Exon expression QTL (eeQTL) analysis highlights distant genomic variations associated with splicing regulation

Leying Guan, Qian Yang, Mengting Gu, Liang Chen, Xuegong Zhang

PDF(159 KB)
PDF(159 KB)
Quant. Biol. ›› 2014, Vol. 2 ›› Issue (2) : 71-79. DOI: 10.1007/s40484-014-0031-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Exon expression QTL (eeQTL) analysis highlights distant genomic variations associated with splicing regulation

Author information +
History +

Abstract

Alternative splicing is a ubiquitous mechanism of post-transcriptional regulation of gene expression and produces multiple isoforms from the same genes. Expression quantitative trait loci (eQTL) has been a major method for finding associations between gene expression and genomic variations. Differences in alternative splicing isoforms are resulted from differences in the expression of exons. We propose to use exon expression QTL (eeQTL) to study the genomic variations that are associated with splicing regulation. A stringent criterion was adopted to study gene-level eQTLs and exon-level eeQTLs for both cis- and trans- factors. From experiments on an RNA-sequencing (RNA-Seq) data set of HapMap samples, we observed that compared with eQTLs, more eeQTL trans-factors can be found than cis-factors, and many of the eeQTLs cannot be found at the gene level. This work highlights that the regulation of exons adds another layer of regulation on gene expression, and that eeQTL analysis is a new approach for investigating genome-wide genomic variations that are involved in the regulation of alternative splicing.

Graphical abstract

Keywords

eeQTL / eQTL / alternative splicing / trans-factor / association / regulation

Cite this article

Download citation ▾
Leying Guan, Qian Yang, Mengting Gu, Liang Chen, Xuegong Zhang. Exon expression QTL (eeQTL) analysis highlights distant genomic variations associated with splicing regulation. Quant. Biol., 2014, 2(2): 71‒79 https://doi.org/10.1007/s40484-014-0031-9

