Modeling stochastic noise in gene regulatory systems
Arwen Meister, Chao Du, Ye Henry Li, Wing Hung Wong
Modeling stochastic noise in gene regulatory systems
The Master equation is considered the gold standard for modeling the stochastic mechanisms of gene regulation in molecular detail, but it is too complex to solve exactly in most cases, so approximation and simulation methods are essential. However, there is still a lack of consensus about the best way to carry these out. To help clarify the situation, we review Master equation models of gene regulation, theoretical approximations based on an expansion method due to N.G. van Kampen and R. Kubo, and simulation algorithms due to D.T. Gillespie and P. Langevin. Expansion of the Master equation shows that for systems with a single stable steady-state, the stochastic model reduces to a deterministic model in a first-order approximation. Additional theory, also due to van Kampen, describes the asymptotic behavior of multistable systems. To support and illustrate the theory and provide further insight into the complex behavior of multistable systems, we perform a detailed simulation study comparing the various approximation and simulation methods applied to synthetic gene regulatory systems with various qualitative characteristics. The simulation studies show that for large stochastic systems with a single steady-state, deterministic models are quite accurate, since the probability distribution of the solution has a single peak tracking the deterministic trajectory whose variance is inversely proportional to the system size. In multistable stochastic systems, large fluctuations can cause individual trajectories to escape from the domain of attraction of one steady-state and be attracted to another, so the system eventually reaches a multimodal probability distribution in which all stable steady-states are represented proportional to their relative stability. However, since the escape time scales exponentially with system size, this process can take a very long time in large systems.
gene regulation / stochastic modeling / simulation / Master equation / Gillespie algorithm / Langevin equation
[1] |
Swain, P. S., Elowitz, M. B. and Siggia, E. D. (2002) Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl. Acad. Sci. U.S.A., 99, 12795–12800. Available at: and
CrossRef
Pubmed
Google scholar
|
[2] |
Paulsson, J. (2004) Summing up the noise in gene networks. Nature, 427, 415–418. Available at: and
CrossRef
Pubmed
Google scholar
|
[3] |
Elowitz, M. B., Levine, A. J., Siggia, E. D. and Swain, P. S. (2002) Stochastic gene expression in a single cell. Sci. Signal., 297, 1183.
|
[4] |
Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. and van Oudenaarden, A. (2002) Regulation of noise in the expression of a single gene. Nat. Genet., 31, 69–73. Available at: and
CrossRef
Pubmed
Google scholar
|
[5] |
Blake, W. J.,Kaern, M., Cantor, C. R. and Collins, J. J. (2003) Noise in eukaryotic gene expression. Nature, 422, 633–637
Pubmed
|
[6] |
Rao, C. V., Wolf, D. M. and Arkin, A. P. (2002) Control, exploitation and tolerance of intracellular noise. Nature, 420, 231–237. Available at: and
CrossRef
Pubmed
Google scholar
|
[7] |
Kaern, M., Elston, T. C., Blake, W. J. and Collins, J. J. (2005) Stochasticity in gene expression: from theories to phenotypes. Nat. Rev. Genet., 6, 451–464. Available at: and
CrossRef
Pubmed
Google scholar
|
[8] |
Raj, A. and van Oudenaarden, A. (2008) Nature, nurture, or chance: stochastic gene expression and its consequences. Cell, 135, 216–226. Available at: and
CrossRef
Pubmed
Google scholar
|
[9] |
Munsky, B., Neuert, G. and van Oudenaarden, A. (2012) Using gene expression noise to understand gene regulation. Science, 336, 183–187. Available at: and
CrossRef
Pubmed
Google scholar
|
[10] |
Hager, G. L., McNally, J. G. and Misteli, T. (2009) Transcription dynamics. Mol. Cell, 35, 741–753. Available at: and
CrossRef
Pubmed
Google scholar
|
[11] |
Kittisopikul, M. and Süel, G. M. (2010) Biological role of noise encoded in a genetic network motif. Proc. Natl. Acad. Sci. U.S.A., 107, 13300–13305. Available at: and
CrossRef
Pubmed
Google scholar
|
[12] |
Pedraza, J. M. and van Oudenaarden, A. (2005) Noise propagation in gene networks. Science, 307, 1965–1969. Available at: and
CrossRef
Pubmed
Google scholar
|
[13] |
Kepler, T. B. and Elston, T. C. (2001) Stochasticity in transcriptional regulation: origins, consequences, and mathematical representations. Biophys. J., 81, 3116–3136
CrossRef
Google scholar
|
[14] |
Ma, R., Wang, J., Hou, Z. and Liu, H. (2012) Small-number effects: a third stable state in a genetic bistable toggle switch. Phys. Rev. Lett., 109, 248107. Available at:
CrossRef
Pubmed
Google scholar
|
[15] |
Elowitz, M. B. and Leibler, S. (2000) A synthetic oscillatory network of transcriptional regulators. Nature, 403, 335–338. Available at: and
CrossRef
Pubmed
Google scholar
|
[16] |
Gardner, T., Cantor, C. and Collins, J. (2000) Construction of a genetic toggle switch in Escherichia coli. Nature, 403.
