Imaging genetics --- towards discovery neuroscience

Tian Ge, Gunter Schumann, Jianfeng Feng

PDF(498 KB)
PDF(498 KB)
Quant. Biol. ›› 2013, Vol. 1 ›› Issue (4) : 227-245. DOI: 10.1007/s40484-013-0023-1
REVIEW ARTICLE
REVIEW ARTICLE

Imaging genetics --- towards discovery neuroscience

Author information +
History +

Abstract

Imaging genetics is an emerging field aimed at identifying and characterizing genetic variants that influence measures derived from anatomical or functional brain images, which are in turn related to brain-related illnesses or fundamental cognitive, emotional and behavioral processes, and are affected by environmental factors. Here we review the recent evolution of statistical approaches and outstanding challenges in imaging genetics, with a focus on population-based imaging genetic association studies. We show the trend in imaging genetics from candidate approaches to pure discovery science, and from univariate to multivariate analyses. We also discuss future directions and prospects of imaging genetics for ultimately helping understand the genetic and environmental underpinnings of various neuropsychiatric disorders and turning basic science into clinical strategies.

Graphical abstract

Keywords

imaging genetics / association study / multiple testing / 5-O approach

Cite this article

Download citation ▾
Tian Ge, Gunter Schumann, Jianfeng Feng. Imaging genetics --- towards discovery neuroscience. Quant. Biol., 2013, 1(4): 227‒245 https://doi.org/10.1007/s40484-013-0023-1