References

[1]
Gilad,Y., Rifkin, S. A. and Pritchard, J. K. (2008) Revealing the architecture of gene regulation: the promise of eQTL studies. Trends Genet., 24, 408–415
CrossRef Pubmed Google scholar
[2]
Morley, M., Molony, C. M., Weber, T. M., Devlin, J. L., Ewens, K. G., Spielman, R. S. and Cheung, V. G. (2004) Genetic analysis of genome-wide variation in human gene expression. Nature, 430, 743–747
CrossRef Pubmed Google scholar
[3]
Pickrell, J. K., Marioni, J. C., Pai, A. A., Degner, J. F., Engelhardt, B. E., Nkadori, E., Veyrieras, J. B., Stephens, M., Gilad, Y. and Pritchard, J. K. (2010) Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature, 464, 768–772
CrossRef Pubmed Google scholar
[4]
Majewski, J. and Pastinen, T. (2011) The study of eQTL variations by RNA-seq: from SNPs to phenotypes. Trends Genet., 27, 72–79
CrossRef Pubmed Google scholar
[5]
Schadt, E. E., Monks, S. A., Drake, T. A., Lusis, A. J., Che, N., Colinayo, V., Ruff, T. G., Milligan, S. B., Lamb, J. R., Cavet, G., (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature, 422, 297–302
CrossRef Pubmed Google scholar
[6]
Rockman, M. V. and Kruglyak, L. (2006) Genetics of global gene expression. Nat. Rev. Genet., 7, 862–872
CrossRef Pubmed Google scholar
[7]
Xia, K., Shabalin, A. A., Huang, S., Madar, V., Zhou, Y. H., Wang, W., Zou, F., Sun, W., Sullivan, P. F. and Wright, F. A. (2012) seeQTL: a searchable database for human eQTLs. Bioinformatics, 28, 451–452
CrossRef Pubmed Google scholar
[8]
Yang, T. P., Beazley, C., Montgomery, S. B., Dimas, A. S., Gutierrez-Arcelus, M., Stranger, B. E., Deloukas, P. and Dermitzakis, E. T. (2010) Genevar: a database and Java application for the analysis and visualization of SNP-gene associations in eQTL studies. Bioinformatics, 26, 2474–2476
CrossRef Pubmed Google scholar
[9]
Montgomery, S. B., Sammeth, M., Gutierrez-Arcelus, M., Lach, R. P., Ingle, C., Nisbett, J., Guigo, R. and Dermitzakis, E. T. (2010) Transcriptome genetics using second generation sequencing in a Caucasian population. Nature, 464, 773–777
CrossRef Pubmed Google scholar
[10]
Cookson, W., Liang, L., Abecasis, G., Moffatt, M. and Lathrop, M. (2009) Mapping complex disease traits with global gene expression. Nat. Rev. Genet., 10, 184–194
CrossRef Pubmed Google scholar
[11]
Schadt, E. E., Molony, C., Chudin, E., Hao, K., Yang, X., Lum, P. Y., Kasarskis, A., Zhang, B., Wang, S., Suver, C., (2008) Mapping the genetic architecture of gene expression in human liver. PLoS Biol., 6, e107
CrossRef Pubmed Google scholar
[12]
Myers, A. J., Gibbs, J. R., Webster, J. A., Rohrer, K., Zhao, A., Marlowe, L., Kaleem, M., Leung, D., Bryden, L., Nath, P., (2007) A survey of genetic human cortical gene expression. Nat. Genet., 39, 1494–1499
CrossRef Pubmed Google scholar
[13]
Stranger, B. E., Nica, A. C., Forrest, M. S., Dimas, A., Bird, C. P., Beazley, C., Ingle, C. E., Dunning, M., Flicek, P., Koller, D., (2007) Population genomics of human gene expression. Nat. Genet., 39, 1217–1224
CrossRef Pubmed Google scholar
[14]
Veyrieras, J. B., Kudaravalli, S., Kim, S. Y., Dermitzakis, E. T., Gilad, Y., Stephens, M. and Pritchard, J. K. (2008) High-resolution mapping of expression-QTLs yields insight into human gene regulation. PLoS Genet., 4, e1000214
CrossRef Pubmed Google scholar
[15]
Zeller, T., Wild, P., Szymczak, S., Rotival, M., Schillert, A., Castagne, R., Maouche, S., Germain, M., Lackner, K., Rossmann, H., (2010) Genetics and beyond—the transcriptome of human monocytes and disease susceptibility. PLoS ONE, 5, e10693
CrossRef Pubmed Google scholar
[16]
