Rational design of a biosensor circuit with semi-log dose-response function in Escherichia coli

Haoqian Zhang , Ying Sheng , Qianzhu Wu , Ao Liu , Yuheng Lu , Zhenzhen Yin , Yuansheng Cao , Weiqian Zeng , Qi Ouyang

Quant. Biol. ›› 2013, Vol. 1 ›› Issue (3) : 209 -220.

PDF (399KB)
Quant. Biol. ›› 2013, Vol. 1 ›› Issue (3) : 209 -220. DOI: 10.1007/s40484-013-0020-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Rational design of a biosensor circuit with semi-log dose-response function in Escherichia coli

Author information +
History +
PDF (399KB)

Abstract

A central goal of synthetic biology is to apply successful principles that have been developed in electronic and chemical engineering to construct basic biological functional modules, and through rational design, to build synthetic biological systems with predetermined functions. Here, we apply the reverse engineering design principle of biological networks to synthesize a gene circuit that executes semi-log dose-response, a logarithmically linear sensing function, in Escherichia coli cells. We first mathematically define the object function semi-log dose-response, and then search for tri-node network topologies that can most robustly execute the object function. The simplest topology, transcriptional coherent feed-forward loop (TCFL), among the searching results is mathematically analyzed; we find that, in TCFL topology, the semi-log dose-response function arises from the additive effect of logarithmical linearity intervals of Hill functions. TCFL is then genetically implemented in E. coli as a logarithmically linear sensing biosensor for heavy metal ions [mercury (II)]. Functional characterization shows that this rationally designed biosensor circuit works as expected. Through this study we demonstrated the potential application of biological network reverse engineering to broaden the computational power of synthetic biology.

Keywords

synthetic biology / gene circuit design / reverse engineering / logarithmically linear sensing

Cite this article

Download citation ▾
Haoqian Zhang, Ying Sheng, Qianzhu Wu, Ao Liu, Yuheng Lu, Zhenzhen Yin, Yuansheng Cao, Weiqian Zeng, Qi Ouyang. Rational design of a biosensor circuit with semi-log dose-response function in Escherichia coli. Quant. Biol., 2013, 1(3): 209-220 DOI:10.1007/s40484-013-0020-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gardner,T. S., Cantor,C. R. and Collins,J. J. (2000) Construction of a genetic toggle switch in Escherichia coli. Nature, 403, 339-342

[2]

Elowitz,M. B. and Leibler,S. (2000) A synthetic oscillatory network of transcriptional regulators. Nature, 403, 335-338

[3]

Danino,T., Mondragón-Palomino,O., Tsimring,L. and Hasty,J. (2010) A synchronized quorum of genetic clocks. Nature, 463, 326-330

[4]

Lou,C., Liu,X., Ni,M., Huang,Y., Huang,Q., Huang,L., Jiang,L., Lu,D., Wang,M., Liu,C., (2010) Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch. Mol. Syst. Biol., 6, 350

[5]

Tabor,J. J., Salis,H. M., Simpson,Z. B., Chevalier,A. A., Levskaya,A., Marcotte,E. M., Voigt,C. A. and Ellington,A. D. (2009) A synthetic genetic edge detection program. Cell, 137, 1272-1281

[6]

Kwok,R. (2010) Five hard truths for synthetic biology. Nature, 463, 288-290

[7]

Lu,T. K., Khalil,A. S. and Collins,J. J. (2009) Next-generation synthetic gene networks. Nat. Biotechnol., 27, 1139-1150

[8]

Nandagopal,N. and Elowitz,M. B. (2011) Synthetic biology: integrated gene circuits. Science, 333, 1244-1248

[9]

Randall,A., Guye,P., Gupta,S., Duportet,X. and Weiss,R. (2011) Design and connection of robust genetic circuits. Meth. Enzymol., 497, 159-186

[10]

Bruggeman,F.J., Hornberg,J.J., Boogerd,F.C., and Westerhoff,H.V. (2007). Introduction to systems biology. EXS97, 1-19.