References

[1]
Gottesman, I. I. and Shields, J. (1972) Schizophrenia Genetics: A Twin Study Vantage Point. New York: Academic Press
[2]
Gottesman, I. I. and Gould, T. D. (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatry, 160, 636–645
Pubmed
[3]
Meyer-Lindenberg, A. and Weinberger, D. R. (2006) Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat. Rev. Neurosci., 7, 818–827
Pubmed
[4]
Akil, H., Brenner, S., Kandel, E., Kendler, K. S., King, M. C., Scolnick, E., Watson, J. D. and Zoghbi, H. Y. (2010) Medicine. the future of psychiatric research: genomes and neural circuits. Science, 327, 1580–1581
Pubmed
[5]
Ashburner, J. and Friston, K. J. (2000) Voxel-based morphometry—the methods. Neuroimage, 11, 805–821
Pubmed
[6]
Dale, A. M., Fischl, B. and Sereno, M. I. (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9, 179–194
Pubmed
[7]
Fischl, B., Sereno, M. I. and Dale, A. M. (1999) Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage, 9, 195–207
Pubmed
[8]
Fischl, B. (2012) FreeSurfer. Neuroimage, 62, 774–781
Pubmed
[9]
Rimol, L. M., Panizzon, M. S., Fennema-Notestine, C., Eyler, L. T., Fischl, B., Franz, C. E., Hagler, D. J., Lyons, M. J., Neale, M. C., Pacheco, J., (2010) Cortical thickness is influenced by regionally specific genetic factors. Biol. Psychiatry, 67, 493–499
Pubmed
[10]
Winkler, A. M., Kochunov, P., Blangero, J., Almasy, L., Zilles, K., Fox, P. T., Duggirala, R. and Glahn, D. C. (2010) Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage, 53, 1135–1146
Pubmed
[11]
Fox, M. D. and Raichle, M. E. (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci., 8, 700–711
Pubmed
[12]
Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., Filippini, N., Watkins, K. E., Toro, R., Laird, A. R., (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl. Acad. Sci. U.S.A., 106, 13040–13045
Pubmed
[13]
Thompson, P. M., Ge, T., Glahn, D. C., Jahanshad, N. and Nichols, T. E. (2013) Genetics of the connectome. Neuroimage, 80, 475–488
Pubmed
[14]
Chiang, M. C., Barysheva, M., Shattuck, D. W., Lee, A. D., Madsen, S. K., Avedissian, C., Klunder, A. D., Toga, A. W., McMahon, K. L., de Zubicaray, G. I., (2009) Genetics of brain fiber architecture and intellectual performance. J. Neurosci., 29, 2212–2224
Pubmed
[15]
Kochunov, P., Glahn, D. C., Lancaster, J. L., Winkler, A. M., Smith, S., Thompson, P. M., Almasy, L., Duggirala, R., Fox, P. T. and Blangero, J. (2010) Genetics of microstructure of cerebral white matter using diffusion tensor imaging. Neuroimage, 53, 1109–1116
Pubmed
[16]
Thomason, M. E. and Thompson, P. M. (2011) Diffusion imaging, white matter, and psychopathology. Annu Rev Clin Psychol, 7, 63–85
Pubmed
[17]
Jbabdi, S. and Johansen-Berg, H. (2011) Tractography: where do we go from here? Brain Connect, 1, 169–183
Pubmed
[18]
Glahn, D. C., Winkler, A. M., Kochunov, P., Almasy, L., Duggirala, R., Carless, M. A., Curran, J. C., Olvera, R. L., Laird, A. R., Smith, S. M., (2010) Genetic control over the resting brain. Proc. Natl. Acad. Sci. U.S.A., 107, 1223–1228
Pubmed
[19]
Fornito, A., Zalesky, A., Bassett, D. S., Meunier, D., Ellison-Wright, I., Yücel, M., Wood, S. J., Shaw, K., O’Connor, J., Nertney, D., (2011) Genetic influences on cost-efficient organization of human cortical functional networks. J. Neurosci., 31, 3261–3270
Pubmed
[20]
van den Heuvel, M. P., van Soelen, I. L. C., Stam, C. J., Kahn, R. S., Boomsma, D. I. and Hulshoff Pol, H. E. (2013) Genetic control of functional brain network efficiency in children. Eur Neuropsychopharmacol, 23, 19–23
Pubmed
[21]
Rubinov, M. and Sporns, O. (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage, 52, 1059–1069
Pubmed
[22]
Glahn, D. C., Curran, J. E., Winkler, A. M., Carless, M. A., Kent, J. W. Jr, Charlesworth, J. C., Johnson, M. P., Göring, H. H., Cole, S. A., Dyer, T. D., (2012) High dimensional endophenotype ranking in the search for major depression risk genes. Biol. Psychiatry, 71, 6–14
