Süel, G. M., Kulkarni, R. P., Dworkin, J., Garcia-Ojalvo, J. and Elowitz, M. B. (2007) Tunability and noise dependence in differentiation dynamics. Science, 315, 1716–1719
CrossRef Pubmed Google scholar
[9]
Thattai, M. and van Oudenaarden, A. (2004) Stochastic gene expression in fluctuating environments. Genetics, 167, 523–530
CrossRef Pubmed Google scholar
[10]
Turcotte, M., Garcia-Ojalvo, J. and Süel, G. M. (2008) A genetic timer through noise-induced stabilization of an unstable state. Proc. Natl. Acad. Sci. USA, 105, 15732–15737
CrossRef Pubmed Google scholar
[11]
Xi, H., Duan, L. and Turcotte, M. (2013) Point-cycle bistability and stochasticity in a regulatory circuit for Bacillus subtilis competence. Math. Biosci., 244, 135–147
CrossRef Pubmed Google scholar
[12]
Xi, H., Yang, Z. and Turcotte, M. (2013) Subtle interplay of stochasticity and deterministic dynamics pervades an evolutionary plausible genetic circuit for Bacillus subtilis competence. Math. Biosci., 246, 148–163
CrossRef Pubmed Google scholar
[13]
Li, C., Wang, E. and Wang, J. (2011) Landscape and flux decomposition for exploring global natures of non-equilibrium dynamical systems under intrinsic statistical fluctuations. Chem. Phys. Lett., 505, 75–80
CrossRef Google scholar
[14]
Li, C., Wang, E. and Wang, J. (2011) Landscape, flux, correlation, resonance, coherence, stability, and key network wirings of stochastic circadian oscillation. Biophys. J., 101, 1335–1344
CrossRef Pubmed Google scholar
[15]
Li, C., Wang, E. and Wang, J. (2012) Landscape topography determines global stability and robustness of a metabolic network. ACS Synth Biol, 1, 229–239
CrossRef Pubmed Google scholar
[16]
Li, C. and Wang, J. (2013) Quantifying Waddington landscapes and paths of non-adiabatic cell fate decisions for differentiation, reprogramming and transdifferentiation. J. R. Soc. Interface, 10, 20130787
CrossRef Pubmed Google scholar
[17]
Li, C. and Wang, J. (2014) Landscape and flux reveal a new global view and physical quantification of mammalian cell cycle. Proc. Natl. Acad. Sci. USA, 111, 14130–14135
CrossRef Pubmed Google scholar
[18]
Li, C. and Wang, J. (2014) Quantifying the underlying landscape and paths of cancer. J. R. Soc. Interface, 11, 20140774
CrossRef Pubmed Google scholar
[19]
Wang, J., Zhang, K., Xu, L. and Wang, E. (2011) Quantifying the Waddington landscape and biological paths for development and differentiation. Proc. Natl. Acad. Sci. USA, 108, 8257–8262
CrossRef Pubmed Google scholar
[20]
Wu, W. and Wang, J. (2013) Landscape framework and global stability for stochastic reaction diffusion and general spatially extended systems with intrinsic fluctuations. J. Phys. Chem. B, 117, 12908–12934
CrossRef Pubmed Google scholar
[21]
Wu, W. and Wang, J. (2013) Potential and flux field landscape theory. I. Global stability and dynamics of spatially dependent non-equilibrium systems. J. Chem. Phys., 139, 121920
CrossRef Pubmed Google scholar
[22]
Xu, L., Zhang, F., Zhang, K., Wang, E. and Wang, J. (2014) The potential and flux landscape theory of ecology. PLoS One, 9, e86746
CrossRef Pubmed Google scholar
[23]
Zhang F., Xu L., Zhang K., Wang E., Wang J., (2012) The potential and flux landscape theory of evolution. J. Chem. Phys., 137, 065102
[24]
Beard, D. A. D., Babson, E., Curtis, E. and Qian, H. (2004) Thermodynamic constraints for biochemical networks. J. Theor. Biol., 228, 327–333
CrossRef Pubmed Google scholar
[25]
Beard, D. A. and Qian H. (2008) Chemical Biophysics, Cambridge: Cambridge University Press
[26]
Qian, H. and Cooper, J. A. (2008) Temporal cooperativity and sensitivity amplification in biological signal transduction. Biochemistry, 47, 2211–2220
CrossRef Pubmed Google scholar
[27]
Qian, H. (2007) Phosphorylation energy hypothesis: open chemical systems and their biological functions. Annu. Rev. Phys. Chem., 58, 113–142
CrossRef Pubmed Google scholar
[28]
Qian, H. and Beard, D. A. (2005) Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium. Biophys. Chem., 114, 213–220
CrossRef Pubmed Google scholar
[29]
Qian, H., Beard, D. A. and Liang, S. D. (2003) Stoichiometric network theory for nonequilibrium biochemical systems. Eur. J. Biochem., 270, 415–421
CrossRef Pubmed Google scholar
[30]
Ma, W., Trusina, A., El-Samad, H., Lim, W. A. and Tang, C. (2009) Defining network topologies that can achieve biochemical adaptation. Cell, 138, 760–773
CrossRef Pubmed Google scholar
[31]
Zhang, J., Yuan, Z., Li, H. X. and Zhou, T. (2010) Architecture-dependent robustness and bistability in a class of genetic circuits. Biophys. J., 99, 1034–1042
CrossRef Pubmed Google scholar
[32]
Snoussi, E. H. (1998) Necessary Conditions for Multistationarity and Stable Periodicity. J. Biol. Syst., 06, 3–9
CrossRef Google scholar
[33]
Gardner, T. S. and Faith, J. J. (2005) Reverse-engineering transcription control networks. Phys. Life Rev., 2, 65–88
CrossRef Pubmed Google scholar
[34]
Chickarmane, V., Troein, C., Nuber, U. A., Sauro, H. M. and Peterson, C. (2006) Transcriptional dynamics of the embryonic stem cell switch. PLoS Comput. Biol., 2, e123
CrossRef Pubmed Google scholar
[35]
Gillespie, D. T. (1976) A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions. J. Comput. Phys., 22, 403–434
CrossRef Google scholar
[36]
Gillespie, D. T. (1977) Exact Stochastic Simulation of Coupled Chemical Reactions. J. Phys. Chem., 81, 2340–2361
CrossRef Google scholar
[37]
Gillespie Markov Processes, D. T.An Introduction for Physical Scientists, Academic Press, 1991
[38]
Gillespie, D. T. (2007) Stochastic simulation of chemical kinetics. Annu. Rev. Phys. Chem., 58, 35–55
CrossRef Pubmed Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(3750 KB)

Accesses

Citations

Detail

Sections
Recommended

/