Stamm, S., Ben-Ari, S., Rafalska, I., Tang, Y., Zhang, Z., Toiber, D., Thanaraj, T. A. and Soreq, H. (2005) Function of alternative splicing. Gene, 344, 1–20
CrossRef Pubmed Google scholar
[17]
Graveley, B. R. (2001) Alternative splicing: increasing diversity in the proteomic world. Trends Genet., 17, 100–107
CrossRef Pubmed Google scholar
[18]
Modrek, B. and Lee, C. (2002) A genomic view of alternative splicing. Nat. Genet., 30, 13–19
CrossRef Pubmed Google scholar
[19]
Brett, D., Pospisil, H., Valcárcel, J., Reich, J. and Bork, P. (2002) Alternative splicing and genome complexity. Nat. Genet., 30, 29–30
CrossRef Pubmed Google scholar
[20]
Gardina, P. J., Clark, T. A., Shimada, B., Staples, M. K., Yang, Q., Veitch, J., Schweitzer, A., Awad, T., Sugnet, C., Dee, S., (2006) Alternative splicing and differential gene expression in colon cancer detected by a whole genome exon array. BMC Genomics, 7, 325
CrossRef Pubmed Google scholar
[21]
Venables, J. P. (2004) Aberrant and alternative splicing in cancer. Cancer Res., 64, 7647–7654
CrossRef Pubmed Google scholar
[22]
Garcia-Blanco, M. A., Baraniak, A. P. and Lasda, E. L. (2004) Alternative splicing in disease and therapy. Nat. Biotechnol., 22, 535–546
CrossRef Pubmed Google scholar
[23]
Wang, L., Duke, L., Zhang, P. S., Arlinghaus, R. B., Symmans, W. F., Sahin, A., Mendez, R. and Dai, J. L. (2003) Alternative splicing disrupts a nuclear localization signal in spleen tyrosine kinase that is required for invasion suppression in breast cancer. Cancer Res., 63, 4724–4730
Pubmed
[24]
Goodman, P. A., Wood, C. M., Vassilev, A., Mao, C. and Uckun, F. M. (2001) Spleen tyrosine kinase (Syk) deficiency in childhood pro-B cell acute lymphoblastic leukemia. Oncogene, 20, 3969–3978
CrossRef Pubmed Google scholar
[25]
Nakashima, H., Natsugoe, S., Ishigami, S., Okumura, H., Matsumoto, M., Hokita, S. and Aikou, T. (2006) Clinical significance of nuclear expression of spleen tyrosine kinase (Syk) in gastric cancer. Cancer Lett., 236, 89–94
CrossRef Pubmed Google scholar
[26]
Prinos, P., Garneau, D., Lucier, J. F., Gendron, D., Couture, S., Boivin, M., Brosseau, J. P., Lapointe, E., Thibault, P., Durand, M., (2011) Alternative splicing of SYK regulates mitosis and cell survival. Nat. Struct. Mol. Biol., 18, 673–679
CrossRef Pubmed Google scholar
[27]
Feng, H., Qin, Z. and Zhang, X. (2013) Opportunities and methods for studying alternative splicing in cancer with RNA-Seq. Cancer Lett., 340, 179–191
CrossRef Pubmed Google scholar
[28]
Pan, Q., Shai, O., Lee, L. J., Frey, B. J. and Blencowe, B. J. (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet., 40, 1413–1415
CrossRef Pubmed Google scholar
[29]
Wang, E. T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, S. F., Schroth, G. P. and Burge, C. B. (2008) Alternative isoform regulation in human tissue transcriptomes. Nature, 456, 470–476
CrossRef Pubmed Google scholar
[30]
Marco-Sola, S., Sammeth, M., Guigó, R. and Ribeca, P. (2012) The GEM mapper: fast, accurate and versatile alignment by filtration. Nat. Methods, 9, 1185–1188
CrossRef Pubmed Google scholar
[31]
Chen, L. Y., Wei, K. C., Huang, A. C., Wang, K., Huang, C. Y., Yi, D., Tang, C. Y., Galas, D. J. and Hood, L. E. (2012) RNASEQR—a streamlined and accurate RNA-seq sequence analysis program. Nucleic Acids Res., 40, e42
CrossRef Pubmed Google scholar
[32]
Trapnell, C., Pachter, L. and Salzberg, S. L. (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25, 1105–1111
CrossRef Pubmed Google scholar
[33]
Wu, J., Anczuków, O., Krainer, A. R., Zhang, M. Q.and Zhang, C. (2013) OLego: fast and sensitive mapping of spliced mRNA-Seq reads using small seeds. Nucleic Acids Res., 41, 5149–5163