Pubmed
[23]
Frazer, K. A., Ballinger, D. G., Cox, D. R., Hinds, D. A., Stuve, L. L., Gibbs, R. A., Belmont, J. W., Boudreau, A., Hardenbol, P., Leal, S. M., , and the International HapMap Consortium. (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature, 449, 851–861
Pubmed
[24]
Freedman, M. L., Reich, D., Penney, K. L., McDonald, G. J., Mignault, A. A., Patterson, N., Gabriel, S. B., Topol, E. J., Smoller, J. W., Pato, C. N., (2004) Assessing the impact of population stratification on genetic association studies. Nat. Genet., 36, 388–393
Pubmed
[25]
Marchini, J., Cardon, L. R., Phillips, M. S. and Donnelly, P. (2004) The effects of human population structure on large genetic association studies. Nat. Genet., 36, 512–517
Pubmed
[26]
Devlin, B. and Roeder, K. (1999) Genomic control for association studies. Biometrics, 55, 997–1004
Pubmed
[27]
Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A. and Reich, D. (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet., 38, 904–909
Pubmed
[28]
Kang, H. M., Sul, J. H., Service, S. K., Zaitlen, N. A., Kong, S. Y., Freimer, N. B., Sabatti, C. and Eskin, E. (2010) Variance component model to account for sample structure in genome-wide association studies. Nat. Genet., 42, 348–354
Pubmed
[29]
Nymberg, C., Jia, T., Lubbe, S., Ruggeri, B., Desrivieres, S., Barker, G., Büchel, C., Fauth-Buehler, M., Cattrell, A., Conrod, P., , and the IMAGEN Consortium. (2013) Neural mechanisms of attention-deficit/hyperactivity disorder symptoms are stratified by MAOA genotype. Biol. Psychiatry, 74, 607–614
Pubmed
[30]
Joyner, A. H., J, C. R., Bloss, C. S., Bakken, T. E., Rimol, L. M., Melle, I., Agartz, I., Djurovic, S., Topol, E. J., Schork, N. J., (2009) A common MECP2 haplotype associates with reduced cortical surface area in humans in two independent populations. Proc. Natl. Acad. Sci. U.S.A., 106, 15483–15488
Pubmed
[31]
Meyer-Lindenberg, A. (2009) Neural connectivity as an intermediate phenotype: brain networks under genetic control. Hum Brain Mapp, 30, 1938–1946
Pubmed
[32]
Brown, J. A., Terashima, K. H., Burggren, A. C., Ercoli, L. M., Miller, K. J., Small, G. W. and Bookheimer, S. Y. (2011) Brain network local interconnectivity loss in aging APOE-4 allele carriers. Proc. Natl. Acad. Sci. U.S.A., 108, 20760–20765
Pubmed
[33]
Dennis, E. L., Jahanshad, N., Rudie, J. D., Brown, J. A., Johnson, K., McMahon, K. L., de Zubicaray, G. I., Montgomery, G., Martin, N. G., Wright, M. J., (2011) Altered structural brain connectivity in healthy carriers of the autism risk gene, CNTNAP2. Brain Connect, 1, 447–459
Pubmed
[34]
Loth, E., Poline, J. B., Thyreau, B., Jia, T., Tao, C., Lourdusamy, A., Stacey, D., Cattrell, A., Desrivières, S., Ruggeri, B., , and the IMAGEN Consortium. (2013) Oxytocin receptor genotype modulates ventral striatal activity to social cues and response to stressful life events. Biol. Psychiatry, PMID: 24120094
[35]
Friston, K. J., Ashburner, J. T., Kiebel, S. J., Nichols, T. E. and Penny, W. D. (2006) Statistical Parametric Mapping: The Analysis of Functional Brain Images. New York: Academic Press
[36]
Filippini, N., Rao, A., Wetten, S., Gibson, R. A., Borrie, M., Guzman, D., Kertesz, A., Loy-English, I., Williams, J., Nichols, T., (2009) Anatomically-distinct genetic associations of APOE ε4 allele load with regional cortical atrophy in Alzheimer’s disease. Neuroimage, 44, 724–728
Pubmed
[37]
Coon, K. D., Myers, A. J., Craig, D. W., Webster, J. A., Pearson, J. V., Lince, D. H., Zismann, V. L., Beach, T. G., Leung, D., Bryden, L., (2007) A high-density whole-genome association study reveals that APOE is the major susceptibility gene for sporadic late-onset Alzheimer’s disease. J Clin Psychiatry, 68, 613–618
Pubmed
[38]
