Generic properties of random gene regulatory networks

Zhiyuan Li , Simone Bianco , Zhaoyang Zhang , Chao Tang

Quant. Biol. ›› 2013, Vol. 1 ›› Issue (4) : 253 -260.

PDF (406KB)
Quant. Biol. ›› 2013, Vol. 1 ›› Issue (4) : 253 -260. DOI: 10.1007/s40484-014-0026-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Generic properties of random gene regulatory networks

Author information +
History +
PDF (406KB)

Abstract

Modeling gene regulatory networks (GRNs) is an important topic in systems biology. Although there has been much work focusing on various specific systems, the generic behavior of GRNs with continuous variables is still elusive. In particular, it is not clear typically how attractors partition among the three types of orbits: steady state, periodic and chaotic, and how the dynamical properties change with network’s topological characteristics. In this work, we first investigated these questions in random GRNs with different network sizes, connectivity, fraction of inhibitory links and transcription regulation rules. Then we searched for the core motifs that govern the dynamic behavior of large GRNs. We show that the stability of a random GRN is typically governed by a few embedding motifs of small sizes, and therefore can in general be understood in the context of these short motifs. Our results provide insights for the study and design of genetic networks.

Keywords

genetic network / dynamic attractors / complex systems

Cite this article

Download citation ▾
Zhiyuan Li, Simone Bianco, Zhaoyang Zhang, Chao Tang. Generic properties of random gene regulatory networks. Quant. Biol., 2013, 1(4): 253-260 DOI:10.1007/s40484-014-0026-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kauffman,S., Peterson,C., Samuelsson,B. and Troein,C. (2003) Random Boolean network models and the yeast transcriptional network. Proc. Natl. Acad. Sci. U.S.A., 100, 14796–14799

[2]

Kapuy,O., He,E., López-Avilés,S., Uhlmann,F., Tyson,J. J. and Novák,B. (2009) System-level feedbacks control cell cycle progression. FEBS Lett., 583, 3992–3998

[3]

Perkins,T. J., Hallett,M. and Glass,L. (2006) Dynamical properties of model gene networks and implications for the inverse problem. Biosystems, 84, 115–123

[4]

Sneppen,K., Krishna,S. and Semsey,S. (2010) Simplified models of biological networks. Annu. Rev. Biophys., 39, 43–59

[5]

Tsai,T. Y., Choi,Y. S., Ma,W., Pomerening,J. R., Tang,C. and Ferrell,J. E. Jr. (2008) Robust,tunable biological oscillations from interlinked positive and negative feedback loops. Science, 321, 126–129

[6]

Li,F., Long,T., Lu,Y., Ouyang,Q. and Tang,C. (2004) The yeast cell-cycle network is robustly designed. Proc. Natl. Acad. Sci. U.S.A., 101, 4781–4786

[7]

Kauffman,S. A. (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol., 22, 437–467

[8]

Kadanoff,L., Coppersmith,S. and Aldana,M.(2002) Boolean dynamics with random couplings. Nlin, 0204062

[9]

Shmulevich,I., Kauffman,S. A. and Aldana,M. (2005) Eukaryotic cells are dynamically ordered or critical but not chaotic. Proc. Natl. Acad. Sci. U.S.A., 102, 13439–13444

[10]

Kappler,K., Edwards,R. and Glass,L. (2003) Dynamics in high-dimensional model gene networks. Signal Process., 83, 789–798

[11]

Shea,M. A. and Ackers,G. K. (1985) The OR control system of bacteriophage lambda.A physical-chemical model for gene regulation. J. Mol. Biol., 181, 211–230

[12]

Buchler,N. E., Gerland,U. and Hwa,T. (2003) On schemes of combinatorial transcription logic. Proc. Natl. Acad. Sci. U.S.A., 100, 5136–5141

[13]

Albert,R. and Othmer,H. G. (2003) The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophilamelanogaster. J. Theor. Biol., 223, 1–18

[14]

Zhang,Y., Qian,M., Ouyang,Q., Deng,M., Li,F. and Tang,C. (2006) Stochastic model of yeast cell-cycle network. Physica D, 219, 35–39

[15]

Ma,W., Trusina,A., El-Samad,H., Lim,W. A. and Tang,C. (2009) Defining network topologies that can achieve biochemical adaptation. Cell, 138, 760–773

[16]

Ma,W., Lai,L., Ouyang,Q. and Tang,C. (2006) Robustness and modular design of the Drosophila segment polarity network. Mol. Syst. Biol., 2, 70

[17]

Zhang,Z., Ye,W., Qian,Y., Zheng,Z., Huang,X. and Hu,G. (2012) Chaotic motifs in gene regulatory networks. PLoS ONE, 7, e39355PMID:22792171

[18]

Ehud Kaplan,J. E. M. and Katepalli,R. (Sreenivasan Eds).(2003) In Perspectives and Problems in Nonlinear Science. A celebratory volume in honor of Lawrence Sirovich

[19]

Wang,J., Zhang,K., Xu,L. and Wang,E. (2011) Quantifying the Waddington landscape and biological paths for development and differentiation. Proc. Natl. Acad. Sci. U.S.A., 108, 8257–8262

[20]

Alon,U. (2007) An Introduction to Systems Biology: Design Principles of Biological Circuits. CRC Press

[21]

Spellman,P. T., Sherlock,G., Zhang,M. Q., Iyer,V. R., Anders,K., Eisen,M. B., Brown,P. O., Botstein,D. and Futcher,B. (1998) Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell, 9, 3273–3297

[22]

Ko,C. H. and Takahashi,J. S. (2006) Molecular components of the mammalian circadian clock. Hum. Mol. Genet., 15, R271–R277

[23]

Zhang,E. E. and Kay,S. A. (2010) Clocks not winding down: unravelling circadian networks. Nat. Rev. Mol. Cell Biol., 11, 764–776

[24]

Tyson,J. J., Novak,B.(2008) Temporal organization of the cell cycle. Current Biology, 18, 759–768

[25]

Seshadhri,C., Vorobeychik,Y., Mayo,J. R., Armstrong,R. C. and Ruthruff,J. R. (2011) Influence and dynamic behavior in random boolean networks. Phys. Rev. Lett., 107, 108701

[26]

Glass,L. and Hill,C. (1998) Ordered and disordered dynamics in random networks. Europhys. Lett., 41, 599–604

[27]

Mestl,T., Bagley,R. J. and Glass,L. (1997) Common chaos in arbitrarily complex feedback networks. Phys. Rev. Lett., 79, 653–656

[28]

Wainrib,G. and Touboul,J. (2013) Topological and dynamical complexity of random neural networks. Phys. Rev. Lett., 110, 118101

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (406KB)

1665

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/