CrossRef Pubmed Google scholar
[34]
Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M. and Gingeras, T. R. (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 29, 15–21
CrossRef Pubmed Google scholar
[35]
Wang, L., Wang, X., Wang, X., Liang, Y. and Zhang, X. (2011) Observations on novel splice junctions from RNA sequencing data. Biochem. Biophys. Res. Commun., 409, 299–303
CrossRef Pubmed Google scholar
[36]
Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., Salzberg, S. L., Wold, B. J. and Pachter, L. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28, 511–515
CrossRef Pubmed Google scholar
[37]
Roberts, A., Pimentel, H., Trapnell, C. and Pachter, L. (2011) Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics, 27, 2325–2329
CrossRef Pubmed Google scholar
[38]
Li, W., Feng, J. and Jiang, T. (2011) IsoLasso: a LASSO regression approach to RNA-Seq based transcriptome assembly. J. Comput. Biol., 18, 1693–1707
CrossRef Pubmed Google scholar
[39]
Trapnell, C., Hendrickson, D. G., Sauvageau, M., Goff, L., Rinn, J. L. and Pachter, L. (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat. Biotechnol., 31, 46–53
CrossRef Pubmed Google scholar
[40]
Ma, X. and Zhang, X. (2013) NURD: an implementation of a new method to estimate isoform expression from non-uniform RNA-seq data. BMC Bioinformatics, 14, 220
CrossRef Pubmed Google scholar
[41]
Jiang, H. and Wong, W. H. (2009) Statistical inferences for isoform expression in RNA-Seq. Bioinformatics, 25, 1026–1032
CrossRef Pubmed Google scholar
[42]
Wu, Z., Wang, X., Zhang, X. (2011) Using non-uniform read distribution models to improve isoform expression inference in RNA-Seq. Bioinformatics, 27, 502–508
[43]
Richard, H., Schulz, M. H., Sultan, M., Nürnberger, A., Schrinner, S., Balzereit, D., Dagand, E., Rasche, A., Lehrach, H., Vingron, M., (2010) Prediction of alternative isoforms from exon expression levels in RNA-Seq experiments. Nucleic Acids Res., 38, e112
CrossRef Pubmed Google scholar
[44]
Johnson, J. M., Castle, J., Garrett-Engele, P., Kan, Z., Loerch, P. M., Armour, C. D., Santos, R., Schadt, E. E., Stoughton, R. and Shoemaker, D. D. (2003) Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science, 302, 2141–2144
CrossRef Pubmed Google scholar
[45]
Hull, J., Campino, S., Rowlands, K., Chan, M. S., Copley, R. R., Taylor, M. S., Rockett, K., Elvidge, G., Keating, B., Knight, J., (2007) Identification of common genetic variation that modulates alternative splicing. PLoS Genet., 3, e99
CrossRef Pubmed Google scholar
[46]
Kwan, T., Benovoy, D., Dias, C., Gurd, S., Provencher, C., Beaulieu, P., Hudson, T. J., Sladek, R. and Majewski, J. (2008) Genome-wide analysis of transcript isoform variation in humans. Nat. Genet., 40, 225–231
CrossRef Pubmed Google scholar
[47]
Heinzen, E. L., Ge, D., Cronin, K. D., Maia, J. M., Shianna, K. V., Gabriel, W. N., Welsh-Bohmer, K. A., Hulette, C. M., Denny, T. N. and Goldstein, D. B. (2008) Tissue-specific genetic control of splicing: implications for the study of complex traits. PLoS Biol., 6, e1
CrossRef Pubmed Google scholar
[48]
Coulombe-Huntington, J., Lam, K. C., Dias, C. and Majewski, J. (2009) Fine-scale variation and genetic determinants of alternative splicing across individuals. PLoS Genet., 5, e1000766
CrossRef Pubmed Google scholar
[49]
Lee, Y., Gamazon, E. R., Rebman, E., Lee, Y., Lee, S., Dolan, M. E., Cox, N. J. and Lussier, Y. A. (2012) Variants affecting exon skipping contribute to complex traits. PLoS Genet., 8, e1002998
CrossRef Pubmed Google scholar
[50]