Farrer, L. A., Cupples, L. A., Haines, J. L., Hyman, B., Kukull, W. A., Mayeux, R., Myers, R. H., Pericak-Vance, M. A., Risch, N. and van Duijn, C. M., and the APOE and Alzheimer Disease Meta Analysis Consortium. (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. JAMA, 278, 1349–1356
Pubmed
[39]
Ho, A. J., Stein, J. L., Hua, X., Lee, S., Hibar, D. P., Leow, A. D., Dinov, I. D., Toga, A. W., Saykin, A. J., Shen, L., , and the Alzheimer’s Disease Neuroimaging Initiative. (2010) A commonly carried allele of the obesity-related FTO gene is associated with reduced brain volume in the healthy elderly. Proc. Natl. Acad. Sci. U.S.A., 107, 8404–8409
Pubmed
[40]
Frayling, T. M., Timpson, N. J., Weedon, M. N., Zeggini, E., Freathy, R. M., Lindgren, C. M., Perry, J. R., Elliott, K. S., Lango, H., Rayner, N. W., (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science, 316, 889–894
Pubmed
[41]
Braskie, M. N., Jahanshad, N., Stein, J. L., Barysheva, M., McMahon, K. L., de Zubicaray, G. I., Martin, N. G., Wright, M. J., Ringman, J. M., Toga, A. W., (2011) Common Alzheimer’s disease risk variant within the CLU gene affects white matter microstructure in young adults. J. Neurosci., 31, 6764–6770
Pubmed
[42]
Westlye, E. T., Lundervold, A., Rootwelt, H., Lundervold, A. J. and Westlye, L. T. (2011) Increased hippocampal default mode synchronization during rest in middle-aged and elderly APOE ε4 carriers: relationships with memory performance. J. Neurosci., 31, 7775–7783
Pubmed
[43]
Filippini, N., MacIntosh, B. J., Hough, M. G., Goodwin, G. M., Frisoni, G. B., Smith, S. M., Matthews, P. M., Beckmann, C. F. and Mackay, C. E. (2009) Distinct patterns of brain activity in young carriers of the APOE-ε4 allele. Proc. Natl. Acad. Sci. U.S.A., 106, 7209–7214
Pubmed
[44]
Trachtenberg, A. J., Filippini, N., Ebmeier, K. P., Smith, S. M., Karpe, F. and Mackay, C. E. (2012) The effects of APOE on the functional architecture of the resting brain. Neuroimage, 59, 565–572
Pubmed
[45]
Chiang, M. C., Barysheva, M., Toga, A. W., Medland, S. E., Hansell, N. K., James, M. R., McMahon, K. L., de Zubicaray, G. I., Martin, N. G., Wright, M. J., (2011) BDNF gene effects on brain circuitry replicated in 455 twins. Neuroimage, 55, 448–454
Pubmed
[46]
Thomason, M. E., Dougherty, R. F., Colich, N. L., Perry, L. M., Rykhlevskaia, E. I., Louro, H. M., Hallmayer, J. F., Waugh, C. E., Bammer, R., Glover, G. H., (2010) COMT genotype affects prefrontal white matter pathways in children and adolescents. Neuroimage, 53, 926–934
Pubmed
[47]
Liu, B., Song, M., Li, J., Liu, Y., Li, K., Yu, C. and Jiang, T. (2010) Prefrontal-related functional connectivities within the default network are modulated by COMT val158met in healthy young adults. J. Neurosci., 30, 64–69
Pubmed
[48]
Scott-Van Zeeland, A. A., Abrahams, B. S., Alvarez-Retuerto, A. I., Sonnenblick, L. I., Rudie, J. D., Ghahremani, D., Mumford, J. A., Poldrack, R. A., Dapretto, M., Geschwind, D. H., (2010) Altered functional connectivity in frontal lobe circuits is associated with variation in the autism risk gene CNTNAP2. Sci. Transl. Med., 2, 56ra80
Pubmed
[49]
Rudie, J. D., Hernandez, L. M., Brown, J. A., Beck-Pancer, D., Colich, N. L., Gorrindo, P., Thompson, P. M., Geschwind, D. H., Bookheimer, S. Y., Levitt, P., (2012) Autism-associated promoter variant in MET impacts functional and structural brain networks. Neuron, 75, 904–915
Pubmed
[50]
Braskie, M. N., Jahanshad, N., Toga, A. W., McMahon, K. L., de Zubicaray, G. I., Martin, N. G., Wright, M. J. and Thompson, P. M. (2012) How a common variant in the growth factor receptor gene, NTRK1, affects white matter. Bioarchitecture, 2, 181–184
Pubmed
[51]
Esslinger, C., Kirsch, P., Haddad, L., Mier, D., Sauer, C., Erk, S., Schnell, K., Arnold, C., Witt, S. H., Rietschel, M., (2011) Cognitive state and connectivity effects of the genome-wide significant psychosis variant in ZNF804A. Neuroimage, 54, 2514–2523