|
[17] |
Hasty, J., McMillen, D. and Collins, J. J. (2002) Engineered gene circuits. Nature, 420, 224–230. Available at: and
CrossRef
Pubmed
Google scholar
|
[18] |
Ozbudak, E. M., Thattai, M., Lim, H. N., Shraiman, B. I. and Van Oudenaarden, A. (2004) Multistability in the lactose utilization network of Escherichia coli. Nature, 427, 737–740. Available at: and
CrossRef
Pubmed
Google scholar
|
[19] |
Frigola, D., Casanellas, L., Sancho, J. M. and Ibañes, M. (2012) Asymmetric stochastic switching driven by intrinsic molecular noise. PLoS ONE, 7, e31407. Available at: and
CrossRef
Pubmed
Google scholar
|
[20] |
Novak, B. and Tyson, J. J. (1997) Modeling the control of DNA replication in fission yeast. Proc. Natl. Acad. Sci. U.S.A., 94, 9147–9152. Available at: and
CrossRef
Pubmed
Google scholar
|
[21] |
Arkin, A., Ross, J. and McAdams, H. H. (1998) Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics, 149, 1633–1648. Available at:
Pubmed
|
[22] |
Thattai, M. and van Oudenaarden, A. (2001) Intrinsic noise in gene regulatory networks. Proc. Natl. Acad. Sci. U.S.A., 98, 8614–8619. Available at: and
CrossRef
Pubmed
Google scholar
|
[23] |
Tao, Y. (2004) Intrinsic noise, gene regulation and steady-state statistics in a two gene network. J. Theor. Biol., 231, 563–568. Available at: and
CrossRef
Pubmed
Google scholar
|
[24] |
Rosenfeld, N., Young, J. W., Alon, U., Swain, P. S. and Elowitz, M. B. (2005) Gene regulation at the single-cell level. Sci. Signal., 307, 1962.
|
[25] |
Krishnamurthy, S., Smith, E., Krakauer, D., Fontana, W. (2007) The stochastic behavior of a molecular switching circuit with feedback. Biol. Direct, 2, 1–17. Available at:
CrossRef
Google scholar
|
[26] |
Munsky, B., Trinh, B. and Khammash, M. (2009) Listening to the noise: random fluctuations reveal gene network parameters. Mol. Syst. Biol., 5, 318. Available at: and
CrossRef
Pubmed
Google scholar
|
[27] |
Dunlop, M. J., Cox, R. S. 3rd, Levine, J. H., Murray, R. M. and Elowitz, M. B. (2008) Regulatory activity revealed by dynamic correlations in gene expression noise. Nat. Genet., 40, 1493–1498. Available at: and
CrossRef
Pubmed
Google scholar
|
[28] |
Stewart-Ornstein, J., Weissman, J. S. and El-Samad, H. (2012) Cellular noise regulons underlie fluctuations in Saccharomyces cerevisiae. Mol. Cell, 45, 483–493. Available at:
CrossRef
Google scholar
|
[29] |
Van Kampen, N. G.Stochastic Processes in Physics and Chemistry. (3rd, Ed). North Holland, 2007.