Ramasamy, A., Trabzuni, D., Gibbs, J. R., Dillman, A., Hernandez, D. G., Arepalli, S., Walker, R., Smith, C., Ilori, G. P., Shabalin, A. A., , (2013) Resolving the polymorphism-in-probe problem is critical for correct interpretation of expression QTL studies. Nucleic Acids Res., 41, e88
CrossRef Pubmed Google scholar
[51]
Mozhui, K., Wang, X., Chen, J., Mulligan, M. K., Li, Z., Ingles, J., Chen, X., Lu, L. and Williams, R. W. (2011) Genetic regulation of Nrnx1 expression: an integrative cross-species analysis of schizophrenia candidate genes. Transl. Psychiatr., 1, e25
CrossRef Google scholar
[52]
Lalonde, E., Ha, K. C., Wang, Z., Bemmo, A., Kleinman, C. L., Kwan, T., Pastinen, T. and Majewski, J. (2011) RNA sequencing reveals the role of splicing polymorphisms in regulating human gene expression. Genome Res., 21, 545–554
CrossRef Pubmed Google scholar
[53]
Sun, W. and Hu, Y. (2013) eQTL mapping using RNA-seq data. Stat. Biosci., 5, 198–219
CrossRef Pubmed Google scholar
[54]
Lappalainen, T., Sammeth, M., Friedländer, M. R., ’t Hoen, P. A., Monlong, J., Rivas, M. A., Gonzàlez-Porta, M., Kurbatova, N., Griebel, T., Ferreira, P. G., , (2013) Transcriptome and genome sequencing uncovers functional variation in humans. Nature, 501, 506–511
CrossRef Pubmed Google scholar
[55]
Wang, W., Qin, Z., Feng, Z., Wang, X. and Zhang, X. (2013) Identifying differentially spliced genes from two groups of RNA-seq samples. Gene, 518, 164–170
CrossRef Pubmed Google scholar
[56]
The International HapMap Consortium. (2003) The international HapMap project. Nature, 426, 789–796
Pubmed
[57]
Guan, Y. and Stephens, M. (2008) Practical issues in imputation-based association mapping. PLoS Genet., 4, e1000279
CrossRef Pubmed Google scholar
[58]
Scheet, P. and Stephens, M. (2006) A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am. J. Hum. Genet., 78, 629–644
CrossRef Pubmed Google scholar
[59]
Yoon, S., Xuan, Z., Makarov, V., Ye, K. and Sebat, J. (2009) Sensitive and accurate detection of copy number variants using read depth of coverage. Genome Res., 19, 1586–1592
CrossRef Pubmed Google scholar
[60]
Boeva, V., Zinovyev, A., Bleakley, K., Vert, J.-P., Janoueix-Lerosey, I., Delattre, O. and Barillot, E. (2011) Control-free calling of copy number alterations in deep-sequencing data using GC-content normalization. Bioinformatics, 27, 268–269
CrossRef Pubmed Google scholar
[61]
Zhao, K., Lu, Z. X., Park, J. W., Zhou, Q. and Xing, Y. (2013) GLiMMPS: robust statistical model for regulatory variation of alternative splicing using RNA-seq data. Genome Biol., 14, R74
CrossRef Pubmed Google scholar
[62]
Monlong, J., Calvo, M., Ferreira, P. G. and Guigó, R. (2014) Identification of genetic variants associated with alternative splicing using sQTLseekeR. Nat. Commun., 5, 4698
CrossRef Pubmed Google scholar

SUPPLEMENTARY MATERIALS

The supplementary materials can be found online with this article at DOI 10.1007/s40484-014-0031-9.

ACKNOWLEDGEMENTS

This work is partially supported by the National Basic Research Program of China (2012CB316504), the Hi-tech Research and Development Program of China (2012AA020401), NSFC Grant 91010016, and the National Institute of General Medical Sciences (R01GM097230).

COMPLIANCE WITH ETHICS GUIDELINES

The author Leying Guan, Qian Yang, Mengting Gu, Liang Chen and Xuegong Zhang declare that they have no conflict of interests.This article does not contain any studies with human or animal subjects performed by any of the authors.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(159 KB)

Accesses

Citations

Detail

Sections
Recommended

/