Automated interpretation of metabolic capacity from genome and metagenome sequences

Minoru Kanehisa

PDF(375 KB)
PDF(375 KB)
Quant. Biol. ›› 2013, Vol. 1 ›› Issue (3) : 192-200. DOI: 10.1007/s40484-013-0019-x
MINI REVIEW
MINI REVIEW

Automated interpretation of metabolic capacity from genome and metagenome sequences

Author information +
History +

Abstract

The KEGG pathway maps are widely used as a reference data set for inferring high-level functions of the organism or the ecosystem from its genome or metagenome sequence data. The KEGG modules, which are tighter functional units often corresponding to subpathways in the KEGG pathway maps, are designed for better automation of genome interpretation. Each KEGG module is represented by a simple Boolean expression of KEGG Orthology (KO) identifiers (K numbers), enabling automatic evaluation of the completeness of genes in the genome. Here we focus on metabolic functions and introduce reaction modules for improving annotation and signature modules for inferring metabolic capacity. We also describe how genome annotation is performed in KEGG using the manually created KO database and the computationally generated SSDB database. The resulting KEGG GENES database with KO (K number) annotation is a reference sequence database to be compared for automated annotation and interpretation of newly determined genomes.

Keywords

metabolic pathway / functional module / genome annotation / genome interpretation / KEGG database

Cite this article

Download citation ▾
Minoru Kanehisa. Automated interpretation of metabolic capacity from genome and metagenome sequences. Quant Biol, 2013, 1(3): 192‒200 https://doi.org/10.1007/s40484-013-0019-x

References

[1]
Kanehisa, M., Goto,S., Sato, Y., Furumichi, M. and Tanabe, M. (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res., 40, D109-D114
CrossRef Pubmed Google scholar
[2]
Gene Ontology Consortium. (2013) Gene Ontology annotations and resources. Nucleic Acids Res., 41, D530-D535
CrossRef Pubmed Google scholar
[3]
Papin, J. A., Reed,J. L. and Palsson, B. O. (2004) Hierarchical thinking in network biology: the unbiased modularization of biochemical networks. Trends Biochem. Sci., 29, 641-647
CrossRef Pubmed Google scholar
[4]
Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N. and Barabási, A. L. (2002) Hierarchical organization of modularity in metabolic networks. Science, 297, 1551-1555
CrossRef Pubmed Google scholar
[5]
Schuster, S., Pfeiffer, T., Moldenhauer, F., Koch, I. and Dandekar, T. (2002) Exploring the pathway structure of metabolism: decomposition into subnetworks and application to Mycoplasma pneumoniae. Bioinformatics, 18, 351-361
CrossRef Pubmed Google scholar
[6]
Yamada, T., Kanehisa, M. and Goto, S. (2006) Extraction of phylogenetic network modules from the metabolic network. BMC Bioinformatics, 7, 130
CrossRef Pubmed Google scholar
[7]
Ogata, H., Fujibuchi, W., Goto, S. and Kanehisa, M. (2000) A heuristic graph comparison algorithm and its application to detect functionally related enzyme clusters. Nucleic Acids Res., 28, 4021-4028
CrossRef Pubmed Google scholar
[8]
Muto, A., Kotera, M., Tokimatsu, T., Nakagawa, Z., Goto,S. and Kanehisa, M. (2013) Modular architecture of metabolic pathways revealed by conserved sequences of reactions. J. Chem. Inf. Model., 53, 613-622
CrossRef Pubmed Google scholar
[9]
Kanehisa, M. (2013) Chemical and genomic evolution of enzyme-catalyzed reaction networks. FEBS Lett.,
CrossRef Pubmed Google scholar
[10]
Maeder, D. L., Weiss,R. B., Dunn, D. M., Cherry, J. L., González, J. M., DiRuggiero, J. and Robb, F. T. (1999) Divergence of the hyperthermophilic archaea Pyrococcus furiosus and P. horikoshii inferred from complete genomic sequences. Genetics, 152, 1299-1305
Pubmed
[11]
Pruitt, K. D., Tatusova, T., Brown, G. R. and Maglott, D. R. (2012) NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res., 40, D130-D135
CrossRef Pubmed Google scholar
[12]
McDonald, A. G., Boyce,S. and Tipton, K. F. (2009) ExplorEnz: the primary source of the IUBMB enzyme list. Nucleic Acids Res., 37, D593-D597
CrossRef Pubmed Google scholar
[13]
Howell, D. M., Harich, K., Xu, H. and White, R. H. (1998) α-keto acid chain elongation reactions involved in the biosynthesis of coenzyme B (7-mercaptoheptanoyl threonine phosphate) in methanogenic Archaea. Biochemistry, 37, 10108-10117
CrossRef Pubmed Google scholar
[14]
Drevland, R. M., Jia,Y., Palmer, D. R. and Graham, D. E. (2008) Methanogen homoaconitase catalyzes both hydrolyase reactions in coenzyme B biosynthesis. J. Biol. Chem., 283, 28888-28896
CrossRef Pubmed Google scholar
[15]
Howell, D. M., Graupner, M., Xu, H. and White, R. H. (2000) Identification of enzymes homologous to isocitrate dehydrogenase that are involved in coenzyme B and leucine biosynthesis in methanoarchaea. J. Bacteriol., 182, 5013-5016
CrossRef Pubmed Google scholar
[16]
Fazius, F., Shelest, E., Gebhardt, P. and Brock, M. (2012) The fungal α-aminoadipate pathway for lysine biosynthesis requires two enzymes of the aconitase family for the isomerization of homocitrate to homoisocitrate. Mol. Microbiol., 86, 1508-1530
CrossRef Pubmed Google scholar
[17]
Berg, I. A., Kockelkorn, D., Ramos-Vera, W. H., Say, R. F., Zarzycki, J., Hügler, M., Alber, B. E. and Fuchs, G. (2010) Autotrophic carbon fixation in archaea. Nat. Rev. Microbiol., 8, 447-460
CrossRef Pubmed Google scholar
[18]
Ohashi, Y., Shi,W., Takatani, N., Aichi, M., Maeda, S., Watanabe, S., Yoshikawa, H. and Omata, T. (2011) Regulation of nitrate assimilation in cyanobacteria. J. Exp. Bot., 62, 1411-1424
CrossRef Pubmed Google scholar
[19]
van der Ploeg, J. R., Eichhorn, E. and Leisinger, T. (2001) Sulfonate-sulfur metabolism and its regulation in Escherichia coli. Arch. Microbiol., 176, 1-8
CrossRef Pubmed Google scholar
[20]
Liu, Y. and Whitman, W. B. (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. N. Y. Acad. Sci., 1125, 171-189
CrossRef Pubmed Google scholar

ACKNOWLEDGMENTS

This work was partially supported by the Japan Science and Technology Agency. The computational resource was provided by the Bioinformatics Center, Institute for Chemical Research, Kyoto University.
CONFLICT OF INTEREST
The author Minoru Kanehisa declares that no conflict of interest exists.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(375 KB)

Accesses

Citations

Detail

Sections
Recommended

/