Pubmed
[52]
Johnson, A. D. and O’Donnell, C. J. (2009) An open access database of genome-wide association results. BMC Med. Genet., 10, 6
Pubmed
[53]
Visscher, P. M., Brown, M. A., McCarthy, M. I. and Yang, J. (2012) Five years of GWAS discovery. Am. J. Hum. Genet., 90, 7–24
Pubmed
[54]
Potkin, S. G., Turner, J. A., Fallon, J. A., Lakatos, A., Keator, D. B., Guffanti, G. and Macciardi, F. (2009) Gene discovery through imaging genetics: identification of two novel genes associated with schizophrenia. Mol. Psychiatry, 14, 416–428
Pubmed
[55]
Stein, J. L., Hibar, D. P., Madsen, S. K., Khamis, M., McMahon, K. L., de Zubicaray, G. I., Hansell, N. K., Montgomery, G. W., Martin, N. G., Wright, M. J., , and the Alzheimer’s Disease Neuroimaging Initiative Investigators. (2011) Discovery and replication of dopamine-related gene effects on caudate volume in young and elderly populations (N=1198) using genome-wide search. Mol. Psychiatry, 16, 927–937, 881
Pubmed
[56]
Potkin, S. G., Guffanti, G., Lakatos, A., Turner, J. A., Kruggel, F., Fallon, J. H., Saykin, A. J., Orro, A., Lupoli, S., Salvi, E., , and the Alzheimer’s Disease Neuroimaging Initiative. (2009) Hippocampal atrophy as a quantitative trait in a genome-wide association study identifying novel susceptibility genes for Alzheimer’s disease. PLoS ONE, 4, e6501
Pubmed
[57]
Stein, J. L., Hua, X., Morra, J. H., Lee, S., Hibar, D. P., Ho, A. J., Leow, A. D., Toga, A. W., Sul, J. H., Kang, H. M., , and the Alzheimer’s Disease Neuroimaging Initiative. (2010) Genome-wide analysis reveals novel genes influencing temporal lobe structure with relevance to neurodegeneration in Alzheimer’s disease. Neuroimage, 51, 542–554
Pubmed
[58]
Chiang, M. C., Barysheva, M., McMahon, K. L., de Zubicaray, G. I., Johnson, K., Montgomery, G. W., Martin, N. G., Toga, A. W., Wright, M. J., Shapshak, P., (2012) Gene network effects on brain microstructure and intellectual performance identified in 472 twins. J. Neurosci., 32, 8732–8745
Pubmed
[59]
Bralten, J., Arias-Vásquez, A., Makkinje, R., Veltman, J. A., Brunner, H. G., Fernández, G., Rijpkema, M. and Franke, B. (2011) Association of the Alzheimer’s gene SORL1 with hippocampal volume in young, healthy adults. Am J Psychiatry, 168, 1083–1089
Pubmed
[60]
Shen, L., Kim, S., Risacher, S. L., Nho, K., Swaminathan, S., West, J. D., Foroud, T., Pankratz, N., Moore, J. H., Sloan, C. D., , and the Alzheimer’s Disease Neuroimaging Initiative. (2010) Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: A study of the ADNI cohort. Neuroimage, 53, 1051–1063
Pubmed
[61]
Jahanshad, N., Rajagopalan, P., Hua, X., Hibar, D. P., Nir, T. M., Toga, A. W., Jack, C. R. Jr, Saykin, A. J., Green, R. C., Weiner, M. W., , and the Alzheimer’s Disease Neuroimaging Initiative. (2013) Genome-wide scan of healthy human connectome discovers SPON1 gene variant influencing dementia severity. Proc. Natl. Acad. Sci. U.S.A., 110, 4768–4773
Pubmed
[62]
Stein, J. L., Hua, X., Lee, S., Ho, A. J., Leow, A. D., Toga, A. W., Saykin, A. J., Shen, L., Foroud, T., Pankratz, N., , and the Alzheimer’s Disease Neuroimaging Initiative. (2010) Voxelwise genome-wide association study (vGWAS). Neuroimage, 53, 1160–1174
Pubmed
[63]
Leow, A., Huang, S. C., Geng, A., Becker, J. and Davis, S., et al. (2005) Inverse consistent mapping in 3D deformable image registration: its construction and statistical properties. In: Information Processing in Medical Imaging, pps, 493–503. Berlin: Springer
[64]
Hibar, D.P., Kohannim, O., Stein, J.L., Chiang, M. C. and Thompson. P.M. (2011) Multilocus genetic analysis of brain images. Frontiers in Genetics, 2, 73
[65]
Wu, M. C., Kraft, P., Epstein, M. P., Taylor, D. M., Chanock, S. J., Hunter, D. J. and Lin, X. (2010) Powerful SNP-set analysis for case-control genome-wide association studies. Am. J. Hum. Genet., 86, 929–942
Pubmed
