Rational design of a biosensor circuit with semi-log dose-response function in Escherichia coli

Haoqian Zhang, Ying Sheng, Qianzhu Wu, Ao Liu, Yuheng Lu, Zhenzhen Yin, Yuansheng Cao, Weiqian Zeng, Qi Ouyang

PDF(399 KB)
PDF(399 KB)
Quant. Biol. ›› 2013, Vol. 1 ›› Issue (3) : 209-220. DOI: 10.1007/s40484-013-0020-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Rational design of a biosensor circuit with semi-log dose-response function in Escherichia coli

Author information +
History +

Abstract

A central goal of synthetic biology is to apply successful principles that have been developed in electronic and chemical engineering to construct basic biological functional modules, and through rational design, to build synthetic biological systems with predetermined functions. Here, we apply the reverse engineering design principle of biological networks to synthesize a gene circuit that executes semi-log dose-response, a logarithmically linear sensing function, in Escherichia coli cells. We first mathematically define the object function semi-log dose-response, and then search for tri-node network topologies that can most robustly execute the object function. The simplest topology, transcriptional coherent feed-forward loop (TCFL), among the searching results is mathematically analyzed; we find that, in TCFL topology, the semi-log dose-response function arises from the additive effect of logarithmical linearity intervals of Hill functions. TCFL is then genetically implemented in E. coli as a logarithmically linear sensing biosensor for heavy metal ions [mercury (II)]. Functional characterization shows that this rationally designed biosensor circuit works as expected. Through this study we demonstrated the potential application of biological network reverse engineering to broaden the computational power of synthetic biology.

Keywords

synthetic biology / gene circuit design / reverse engineering / logarithmically linear sensing

Cite this article

Download citation ▾
Haoqian Zhang, Ying Sheng, Qianzhu Wu, Ao Liu, Yuheng Lu, Zhenzhen Yin, Yuansheng Cao, Weiqian Zeng, Qi Ouyang. Rational design of a biosensor circuit with semi-log dose-response function in Escherichia coli. Quant. Biol., 2013, 1(3): 209‒220 https://doi.org/10.1007/s40484-013-0020-4

