Structure-based protein-protein interaction networks and drug design

Hammad Naveed, Jingdong J. Han

PDF(196 KB)
PDF(196 KB)
Quant. Biol. ›› 2013, Vol. 1 ›› Issue (3) : 183-191. DOI: 10.1007/s40484-013-0018-y
REVIEW
REVIEW

Structure-based protein-protein interaction networks and drug design

Author information +
History +

Abstract

Proteins carry out their functions by interacting with other proteins and small molecules, forming a complex interaction network. In this review, we briefly introduce classical graph theory based protein-protein interaction networks. We also describe the commonly used experimental methods to construct these networks, and the insights that can be gained from these networks. We then discuss the recent transition from graph theory based networks to structure based protein-protein interaction networks and the advantages of the latter over the former, using two networks as examples. We further discuss the usefulness of structure based protein-protein interaction networks for drug discovery, with a special emphasis on drug repositioning.

Keywords

protein-protein interaction / network / structure-based / drug design / drug reposition

Cite this article

Download citation ▾
Hammad Naveed, Jingdong J. Han. Structure-based protein-protein interaction networks and drug design. Quant. Biol., 2013, 1(3): 183‒191 https://doi.org/10.1007/s40484-013-0018-y

References

[1]
Hartwell, L. H.,Hopfield, J. J.,Leibler, S., and Murray, A. W. (1999) From molecular to modular cell biology. Nature, 402, C47–C52.
CrossRef Pubmed Google scholar
[2]
Dunham, I.,Kundaje, A.,Aldred, S. F.,Collins, P. J.,Davis, C. A.,Doyle, F.,Epstein, C. B.,Frietze, S.,Harrow, J.,Kaul, R., and the ENCODE Project Consortium. (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57–74.
CrossRef Pubmed Google scholar
[3]
Whisstock, J. C. and Lesk, A. M. (2003) Prediction of protein function from protein sequence and structure. Q. Rev. Biophys.,36, 307–340.
CrossRef Pubmed Google scholar
[4]
Fields, S.Uetz, P.Giot, L.Cagney, G.Mansfield, T. A.Judson, R. S.Knight, J. R.Lockshon, D.Narayan, V.Srinivasan, M. (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature, 403, 623–627.
CrossRef Pubmed Google scholar
[5]
Ito, T.Chiba, T.Ozawa, R.Yoshida, M.Hattori, M. and Sakaki, Y. (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. U.S.A., 98, 4569–4574.
CrossRef Pubmed Google scholar
[6]
Li, S.Armstrong, C. M.Bertin, N.Ge, H.Milstein, S.Boxem, M.Vidalain, P. O.Han, J. D.Chesneau, A.Hao, T. (2004) A map of the interactome network of the metazoan C. elegans. Science, 303, 540–543.
CrossRef Pubmed Google scholar
[7]
Rual, J.-F.Venkatesan, K.Hao, T.Hirozane-Kishikawa, T.Dricot, A.Li, N.Berriz, G. F.Gibbons, F. D.Dreze, M.Ayivi-Guedehoussou, N. (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature, 437, 1173–1178.
CrossRef Pubmed Google scholar
[8]
Rajagopala, S. V. and Uetz, P. (2011) Analysis of protein-protein interactions using high-throughput yeast two-hybrid screens. Methods Mol. Biol., 781, 1–29.
CrossRef Pubmed Google scholar
[9]
Gavin, A. C.Aloy, P.Grandi, P.Krause, R.Boesche, M.Marzioch, M.Rau, C.Jensen, L. J.Bastuck, S.Dümpelfeld, B. (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature, 440, 631–636.
CrossRef Pubmed Google scholar
[10]
Krogan, N. J.Cagney, G.Yu, H.Zhong, G.Guo, X.Ignatchenko, A.Li, J.Pu, S.Datta, N.Tikuisis, A. P. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature, 440, 637–643.
CrossRef Pubmed Google scholar
[11]
Soong, T. T.Wrzeszczynski, K. O. and Rost, B. (2008) Physical protein-protein interactions predicted from microarrays. Bioinformatics, 24, 2608–2614.
CrossRef Pubmed Google scholar
[12]
Liu, C. T., Yuan, S. and Li, K. C. (2009) Patterns of co-expression for protein complexes by size in Saccharomyces cerevisiae. Nucleic Acids Res., 37, 526–532.
CrossRef Pubmed Google scholar
[13]
Salwinski, L.Miller, C. S.Smith, A. J.Pettit, F. K.Bowie, J. U. and Eisenberg, D. (2004) The database of interacting Proteins: 2004 update. Nucleic Acids Res., 32, D449–D451.
CrossRef Pubmed Google scholar
[14]
Licata, L.Briganti, L.Peluso, D.Perfetto, L.Iannuccelli, M.Galeota, E.Sacco, F.Palma, A.Nardozza, A. P.Santonico, E. (2012) MINT the molecular interaction database: 2012 update. Nucleic Acids Res., 40, D857–D861.
CrossRef Pubmed Google scholar
[15]
Keshava Prasad, T. S.Goel, R.Kandasamy, K.Keerthikumar, S.Kumar, S.Mathivanan, S.Telikicherla, D.Raju, R.Shafreen, B.Venugopal, A. (2009) Human Protein Reference Database--2009 update. Nucleic Acids Res., 37, D767–D772.