[66]
Hoh, J., Wille, A. and Ott, J. (2001) Trimming, weighting, and grouping SNPs in human case-control association studies. Genome Res., 11, 2115–2119
Pubmed
[67]
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, P., de Bakker, P. I., Daly, M. J., (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet., 81, 559–575
Pubmed
[68]
Morgenthaler, S. and Thilly, W.G. (2007) A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: a cohort allelic sums test (CAST). Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 615, 28–56
[69]
Madsen, B. E. and Browning, S. R. (2009) A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet., 5, e1000384
Pubmed
[70]
Morris, A. P. and Zeggini, E. (2010) An evaluation of statistical approaches to rare variant analysis in genetic association studies. Genet. Epidemiol., 34, 188–193
Pubmed
[71]
Li, B. and Leal, S. M. (2008) Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am. J. Hum. Genet., 83, 311–321
Pubmed
[72]
Hoerl, R. W. (1985) Ridge analysis 25 years later. Am. Stat., 39, 186–192.
[73]
Kohannim, O., Hibar, D. P., Stein, J. L., Jahanshad, N., Jack, C. R., Weiner, M. W., Toga, A. W. and Thompson, P. M. (2011) Boosting power to detect genetic associations in imaging using multi-locus, genome-wide scans and ridge regression. In Biomedical Imaging: From Nano to Macro, 2011 IEEE International Symposium, IEEE, 1855–1859
[74]
Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Series B Stat. Methodol., 58, 267–288.
[75]
Kohannim, O., Hibar, D.P., Stein, J.L., Jahanshad, N., Hua, X., (2012) Discovery and replication of gene influences on brain structure using LASSO regression. Frontiers in Neuroscience, 6, 115
[76]
Zou, H. and Hastie, T. (2005) Regularization and variable selection via the elastic net. J. R. Stat. Soc. Series B Stat. Methodol., 67, 301–320.
[77]
Kohannim, O., Hibar, D. P., Jahanshad, N., Stein, J. L., Hua, X., Toga, A. W., Jack, C. R., Weinen, M. W. and Thompson, P. M. (2012) Predicting temporal lobe volume on MRI from genotypes using l1-l2 regularized regression. In Biomedical Imaging: From Nano to Macro, 2012 IEEE International Symposium, IEEE, 1160–1163.
[78]
Hibar, D. P., Stein, J. L., Kohannim, O., Jahanshad, N., Saykin, A. J., Shen, L., Kim, S., Pankratz, N., Foroud, T., Huentelman, M. J., , and the Alzheimer’s Disease Neuroimaging Initiative. (2011) Voxelwise gene-wide association study (vGeneWAS): multivariate gene-based association testing in 731 elderly subjects. Neuroimage, 56, 1875–1891
Pubmed
[79]
Ge, T., Feng, J., Hibar, D. P., Thompson, P. M. and Nichols, T. E. (2012) Increasing power for voxel-wise genome-wide association studies: the random field theory, least square kernel machines and fast permutation procedures. Neuroimage, 63, 858–873
Pubmed
[80]
Liu, D., Lin, X. and Ghosh, D. (2007) Semiparametric regression of multidimensional genetic pathway data: least-squares kernel machines and linear mixed models. Biometrics, 63, 1079–1088
Pubmed
[81]
Wu, M. C., Lee, S., Cai, T., Li, Y., Boehnke, M. and Lin, X. (2011) Rare-variant association testing for sequencing data with the sequence kernel association test. Am. J. Hum. Genet., 89, 82–93
Pubmed
[82]
Kwee, L. C., Liu, D., Lin, X., Ghosh, D. and Epstein, M. P. (2008) A powerful and flexible multilocus association test for quantitative traits. Am. J. Hum. Genet., 82, 386–397
Pubmed
[83]
Lin, X. (1997) Variance component testing in generalised linear models with random effects. Biometrika, 84, 309–326.
[84]
Hotelling, H. (1936) Relations between two sets of variates. Biometrika, 28, 321–377
[85]
Wold, S., Martens, H. and Wold, H. (1983) The multivariate calibration problem in chemistry solved by the PLS method. Matrix Pencils, 973, 286–293
[86]