References

[1]
Gardner,T. S., Cantor,C. R. and Collins,J. J. (2000) Construction of a genetic toggle switch in Escherichia coli. Nature, 403, 339-342
Pubmed
[2]
Elowitz,M. B. and Leibler,S. (2000) A synthetic oscillatory network of transcriptional regulators. Nature, 403, 335-338
Pubmed
[3]
Danino,T., Mondragón-Palomino,O., Tsimring,L. and Hasty,J. (2010) A synchronized quorum of genetic clocks. Nature, 463, 326-330
Pubmed
[4]
Lou,C., Liu,X., Ni,M., Huang,Y., Huang,Q., Huang,L., Jiang,L., Lu,D., Wang,M., Liu,C., (2010) Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch. Mol. Syst. Biol., 6, 350
Pubmed
[5]
Tabor,J. J., Salis,H. M., Simpson,Z. B., Chevalier,A. A., Levskaya,A., Marcotte,E. M., Voigt,C. A. and Ellington,A. D. (2009) A synthetic genetic edge detection program. Cell, 137, 1272-1281
Pubmed
[6]
Kwok,R. (2010) Five hard truths for synthetic biology. Nature, 463, 288-290
Pubmed
[7]
Lu,T. K., Khalil,A. S. and Collins,J. J. (2009) Next-generation synthetic gene networks. Nat. Biotechnol., 27, 1139-1150
Pubmed
[8]
Nandagopal,N. and Elowitz,M. B. (2011) Synthetic biology: integrated gene circuits. Science, 333, 1244-1248
Pubmed
[9]
Randall,A., Guye,P., Gupta,S., Duportet,X. and Weiss,R. (2011) Design and connection of robust genetic circuits. Meth. Enzymol., 497, 159-186
Pubmed
[10]
Bruggeman,F.J., Hornberg,J.J., Boogerd,F.C., and Westerhoff,H.V. (2007). Introduction to systems biology. EXS97, 1-19.
[11]
Smolke,C. D. and Silver,P. A. (2011) Informing biological design by integration of systems and synthetic biology. Cell, 144, 855-859
Pubmed
[12]
Alon,U. (2007). An introduction to systems biology : design principles of biological circuits (Boca Raton, FL, Chapman & Hall/CRC).
[13]
Ma,W., Trusina,A., El-Samad,H., Lim,W. A. and Tang,C. (2009) Defining network topologies that can achieve biochemical adaptation. Cell, 138, 760-773
Pubmed
[14]
Artyukhin,A. B., Wu,L. F. and Altschuler,S. J. (2009) Only two ways to achieve perfection. Cell, 138, 619-621
Pubmed
[15]
Buchler,N. E., Gerland,U. and Hwa,T. (2005) Nonlinear protein degradation and the function of genetic circuits. Proc. Natl. Acad. Sci. U.S.A., 102, 9559-9564
Pubmed
[16]
Helmann,J. D., Ballard,B. T. and Walsh,C. T. (1990) The MerR metalloregulatory protein binds mercuric ion as a tricoordinate, metal-bridged dimer. Science, 247, 946-948
Pubmed
[17]
Ralston,D. M. and O’Halloran,T. V. (1990) Ultrasensitivity and heavy-metal selectivity of the allosterically modulated MerR transcription complex. Proc. Natl. Acad. Sci. U.S.A., 87, 3846-3850
Pubmed
[18]
Wickner,S., Maurizi,M. R. and Gottesman,S. (1999) Posttranslational quality control: folding, refolding, and degrading proteins. Science, 286, 1888-1893
Pubmed
[19]
J.,Xiao, J.,Ren, X.,Lao, K., and Xie,X.S. (2006). Probing gene expression in live cells, one protein molecule at a time. Science 311, 1600-1603.
[20]
Hobman,J. L., Wilkie,J. and Brown,N. L. (2005) A design for life: prokaryotic metal-binding MerR family regulators. Biometals, 18, 429-436
Pubmed
[21]
Nascimento,A. M. and Chartone-Souza,E. (2003) Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments. Genet. Mol. Res., 2, 92-101
Pubmed
[22]
Liebert,C. A., Hall,R. M. and Summers,A. O. (1999) Transposon Tn21, flagship of the floating genome. Microbiol. Mol. Biol. Rev., 63, 507-522
Pubmed
[23]
Nakaya,R., Nakamura,A. and Murata,Y. (1960) Resistance transfer agents in Shigella. Biochem. Biophys. Res. Commun., 3, 654-659
Pubmed
[24]
Bower,A. G., McClintock,M. K. and Fong,S. S. (2010) Synthetic biology: a foundation for multi-scale molecular biology. Bioeng Bugs, 1, 309-312
Pubmed
[25]
Canton,B., Labno,A. and Endy,D. (2008) Refinement and standardization of synthetic biological parts and devices. Nat. Biotechnol., 26, 787-793
Pubmed
[26]
Christie,G. E. and Calendar,R. (1985) Bacteriophage P2 late promoters. II. Comparison of the four late promoter sequences. J. Mol. Biol., 181, 373-382
Pubmed
[27]
Julien,B. and Calendar,R. (1996) Bacteriophage PSP3 and phiR73 activator proteins: analysis of promoter specificities. J. Bacteriol., 178, 5668-5675
Pubmed
[28]
Park,S. J., Wireman,J. and Summers,A. O. (1992) Genetic analysis of the Tn21 mer operator-promoter. J. Bacteriol., 174, 2160-2171
Pubmed
[29]
Daniel,R., Rubens,J. R., Sarpeshkar,R. and Lu,T. K. (2013) Synthetic analog computation in living cells. Nature, 497, 619-623
Pubmed
[30]
Chau,A. H., Walte, rJ. M., Gerardin,J., Tang,C. and Lim,W. A. (2012) Designing synthetic regulatory networks capable of self-organizing cell polarization. Cell, 151, 320-332
Pubmed

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(399 KB)

Accesses

Citations

Detail

Sections
Recommended

/