|
[30] |
Peles, S., Munsky, B. and Khammash, M. (2006) Reduction and solution of the chemical Master equation using time scale separation and finite state projection. J. Chem. Phys., 125, 204104. Available at: and
CrossRef
Pubmed
Google scholar
|
[31] |
Hegland, M., Burden, C., Santoso, L., MacNamara, S. and Booth, H. (2007) A solver for the stochastic master equation applied to gene regulatory networks. J. Comput. Appl. Math., 205, 708–724. Available at:
CrossRef
Google scholar
|
[32] |
Macnamara, S., Bersani, A. M., Burrage, K. and Sidje, R. B. (2008) Stochastic chemical kinetics and the total quasi-steady-state assumption: application to the stochastic simulation algorithm and chemical master equation. J. Chem. Phys., 129, 095105. Available at: and
CrossRef
Pubmed
Google scholar
|
[33] |
Smadbeck, P. and Kaznessis, Y. (2012) Stochastic model reduction using a modified Hill-type kinetic rate law. J. Chem. Phys., 137, 234109. Available at:
CrossRef
Pubmed
Google scholar
|
[34] |
Waldherr, S., Wu, J. and Allgöwer, F. (2010) Bridging time scales in cellular decision making with a stochastic bistable switch. BMC Syst. Biol., 4, 108. Available at: and
CrossRef
Pubmed
Google scholar
|
[35] |
Liang, J. and Qian, H. (2010) Computational cellular dynamics based on the chemical master equation: A challenge for understanding complexity. Journal of Computer Science and Technology, 25, 154–168. Available at:
CrossRef
Google scholar
|
[36] |
Gutierrez, P. S., Monteoliva, D. and Diambra, L. (2012) Cooperative binding of transcription factors promotes bimodal gene expression response. PLoS ONE, 7, e44812. Available at: and
CrossRef
Pubmed
Google scholar
|
[37] |
Khanin, R. and Higham, D. J. (2008) Chemical Master Equation and Langevin regimes for a gene transcription model. Theor. Comput. Sci., 408, 31–40
CrossRef
Google scholar
|
[38] |
Meister, A., Li, Y. H., Choi, B. and Wong, W. H. (2013) Learning a nonlinear dynamical system model of gene regulation: A perturbed steady-state approach. Ann. Appl. Stat., 7, 1311–1333. Available at:
CrossRef
Google scholar
|
[39] |
Faith, J. J., Hayete, B., Thaden, J. T., Mogno, I., Wierzbowski, J., Cottarel, G., Kasif, S., Collins, J. J. and Gardner, T. S. (2007) Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol., 5, e8. Available at: and
CrossRef
Pubmed
Google scholar
|
[40] |
Bansal, M., Belcastro, V., Ambesi-Impiombato, A. and di Bernardo, D. (2007) How to infer gene networks from expression profiles. Mol. Syst. Biol., 3, 78. Available at:
Pubmed
|
[41] |
Gardner, T. S., di Bernardo, D., Lorenz, D. and Collins, J. J. (2003) Inferring genetic networks and identifying compound mode of action via expression profiling. Science, 301, 102–105. Available at: and
CrossRef
Pubmed
Google scholar
|
[42] |
di Bernardo, D., Thompson, M. J., Gardner, T. S., Chobot, S. E., Eastwood, E. L., Wojtovich, A. P., Elliott, S. J., Schaus, S. E. and Collins, J. J. (2005) Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nat. Biotechnol., 23, 377–383. Available at: and
CrossRef
Pubmed
Google scholar
|
[43] |
Michaelis, L. and Menten, M. L. (1913) Die kinetik der invertinwirkung. Biochem. Z., 49, 333–369.
