Microfluidics and its applications in quantitative biology

Yuhai Tu

Quant. Biol. ›› 2013, Vol. 1 ›› Issue (4) : 272 -280.

PDF (134KB)
Quant. Biol. ›› 2013, Vol. 1 ›› Issue (4) : 272 -280. DOI: 10.1007/s40484-014-0024-8
MEETING REPORT
MEETING REPORT

Microfluidics and its applications in quantitative biology

Author information +
History +
PDF (134KB)

Cite this article

Download citation ▾
Yuhai Tu. Microfluidics and its applications in quantitative biology. Quant. Biol., 2013, 1(4): 272-280 DOI:10.1007/s40484-014-0024-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Whitesides, G. M. (2006) The origins and the future of microfluidics. Nature, 442, 368-373

[2]

Lambert, G., Liao, D. and Austin, R. H. (2010) Collective escape of chemotactic swimmers through microscopic ratchets. Phys. Rev. Lett., 104, 168102

[3]

Loutherback, K., Chou, K. S., Newman, J., Puchalla, J., Austin, R. H., Sturm, J. C. (2010) Improved performance of deterministic lateral displacement arrays with triangular posts. Microfluidics and Nanofluidics, 9, 1143-1149.

[4]

Zhang, Q. and Austin, R. H. (2012) Applications of microfluidics in stem cell biology. Bionanoscience, 2, 277-286

[5]

Zhu, X., Si, G., Deng, N., Ouyang, Q., Wu, T., He, Z., Jiang, L., Luo, C. and Tu, Y. (2012) Frequency-dependent Escherichia coli chemotaxis behavior. Phys. Rev. Lett., 108, 128101

[6]

Tian, Y., Luo, C., Lu, Y., Tang, C. and Ouyang, Q. (2012) Cell cycle synchronization by nutrient modulation. Integr. Biol. (Camb.), 4, 328-334

[7]

Floris, A., Staal, S., Lenk, S., Staijen, E., Kohlheyer, D., Eijkel, J. and van den Berg, A. (2010) A prefilled, ready-to-use electrophoresis based lab-on-a-chip device for monitoring lithium in blood. Lab Chip, 10, 1799-1806

[8]

van der Meer, A. D. and van den Berg, A. (2012) Organs-on-chips: breaking the in vitro impasse. Integr. Biol. (Camb.), 4, 461-470

[9]

Yuan, B., Jin, Y., Sun, Y., Wang, D., Sun, J. S., Wang, Z., Zhang, W., Jiang, X. Y. (2012) Artificial vessels: A strategy for depositing different types of cells in three dimensions to mimic tubular structures in tissues. Adv. Mater., 24, 853

[10]

Gong, P. Y., Zheng, W. F., Huang, Z., Zhang, W., Xiao, D., Jiang, X. Y. (2013) A strategy for the construction of controlled, three dimensional, multilayered, tissue-like structures. Adv. Funct. Mater., 23, 42-46

[11]

Luo, C. X., Liu, L., Ni, X. F., Wang, L., Nomura, S. M., Ouyang, Q., Chen, Y. (2011) Differentiating stem cells on patterned substrates for neural network formation. Microelectron. Eng., 88, 1707-1710

[12]

Li, J. J., Zhou, X. T., Shi, J., Zhang, F., Li, X., Jiang, L. M., Chen, Y. (2013) Upside and downside views of adherent cells on patterned substrates: Three-dimensional image reconstruction. Microelectron. Eng., 110, 365-368

[13]

Zhang, Q., Liu, T. and Qin, J. (2012) A microfluidic-based device for study of transendothelial invasion of tumor aggregates in realtime. Lab Chip, 12, 2837-2842

[14]

Ma, J., Hui, Y. S., Zhang, M., Yu, Y., Wen, W. and Qin, J. (2013) Facile synthesis of biomimetic honeycomb material with biological functionality. Small, 9, 497-503