Le Floch, E., Guillemot, V., Frouin, V., Pinel, P., Lalanne, C., Trinchera, L., Tenenhaus, A., Moreno, A., Zilbovicius, M., Bourgeron, T., (2012) Significant correlation between a set of genetic polymorphisms and a functional brain network revealed by feature selection and sparse Partial Least Squares. Neuroimage, 63, 11–24
Pubmed
[87]
Chi, E. C., Allen, G. I., Zhou, H., Kohannim, O., Lange, K., (2013) Imaging genetics via sparse canonical correlation analysis. In: Biomedical Imaging: From Nano to Macro, 2013 IEEE International Symposium, IEEE, 740–743
[88]
Liu, J., Pearlson, G., Windemuth, A., Ruano, G., Perrone-Bizzozero, N. I. and Calhoun, V. (2009) Combining fMRI and SNP data to investigate connections between brain function and genetics using parallel ICA. Hum Brain Mapp, 30, 241–255
Pubmed
[89]
Wang, H., Nie, F., Huang, H., Kim, S., Nho, K., Risacher, S. L., Saykin, A. J. and Shen, L., and the Alzheimer’s Disease Neuroimaging Initiative. (2012) Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort. Bioinformatics, 28, 229–237
Pubmed
[90]
Wang, H., Nie, F., Huang, H., Risacher, S. L., Saykin, A. J. and Shen, L., and the Alzheimer’s Disease Neuroimaging Initiative. (2012) Identifying disease sensitive and quantitative trait-relevant biomarkers from multidimensional heterogeneous imaging genetics data via sparse multimodal multitask learning. Bioinformatics, 28, i127–i136
Pubmed
[91]
Vounou, M., Nichols, T. E. and Montana, G., and the Alzheimer’s Disease Neuroimaging Initiative. (2010) Discovering genetic associations with high-dimensional neuroimaging phenotypes: A sparse reduced-rank regression approach. Neuroimage, 53, 1147–1159
Pubmed
[92]
Vounou, M., Janousova, E., Wolz, R., Stein, J. L., Thompson, P. M., Rueckert, D. and Montana, G., and the Alzheimer’s Disease Neuroimaging Initiative. (2012) Sparse reduced-rank regression detects genetic associations with voxel-wise longitudinal phenotypes in Alzheimer’s disease. Neuroimage, 60, 700–716
Pubmed
[93]
Silver, M., Janousova, E., Hua, X., Thompson, P. M. and Montana, G., and the Alzheimer’s Disease Neuroimaging Initiative. (2012) Identification of gene pathways implicated in Alzheimer’s disease using longitudinal imaging phenotypes with sparse regression. Neuroimage, 63, 1681–1694
Pubmed
[94]
Stingo, F. C., Guindani, M., Vannucci, M. and Calhoun, V. D. (2013) An integrative Bayesian modeling approach to imaging genetics. J. Am. Stat. Assoc., 108, 876–891
Pubmed
[95]
Batmanghelich, N. K., Dalca, A. V., Sabuncu, M. R. and Golland, P. (2013) Joint modeling of imaging and genetics. In Information Processing in Medical Imaging, Berlin: Springer, pps 766–777
[96]
Guyon, I., Weston, J., Barnhill, S. and Vapnik, V. (2002) Gene selection for cancer classification using support vector machines. Mach. Learn., 46, 389–422
[97]
Zhang, H. H. and Lv, J. (2008) Discussion of “Sure Independence Screening for Ultra-High Dimensional Feature Space”. J. R. Stat. Soc. Series B Stat. Methodol., 70, 849–911
Pubmed
[98]
Fan, J. and Song, R. (2010) Sure independence screening in generalized linear models with NP-dimensionality. Ann. Stat., 38, 3567–3604.
[99]
He, Q. and Lin, D. Y. (2011) A variable selection method for genome-wide association studies. Bioinformatics, 27, 1–8
Pubmed
[100]
Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol., 57, 289–300.
[101]
Genovese, C. R., Lazar, N. A. and Nichols, T. (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage, 15, 870–878
Pubmed
[102]
Holmes, A. P., Blair, R. C., Watson, J. D. and Ford, I. (1996) Nonparametric analysis of statistic images from functional mapping experiments. J. Cereb. Blood Flow Metab., 16, 7–22
Pubmed
[103]
Nichols, T. and Hayasaka, S. (2003) Controlling the familywise error rate in functional neuroimaging: a comparative review. Stat Methods Med Res, 12, 419–446
Pubmed
[104]
Knijnenburg, T. A., Wessels, L. F. A., Reinders, M. J. T. and Shmulevich, I. (2009) Fewer permutations, more accurate P-values. Bioinformatics, 25, i161–i168
