Synthetic biology: a new approach to study biological pattern formation

Chenli Liu, Xiongfei Fu, Jian-Dong Huang

PDF(232 KB)
PDF(232 KB)
Quant. Biol. ›› 2013, Vol. 1 ›› Issue (4) : 246-252. DOI: 10.1007/s40484-013-0021-3
REVIEW
REVIEW

Synthetic biology: a new approach to study biological pattern formation

Author information +
History +

Abstract

The principles and molecular mechanisms underlying biological pattern formation are difficult to elucidate in most cases due to the overwhelming physiologic complexity associated with the natural context. The understanding of a particular mechanism, not to speak of underlying universal principles, is difficult due to the diversity and uncertainty of the biological systems. Although current genetic and biochemical approaches have greatly advanced our understanding of pattern formation, the progress mainly relies on experimental phenotypes obtained from time-consuming studies of gain or loss of function mutants. It is prevailingly considered that synthetic biology will come to the application age, but more importantly synthetic biology can be used to understand the life. Using periodic stripe pattern formation as a paradigm, we discuss how to apply synthetic biology in understanding biological pattern formation and hereafter foster the applications like tissue engineering.

Graphical abstract

Cite this article

Download citation ▾
Chenli Liu, Xiongfei Fu, Jian-Dong Huang. Synthetic biology: a new approach to study biological pattern formation. Quant. Biol., 2013, 1(4): 246‒252 https://doi.org/10.1007/s40484-013-0021-3

