SupraBiology 2014: Promoting UK-China collaboration on Systems Biology and High Performance Computing

Ettore Murabito , Riccardo Colombo , Chengkun Wu , Malkhey Verma , Samrina Rehman , Jacky Snoep , Shao-Liang Peng , Naiyang Guan , Xiangke Liao , Hans V. Westerhoff

Quant. Biol. ›› 2015, Vol. 3 ›› Issue (1) : 46 -53.

PDF (115KB)
Quant. Biol. ›› 2015, Vol. 3 ›› Issue (1) : 46 -53. DOI: 10.1007/s40484-015-0039-9
MEETING REPORT
MEETING REPORT

SupraBiology 2014: Promoting UK-China collaboration on Systems Biology and High Performance Computing

Author information +
History +
PDF (115KB)

Cite this article

Download citation ▾
Ettore Murabito, Riccardo Colombo, Chengkun Wu, Malkhey Verma, Samrina Rehman, Jacky Snoep, Shao-Liang Peng, Naiyang Guan, Xiangke Liao, Hans V. Westerhoff. SupraBiology 2014: Promoting UK-China collaboration on Systems Biology and High Performance Computing. Quant. Biol., 2015, 3(1): 46-53 DOI:10.1007/s40484-015-0039-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Westerhoff, H. V. and Palsson, B. O. (2004) The evolution of molecular biology into systems biology. Nat. Biotechnol., 22, 1249−1252

[2]

Liao, W.-L. and Tsai, F.-J. (2013) Personalized medicine: A paradigm shift in healthcare. Biomedicine, 3, 66−72

[3]

Kolodkin, A., Boogerd, F. C., Plant, N., Bruggeman, F. J., Goncharuk, V., Lunshof, J., Moreno-Sanchez, R., Yilmaz, N., Bakker, B. M., Snoep, J. L., (2012) Emergence of the silicon human and network targeting drugs. Eur. J. Pharm. Sci., 46, 190−197

[4]

Lawford, P. V., (1921) Virtual physiological human: training challenges. Philoso. T. Roy. Soc., 2010, 368.

[5]

Viceconti, M., G.Clapworthy, and S.V.S.Jan, (2008) The Virtual Physiological Human — A European Initiative for in silico Human Modelling —. J. Physiol., 58, 441−446

[6]

Olivier, B. G. and Snoep, J. L. (2004) Web-based kinetic modelling using JWS Online. Bioinformatics, 20, 2143−2144

[7]

Stoica, I., S.K.Sadiq, and P.V.Coveney, (2008) Rapid and accurate prediction of binding free energies for Saquinavir-Bound HIV-1 proteases. J. Am. Chem. Soc., 130 2639−2648

[8]

Hou, T., Wang, J., Li, Y. and Wang, W. (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J. Chem. Inf. Model., 51, 69−82

[9]

Mazzeo, M. D. and Coveney, P. V. (2008) HemeLB: A high performance parallel lattice-Boltzmann code for large scale fluid flow in complex geometries. Comput. Phys. Commun., 178, 894−914

[10]

Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P. and Kummer, U. (2006) COPASI—a COmplex PAthway SImulator. Bioinformatics, 22, 3067−3074

[11]

Cazzaniga, P., Damiani, C., Besozzi, D., Colombo, R., Nobile, M.S., Gaglio, D., Pescini, D., Molinari, S., Mauri, G., Alberghina L., (2014) Computational strategies for a system-level understanding of metabolism. Metabolites, 4, 1034−1087

[12]

Karp, P.D., Paley, S. and Romero, P. (2002) The pathway tools software. Bioinformatics, 18, suppl. 1: S225−S232

[13]

Pinney, J. W., Shirley, M. W., McConkey, G. A. and Westhead, D. R. (2005) metaSHARK: software for automated metabolic network prediction from DNA sequence and its application to the genomes of Plasmodium falciparum and Eimeria tenella. Nucleic Acids Res., 33, 1399−1409

[14]

Büchel, F., Rodriguez, N., Swainston, N., Wrzodek, C., Czauderna, T., Keller, R., Mittag, F., Schubert, M., Glont, M., Golebiewski, M., (2013) Path2Models: large-scale generation of computational models from biochemical pathway maps. BMC Syst. Biol., 7, 116

[15]

Fisher, C. P., Plant, N. J., Moore, J. B. and Kierzek, A. M. (2013) QSSPN: dynamic simulation of molecular interaction networks describing gene regulation, signalling and whole-cell metabolism in human cells. Bioinformatics, 29, 3181−3190

[16]

Wu, C., Schwartz, J.-M.and Nenadic, G. (2013) PathNER: a tool for systematic identification of biological pathway mentions in the literature. BMC Syst. Biol., 7, Suppl. 3:S2