|
[44] |
Hill, A. V. (1913) The combinations of haemoglobin with oxygen and with carbon monoxide. Biochem. J., 7, 471–480. Available at:
Pubmed
|
[45] |
Ackers, G. K., Johnson, A. D. and Shea, M. A. (1982) Quantitative model for gene regulation by lambda phage repressor. Proc. Natl. Acad. Sci. U.S.A., 79, 1129–1133Available at:
CrossRef
Pubmed
Google scholar
|
[46] |
Shea, M. A. and Ackers, G. K. (1985) The OR control system of bacteriophage lambda: A physicalchemical model for gene regulation. J. Mol. Biol., 181, 211–230. Available at:
CrossRef
Google scholar
|
[47] |
Bintu, L., Buchler, N. E., Garcia, H. G., Gerland, U., Hwa, T., Kondev, J. and Phillips, R. (2005) Transcriptional regulation by the numbers: models. Curr. Opin. Genet. Dev., 15, 116–124. Available at: and
CrossRef
Pubmed
Google scholar
|
[48] |
Bintu, L., Buchler, N. E., Garcia, H. G., Gerland, U., Hwa, T., Kondev, J., Kuhlman, T. and Phillips, R. (2005) Transcriptional regulation by the numbers: applications. Curr. Opin. Genet. Dev., 15, 125–135. Available at: and
CrossRef
Pubmed
Google scholar
|
[49] |
Rao, C. V. and Arkin, A. P.(2003) Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm. J. Chem. Phys., 118, 4999–5010
CrossRef
Google scholar
|
[50] |
Walker, J. A.Dynamical Systems and Evolution Equations. New York: Plenum Press, 1939.
|
[51] |
Kubo, R., Matsuo, K. and Kitahara, K. (1973) Fluctuation and relaxation of macrovariables. J. Stat. Phys., 9, 51–96. Available at:
CrossRef
Google scholar
|
[52] |
Gillespie, D. T. (1977) Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81, 2340–2361. Available at:
CrossRef
Google scholar
|
[53] |
Gillespie, D. T. (2000) The chemical Langevin equation. J. Chem. Phys., 113, 297. Available at:
CrossRef
Google scholar
|
[54] |
Komorowski, M., Finkenstädt, B., Harper, C. V. and Rand, D. A. (2009) Bayesian inference of biochemical kinetic parameters using the linear noise approximation. BMC Bioinformatics, 10, 343. Available at: and
CrossRef
Pubmed
Google scholar
|
[55] |
Choi, B.Learning networks in biological systems, Ph.D. thesis, Department of Applied Physics, Stanford University, Stanford, 2012.
|
[56] |
Planck, M. and Verband Deutscher Physikalischer Gesellschaften. Physikalische abhandlungen und vorträge. 1958.
|
[57] |
Lord Rayleigh. (1891) Liii. Dynamical problems in illustration of the theory of gases. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 32, 424–445.
|
[58] |
Einstein, A.. (1906) Eine neue bestimmung der molek uldimensionen. Annalen der Physik, 324, 289–306
CrossRef
Google scholar
|
[59] |
Von Smoluchowski, M. (1906). Zur kinetischen theorie der brownschen molekularbewegung und der suspensionen. Annalen der physik, 326, 756–780.
|
[60] |
Van Kampen, N. G.Fluctuations in Nonlinear Systems. Fluctuation Phenomena in Solids, New York: Academic Press, 1965.
|
[61] |
Bar-Haim, A. and Klafter, J. (1998) Geometric versus energetic competition in light harvesting by dendrimers. J. Phys. Chem. B, 102, 1662–1664. Available at:
CrossRef
Google scholar
|
[62] |
Chickarmane, V. and Peterson, C. (2008) A computational model for understanding stem cell, trophectoderm and endoderm lineage determination. PLoS ONE, 3, e3478. Available at: and
CrossRef
Pubmed
Google scholar
|
[63] |
Zavlanos, M. M., Julius, A. A., Boyd, S. P. and Pappas, G. J. (2011) Inferring stable genetic networks from steady-state data. Automatica, 47, 1113–1122. Available at:
CrossRef
Google scholar
|
/
〈 | 〉 |