[11]

Smolke,C. D. and Silver,P. A. (2011) Informing biological design by integration of systems and synthetic biology. Cell, 144, 855-859

[12]

Alon,U. (2007). An introduction to systems biology : design principles of biological circuits (Boca Raton, FL, Chapman & Hall/CRC).

[13]

Ma,W., Trusina,A., El-Samad,H., Lim,W. A. and Tang,C. (2009) Defining network topologies that can achieve biochemical adaptation. Cell, 138, 760-773

[14]

Artyukhin,A. B., Wu,L. F. and Altschuler,S. J. (2009) Only two ways to achieve perfection. Cell, 138, 619-621

[15]

Buchler,N. E., Gerland,U. and Hwa,T. (2005) Nonlinear protein degradation and the function of genetic circuits. Proc. Natl. Acad. Sci. U.S.A., 102, 9559-9564

[16]

Helmann,J. D., Ballard,B. T. and Walsh,C. T. (1990) The MerR metalloregulatory protein binds mercuric ion as a tricoordinate, metal-bridged dimer. Science, 247, 946-948

[17]

Ralston,D. M. and O’Halloran,T. V. (1990) Ultrasensitivity and heavy-metal selectivity of the allosterically modulated MerR transcription complex. Proc. Natl. Acad. Sci. U.S.A., 87, 3846-3850

[18]

Wickner,S., Maurizi,M. R. and Gottesman,S. (1999) Posttranslational quality control: folding, refolding, and degrading proteins. Science, 286, 1888-1893

[19]

J.,Xiao, J.,Ren, X.,Lao, K., and Xie,X.S. (2006). Probing gene expression in live cells, one protein molecule at a time. Science 311, 1600-1603.

[20]

Hobman,J. L., Wilkie,J. and Brown,N. L. (2005) A design for life: prokaryotic metal-binding MerR family regulators. Biometals, 18, 429-436

[21]

Nascimento,A. M. and Chartone-Souza,E. (2003) Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments. Genet. Mol. Res., 2, 92-101

[22]

Liebert,C. A., Hall,R. M. and Summers,A. O. (1999) Transposon Tn21, flagship of the floating genome. Microbiol. Mol. Biol. Rev., 63, 507-522

[23]

Nakaya,R., Nakamura,A. and Murata,Y. (1960) Resistance transfer agents in Shigella. Biochem. Biophys. Res. Commun., 3, 654-659

[24]

Bower,A. G., McClintock,M. K. and Fong,S. S. (2010) Synthetic biology: a foundation for multi-scale molecular biology. Bioeng Bugs, 1, 309-312

[25]

Canton,B., Labno,A. and Endy,D. (2008) Refinement and standardization of synthetic biological parts and devices. Nat. Biotechnol., 26, 787-793

[26]

Christie,G. E. and Calendar,R. (1985) Bacteriophage P2 late promoters. II. Comparison of the four late promoter sequences. J. Mol. Biol., 181, 373-382

[27]

Julien,B. and Calendar,R. (1996) Bacteriophage PSP3 and phiR73 activator proteins: analysis of promoter specificities. J. Bacteriol., 178, 5668-5675

[28]

Park,S. J., Wireman,J. and Summers,A. O. (1992) Genetic analysis of the Tn21 mer operator-promoter. J. Bacteriol., 174, 2160-2171

[29]

Daniel,R., Rubens,J. R., Sarpeshkar,R. and Lu,T. K. (2013) Synthetic analog computation in living cells. Nature, 497, 619-623

[30]

Chau,A. H., Walte, rJ. M., Gerardin,J., Tang,C. and Lim,W. A. (2012) Designing synthetic regulatory networks capable of self-organizing cell polarization. Cell, 151, 320-332

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (399KB)

1856

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/