[17]

Chetty M., Rose, R.H., Abduljalil, K., Patel, N., Lu, G., Cain, T., Jamei, M. and Rostami-Hodjegan, A. (2014) Applications of linking PBPK and PD models to predict the impact of genotypic variability, formulation differences, differences in target binding capacity and target site drug concentrations on drug responses and variability. Front. Pharmacol., 5, 258

[18]

Valerio, L. G. Jr. (2011) In silico toxicology models and databases as FDA Critical Path Initiative toolkits. Hum. Genomics, 5, 200−207

[19]

Dobson, P. D. and Kell, D. B. (2008) Carrier-mediated cellular uptake of pharmaceutical drugs: an exception or the rule? Nat. Rev. Drug Discov., 7, 205−220

[20]

Kell, D. B., Dobson, P. D., Bilsland, E. and Oliver, S. G. (2013) The promiscuous binding of pharmaceutical drugs and their transporter-mediated uptake into cells: what we (need to) know and how we can do so. Drug Discov. Today, 18, 218−239

[21]

Lanthaler, K., Bilsland, E., Dobson, P. D., Moss, H. J., Pir, P., Kell, D.B. and Oliver, S.G.(2011) Genome-wide assessment of the carriers involved in the cellular uptake of drugs: a model system in yeast. BMC Biol., 9, 70

[22]

Yang, X., Liao, X., Xu, W., Song, J., Hu, Q., Su, J., Xiao, L., Lu, K., Dou, Q., Jiang, J., (2010) TH-1: China's first petaflop supercomputer. Front. Comput. Sci. China, 4, 445−455

[23]

Yang, X., Liao, X.-K., Lu, K., Hu, Q.-F., Song, J.-Q. and Su, J.-S. (2011) The TianHe-1. A supercomputer: Its hardware and software. J. Comput. Sci. Technol., 26, 344−351

[24]

Tianhe-2 (MilkyWay-2) Supercomputer

[25]

Luo, R. B., Liu, B.H., Xie, Y. L., Li, Z.Y., Huang, W.H., Yuan, J.Y., He, G. Z., Chen, Y. X., Pan, Q., Liu, Y. J., (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience, 1, 18.

[26]

Luo, R., Wong, T., Zhu, J., Liu, C. M., Zhu, X., Wu, E., Lee, L. K., Lin, H., Zhu, W., Cheung, D. W., (2013) SOAP3-dp: fast, accurate and sensitive GPU-based short read aligner. PLOS ONE, 8, e65632

[27]

Jia, W., Qiu, K., He, M., Song, P., Zhou, Q., Zhou, F., Yu, Y., Zhu, D., Nickerson, M. L., Wan, S., (2013) SOAPfuse: an algorithm for identifying fusion transcripts from paired-end RNA-Seq data. Genome Biol., 14, R12

[28]

Cui, Y., Liao, X.-K., Zhu, X. Q. and Wang, B. Q. (2014) mBWA: A massively parallel sequence reads aligner, in 8th international conference on practical applications of computational biology & bioinformatics (PACBB 2014). Springer International Publishing, 113−120

[29]

Guan, N.Y., Tao, D. C., Luo, Z. G. and Yuan, B. (2012) NeNMF: An optimal gradient method for Nonnegative Matrix Factorization. IEEE Trans. Signal Process., 60, 2882−2898

[30]

Murabito, E., Smallbone, K., Swinton, J., Westerhoff, H. V. and Steuer, R. (2011) A probabilistic approach to identify putative drug targets in biochemical networks. J. R. Soc. Interface, 8, 880−895

[31]

Murabito, E., (2013) Targeting breast cancer metabolism: A metabolic control analysis approach. Curr. Synthetic Sys. Biol., 1, 104

[32]

Murabito, E., Verma, M., Bekker, M., Bellomo, D., Westerhoff, H. V., Teusink, B. and Steuer, R. (2014) Monte-Carlo modeling of the central carbon metabolism of Lactococcus lactis: insights into metabolic regulation. PLOS ONE, 9, e106453

[33]

Thiele, I., Swainston, N., Fleming, R. M., Hoppe, A., Sahoo, S., Aurich, M. K., Haraldsdottir, H., Mo, M. L., Rolfsson, O., Stobbe, M. D., (2013) A community-driven global reconstruction of human metabolism. Nat. Biotechnol., 31, 419−425

[34]

Kent, E., Hoops, S. and Mendes, P. (2012) Condor-COPASI: high-throughput computing for biochemical networks. BMC Syst. Biol., 6, 91

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (115KB)

1837

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/