Pubmed
[105]
Friston, K. J., Holmes, A., Poline, J. B., Price, C. J. and Frith, C. D. (1996) Detecting activations in PET and fMRI: levels of inference and power. Neuroimage, 4, 223–235
Pubmed
[106]
Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C., Friston, K. J. and Evans, A. C. (1996) A unified statistical approach for determining significant signals in images of cerebral activation. Hum Brain Mapp, 4, 58–73
Pubmed
[107]
Cao, J. (1999) The size of the connected components of excursion sets of χ2, T and F fields. Adv. Appl. Probab., 31, 579–595.
[108]
Smith, S. M. and Nichols, T. E. (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage, 44, 83–98
Pubmed
[109]
Zhang, H., Nichols, T. E. and Johnson, T. D. (2009) Cluster mass inference via random field theory. Neuroimage, 44, 51–61
Pubmed
[110]
Chumbley, J., Worsley, K., Flandin, G. and Friston, K. (2010) Topological FDR for neuroimaging. Neuroimage, 49, 3057–3064
Pubmed
[111]
Zhang, C., Fan, J. and Yu, T. (2011) Multiple testing via FDRLfor large scale imaging data. Ann Stat, 39, 613–642
Pubmed
[112]
Gao, X., Starmer, J. and Martin, E. R. (2008) A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet. Epidemiol., 32, 361–369
Pubmed
[113]
Gao, X., Becker, L. C., Becker, D. M., Starmer, J. D. and Province, M. A. (2010) Avoiding the high Bonferroni penalty in genome-wide association studies. Genet. Epidemiol., 34, 100–105
Pubmed
[114]
Fan, J., Han, X. and Gu, W. (2012) Estimating false discovery proportion under arbitrary covariance dependence. J. Am. Stat. Assoc., 107, 1019–1035.
[115]
Efron, B. (2013) Large-scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction. Cambridge: Cambridge University Press
[116]
Eklund, A., Andersson, M.and Knutsson. H. (2011) Fast random permutation tests enable objective evaluation of methods for single-subject fMRI analysis. International Journal of Biomedical Imaging. http://dx.doi.org/10.1155/2011/627947
[117]
Nichols, T. E. (2012) Multiple testing corrections, nonparametric methods, and random field theory. Neuroimage, 62, 811–815
Pubmed
[118]
Ioannidis, J. P. A. (2005) Why most published research findings are false. PLoS Med., 2, e124
Pubmed
[119]
Sullivan, P. F. (2010) The psychiatric GWAS consortium: big science comes to psychiatry. Neuron, 68, 182–186
Pubmed
[120]
Schumann, G., Loth, E., Banaschewski, T., Barbot, A., Barker, G., Büchel, C., Conrod, P. J., Dalley, J. W., Flor, H., Gallinat, J., , and the IMAGEN consortium. (2010) The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology. Mol. Psychiatry, 15, 1128–1139
Pubmed
[121]
Stein, J. L., Medland, S. E., Vasquez, A. A., Hibar, D. P., Senstad, R. E., Winkler, A. M., Toro, R., Appel, K., Bartecek, R., Bergmann, Ø., , and the Alzheimer’s Disease Neuroimaging Initiative, and the EPIGEN Consortium, and the IMAGEN Consortium, and the Saguenay Youth Study Group, and the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium, and the Enhancing Neuro Imaging Genetics through Meta-Analysis Consortium. (2012) Identification of common variants associated with human hippocampal and intracranial volumes. Nat. Genet., 44, 552–561
Pubmed
[122]
Jahanshad, N., Kochunov, P. V., Sprooten, E., Mandl, R. C., Nichols, T. E., Almasy, L., Blangero, J., Brouwer, R. M., Curran, J. E., de Zubicaray, G. I., (2013) Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: a pilot project of the ENIGMA-DTI working group. Neuroimage, 81, 455–469
Pubmed
[123]
Novak, N. M., Stein, J. L., Medland, S. E., Hibar, D. P., Thompson, P. M. and Toga, A. W. (2012) EnigmaVis: online interactive visualization of genome-wide association studies of the Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) consortium. Twin Res. Hum. Genet., 15, 414–418
Pubmed

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(498 KB)

Accesses

Citations

Detail

Sections
Recommended

/