References

[1]
Wolpert, L. (1969) Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol., 25, 1−47
Pubmed
[2]
Danino, T., Mondragón-Palomino, O., Tsimring, L. and Hasty, J. (2010) A synchronized quorum of genetic clocks. Nature, 463, 326−330
Pubmed
[3]
Tabor, J. J., Salis, H. M., Simpson, Z. B., Chevalier, A. A., Levskaya, A., Marcotte, E. M., Voigt, C. A. and Ellington, A. D. (2009) A synthetic genetic edge detection program. Cell, 137, 1272−1281
Pubmed
[4]
Levskaya, A., Chevalier, A. A., Tabor, J. J., Simpson, Z. B., Lavery, L. A., Levy, M., Davidson, E. A., Scouras, A., Ellington, A. D., Marcotte, E. M., (2005) Synthetic biology: engineering Escherichia coli to see light. Nature, 438, 441−442
Pubmed
[5]
Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H. and Weiss, R. (2005) A synthetic multicellular system for programmed pattern formation. Nature, 434, 1130−1134
Pubmed
[6]
You, L., Cox, R. S. 3rd, Weiss, R. and Arnold, F. H. (2004) Programmed population control by cell-cell communication and regulated killing. Nature, 428, 868−871
Pubmed
[7]
Elowitz, M. B. and Leibler, S. (2000) A synthetic oscillatory network of transcriptional regulators. Nature, 403, 335−338
Pubmed
[8]
Elowitz, M. and Lim, W. A. (2010) Build life to understand it. Nature, 468, 889−890
Pubmed
[9]
Mukherji, S. and van Oudenaarden, A. (2009) Synthetic biology: understanding biological design from synthetic circuits. Nat. Rev. Genet., 10, 859−871
Pubmed
[10]
Held, L. I. (1992) Models for embryonic periodicity. Basel; New York: Karger. viii, 119 p. p.
[11]
Nüsslein-Volhard, C. and Wieschaus, E. (1980) Mutations affecting segment number and polarity in Drosophila. Nature, 287, 795−801
Pubmed
[12]
Lawrence, P. A. (1992) The making of a fly: the genetics of animal design. Oxford: Blackwell Scientific Publications. xiii, 228 p. p.
[13]
Peel, A. D., Chipman, A. D. and Akam, M. (2005) Arthropod segmentation: beyond the Drosophila paradigm. Nat. Rev. Genet., 6, 905−916
Pubmed
[14]
Dequéant, M. L. and Pourquié, O. (2008) Segmental patterning of the vertebrate embryonic axis. Nat. Rev. Genet., 9, 370−382
Pubmed
[15]
Schnell, S., Maini, P. K., McInerney, D., Gavaghan, D. J. and Houston, P. (2002) Models for pattern formation in somitogenesis: a marriage of cellular and molecular biology. C. R. Biol., 325, 179−189
Pubmed
[16]
Sadler, T. W. and Langman, J. (2000) Langman's medical embryology. Philadelphia: Lippincott Williams & Wilkins. x, 504 p. p.
[17]
Dubrulle, J., McGrew, M. J. and Pourquié, O. (2001) FGF signaling controls somite boundary position and regulates segmentation clock control of spatiotemporal Hox gene activation. Cell, 106, 219−232
Pubmed
[18]
Pourquié, O. (2003) The segmentation clock: converting embryonic time into spatial pattern. Science, 301, 328−330
Pubmed
[19]
Finney, M. and Ruvkun, G. (1990) The unc-86 gene product couples cell lineage and cell identity in C. elegans. Cell, 63, 895−905
Pubmed
[20]
McKearin, D. M. and Spradling, A. C. (1990) bag-of-marbles: a Drosophila gene required to initiate both male and female gametogenesis. Genes Dev., 4, 2242−2251
Pubmed
[21]
Sussex, I. M. (1989) Developmental programming of the shoot meristem. Cell, 56, 225−229
Pubmed
[22]
Murray, J. D. (2002) Mathematical biology. New York: Springer.
[23]
Cooke, J. (1975) Control of somite number during morphogenesis of a vertebrate, Xenopus laevis. Nature, 254, 196−199
Pubmed
[24]
Alon, U. (2007) An introduction to systems biology: design principles of biological circuits. Boca Raton, FL: Chapman & Hall/CRC. xvi, 301 p., [304] p. of plates p.
[25]
May, R. M. (1976) Simple mathematical models with very complicated dynamics. Nature, 261, 459−467
Pubmed
[26]
Wolpert, L. (1971) Positional information and pattern formation. Curr. Top. Dev. Biol., 6, 183−224
Pubmed
[27]
Kondo, S. and Miura, T. (2010) Reaction-diffusion model as a framework for understanding biological pattern formation. Science, 329, 1616−1620
Pubmed
[28]
Hodges, A. (1983) Alan Turing: the enigma. New York: Simon and Schuster. 587 p p.
[29]
Turing, A. M. (1990) The chemical basis of morphogenesis. 1953. Bull. Math. Biol., 52, 153−197, discussion 119−152 PMID:2185858.
[30]
Fitzhugh, R. (1961) Impulses and Physiological States in Theoretical Models of Nerve Membrane. Biophys. J., 1, 445−466
Pubmed
[31]
Maini, P. K., Myerscough, M. R., Winters, K. H. and Murray, J. D. (1991) Bifurcating spatially heterogeneous solutions in a chemotaxis model for biological pattern generation. Bull. Math. Biol., 53, 701−719
Pubmed
[32]
Swindale, N. V. (1980) A model for the formation of ocular dominance stripes. Proc. R. Soc. Lond., B, Biol. Sci., 208, 243−264
Pubmed
[33]
Murray, J. D., Oster, G. F. and Harris, A. K. (1983) A mechanical model for mesenchymal morphogenesis. J Math Biol, 17, 125−129
Pubmed
[34]
Murray, J. D. (2002) Mathematical biology. II, Spatial models and biomedical applications. New York: Springer. xxv, 811 p. p.
[35]
Meinhardt, H. and Gierer, A. (1974) Applications of a theory of biological pattern formation based on lateral inhibition. J. Cell. Sci., 15, 321−346
Pubmed
[36]
Müller, P., Rogers, K. W., Jordan, B. M., Lee, J. S., Robson, D., Ramanathan, S. and Schier, A. F. (2012) Differential diffusivity of Nodal and Lefty underlies a reaction-diffusion patterning system. Science, 336, 721−724
Pubmed
[37]
Cates, M. E., Marenduzzo, D., Pagonabarraga, I. and Tailleur, J. (2010) Arrested phase separation in reproducing bacteria creates a generic route to pattern formation. Proc. Natl. Acad. Sci. U.S.A., 107, 11715−11720
Pubmed
[38]
Fu, X., Tang, L. H., Liu, C., Huang, J. D., Hwa, T. and Lenz, P. (2012) Stripe formation in bacterial systems with density-suppressed motility. Phys. Rev. Lett., 108, 198102
Pubmed
[39]
Liu, C., Fu, X., Liu, L., Ren, X., Chau, C. K., Li, S., Xiang, L., Zeng, H., Chen, G., Tang, L. H., (2011) Sequential establishment of stripe patterns in an expanding cell population. Science, 334, 238−241
Pubmed
[40]
Cooke, J. and Zeeman, E. C. (1976) A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J. Theor. Biol., 58, 455−476
Pubmed
[41]
Khalil, A. S. and Collins, J. J. (2010) Synthetic biology: applications come of age. Nat. Rev. Genet., 11, 367−379
Pubmed
[42]
Benner, S. A. and Sismour, A. M. (2005) Synthetic biology. Nat. Rev. Genet., 6, 533−543
Pubmed
[43]
Friedland, A. E., Lu, T. K., Wang, X., Shi, D., Church, G. and Collins, J. J. (2009) Synthetic gene networks that count. Science, 324, 1199−1202
Pubmed
[44]
Skerker, J. M., Perchuk, B. S., Siryaporn, A., Lubin, E. A., Ashenberg, O., Goulian, M. and Laub, M. T. (2008) Rewiring the specificity of two-component signal transduction systems. Cell, 133, 1043−1054
Pubmed
[45]
Kobayashi, H., Kaern, M., Araki, M., Chung, K., Gardner, T. S., Cantor, C. R. and Collins, J. J. (2004) Programmable cells: interfacing natural and engineered gene networks. Proc. Natl. Acad. Sci. U.S.A., 101, 8414−8419
Pubmed
[46]
Balagaddé, F. K., Song, H., Ozaki, J., Collins, C. H., Barnet, M., Arnold, F. H., Quake, S. R. and You, L. (2008) A synthetic Escherichia coli predator-prey ecosystem. Mol. Syst. Biol., 4, 187
Pubmed
[47]
Lee, H. H., Molla, M. N., Cantor, C. R. and Collins, J. J. (2010) Bacterial charity work leads to population-wide resistance. Nature, 467, 82−85
Pubmed

RIGHTS & PERMISSIONS

2013 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(232 KB)

Accesses

Citations

Detail

Sections
Recommended

/