[15]

Kalinin, Y. V., Jiang, L., Tu, Y. and Wu, M. (2009) Logarithmic sensing in Escherichia coli bacterial chemotaxis. Biophys. J., 96, 2439-2448

[16]

Kim, B. J., Hannanta-anan, P., Chau, M., Kim, Y. S., Swartz, M. A. and Wu, M. (2013) Cooperative roles of SDF-1α and EGF gradients on tumor cell migration revealed by a robust 3D microfluidic model. PLoS ONE, 8, e68422

[17]

Kim, B. J. and Wu, M. (2012) Microfluidics for mammalian cell chemotaxis. Ann Biomed Eng, 40, 1316-1327

[18]

Breslauer, D. N., Lee, P. J. and Lee, L. P. (2006) Microfluidics-based systems biology. Mol Biosyst, 2, 97-112

[19]

Gutierrez, M. P. and Lee, L. P. (2013) Engineering. Multiscale design and integration of sustainable building functions. Science, 341, 247-248

[20]

Zhang, Y., Luo, C., Zou, K., Xie, Z., Brandman, O., Ouyang, Q. and Li, H. (2012) Single cell analysis of yeast replicative aging using a new generation of microfluidic device. PLoS ONE, 7, e48275

[21]

Xie, Z., Zhang, Y., Zou, K., Brandman, O., Luo, C., Ouyang, Q. and Li, H. (2012) Molecular phenotyping of aging in single yeast cells using a novel microfluidic device. Aging Cell, 11, 599-606

[22]

Bi, S., Yu, D., Si, G., Luo, C., Li, T., Ouyang, Q., Jakovljevic, V., Sourjik, V., Tu, Y. and Lai, L. (2013) Discovery of novel chemoeffectors and rational design of Escherichia coli chemoreceptor specificity. Proc. Natl. Acad. Sci. U.S.A., 110, 16814-16819

[23]

Mohammadi, A., Byrne Rodgers, J., Kotera, I. and Ryu, W. S. (2013) Behavioral response of Caenorhabditis elegans to localized thermal stimuli. BMC Neurosci, 14, 66

[24]

Ghosh, R., Mohammadi, A., Kruglyak, L. and Ryu, W. S. (2012) Multiparameter behavioral profiling reveals distinct thermal response regimes in Caenorhabditis elegans. BMC Biol., 10, 85

[25]

Nandagopal, S., Wu, D. and Lin, F. (2011) Combinatorial guidance by CCR7 ligands for T lymphocytes migration in co-existing chemokine fields. PLoS ONE, 6, e18183

[26]

Jiang, L., Ouyang, Q. and Tu, Y. (2010) Quantitative modeling of Escherichia coli chemotactic motion in environments varying in space and time. PLoS Comput. Biol., 6, e1000735

[27]

Si, G., Wu, T., Ouyang, Q. and Tu, Y. (2012) Pathway-based mean-field model for Escherichiacoli chemotaxis. Phys. Rev. Lett., 109, 048101

[28]

Rotem, A., Abate, A. R., Utada, A. S., Van Steijn, V. and Weitz, D. A. (2012) Drop formation in non-planar microfluidic devices. Lab Chip, 12, 4263-4268

[29]

Mazutis, L., Gilbert, J., Ung, W. L., Weitz, D. A., Griffiths, A. D. and Heyman, J. A. (2013) Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protoc., 8, 870-891

[30]

Du, W., Li, L., Nichols, K. P. and Ismagilov, R. F. (2009) SlipChip. Lab Chip, 9, 2286-2292

[31]

Wei, P., Wong, W. W., Park, J. S., Corcoran, E. E., Peisajovich, S. G., Onuffer, J. J., Weiss, A. and Lim, W. A. (2012) Bacterial virulence proteins as tools to rewire kinase pathways in yeast and immune cells. Nature, 488, 384-388

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (134KB)

1101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/