CrossRef Pubmed Google scholar
[16]
Stark, C.Breitkreutz, B. J.Chatr-Aryamontri, A.Boucher, L.Oughtred, R.Livstone, M. S.Nixon, J.Van Auken, K.Wang, X.Shi, X. (2011) The BioGRID Interaction Database: 2011 update. Nucleic Acids Res., 39, D698–D704.
CrossRef Pubmed Google scholar
[17]
Willis, R. C. and Hogue, C. W. (2006) Searching viewing and visualizing data in the Biomolecular Interaction Network Database (BIND) Curr. Protoc. Bioinformatics, 8.9.1–8.9.30.
[18]
Kerrien, S.Aranda, B.Breuza, L.Bridge, A.Broackes-Carter, F.Chen, C.Duesbury, M.Dumousseau, M.Feuermann, M.Hinz, U. (2012) The IntAct molecular interaction database in 2012. Nucleic Acids Res., 40, D841–D846.
CrossRef Pubmed Google scholar
[19]
Jeong, H.Mason, S. P.Barabási, A.-L. and Oltvai, Z. N. (2001) Lethality and centrality in protein networks. Nature, 411, 41–42.
CrossRef Pubmed Google scholar
[20]
Barabási, A.-L. and Bonabeau, E. (2003) Scale-free networks. Sci. Am., 288, 60–69.
CrossRef Pubmed Google scholar
[21]
Han, J.-D.Bertin, N.Hao, T.Goldberg, D. S.Berriz, G. F.Zhang, L. V.Dupuy, D.Walhout, A. J.Cusick, M. E.Roth, F. P. (2004) Evidence for dynamically organized modularity in the yeast protein-protein interaction network. Nature, 430, 88–93.
CrossRef Pubmed Google scholar
[22]
Yook, S. H.Oltvai, Z. N. and Barabási, A. L. (2004) Functional and topological characterization of protein interaction networks. Proteomics, 4, 928–942.
CrossRef Pubmed Google scholar
[23]
Lim, J.Hao, T.Shaw, C.Patel, A. J.Szabá, G.Rual, J. F.Fisk, C. J.Li, N.Smolyar, A.Hill, D. E. (2006) A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell, 125, 801–814.
CrossRef Pubmed Google scholar
[24]
Huang, H.Jedynak, B. M. and Bader, J. S. (2007) Where have all the interactions gone? Estimating the coverage of two-hybrid protein interaction maps. PLoS Comput. Biol., 3, e214.
CrossRef Pubmed Google scholar
[25]
Shen-Orr, S. S.Milo, R.Mangan, S. and Alon, U. (2002) Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet., 31, 64–68.
CrossRef Pubmed Google scholar
[26]
Milo, R.Shen-Orr, S.Itzkovitz, S.Kashtan, N.Chklovskii, D. and Alon, U. (2002) Network motifs: simple building blocks of complex networks. Science, 298, 824–827.
CrossRef Pubmed Google scholar
[27]
Said, M. R.Begley, T. J.Oppenheim, A. V.Lauffenburger, D. A. and Samson, L. D. (2004) Global network analysis of phenotypic effects: protein networks and toxicity modulation in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A., 101, 18006–18011
CrossRef Pubmed Google scholar
[28]
Shachar, R.Unger, L.Kupiec, M.Ruppin, R. and Sharan, R. (2008) A systems-level approach to mapping the telomere-length maintenance gene circuitryMol. Syst. Biol., 4, 172.
[29]
Wachi, S.Yoneda, K. and Wu, R. (2005) Interactome-transcriptome analysis reveals the high centrality of genes differentially expressed in lung cancer tissues. Bioinformatics, 21, 4205–4208.
CrossRef Pubmed Google scholar
[30]
Jonsson, P. F. and Bates, P. A. (2006) Global topological features of cancer proteins in the human interactome. Bioinformatics, 22, 2291–2297.
CrossRef Pubmed Google scholar
[31]
Goh, K. I.Cusick, M. E.Valle, D.Childs, B.Vidal, M. and Barabási, A. L. (2007) The human disease network. Proc. Natl. Acad. Sci. U.S.A., 104, 8685–8690
CrossRef Pubmed Google scholar
[32]
Nguyen, T. N. and Goodrich, J. A. (2006) Protein-protein interaction assays: eliminating false positive interactions. Nat. Methods, 3, 135–139.
CrossRef Pubmed Google scholar
[33]
Fullwood, M. J. and Ruan, Y. (2009) ChIP-based methods for the identification of long-range chromatin interactions. J. Cell. Biochem.,107, 30–39
CrossRef Pubmed Google scholar
[34]
Cusick, M. E.Yu, H.Smolyar, A.Venkatesan, K.Carvunis, A. R.Simonis, N.Rual, J. F.Borick, H.Braun, P.Dreze, M. (2009) Literature-curated protein interaction datasets. Nat. Methods6, 39–46.
CrossRef Pubmed Google scholar
[35]
Ennifar, E. (2012) X-ray crystallography as a tool for mechanism-of-action studies and drug discovery. Curr. Pharm. Biotechnol., PMID: 22429136
[36]
Guerry, P. and Herrmann, T. (2011) Advances in automated NMR protein structure determination. Q. Rev. Biophys., 44, 257–309
CrossRef Pubmed Google scholar
[37]
Glaeser, R. M. and Hall, R. J. (2011) Reaching the information limit in cryo-EM of biological macromolecules: experimental aspects. Biophys. J., 100, 2331–2337.
CrossRef Pubmed Google scholar
[38]
Berman, H. M.Westbrook, J.Feng, Z.Gilliland, G.Bhat, T. N.Weissig, H.Shindyalov, I. N. and Bourne, P. E. (2000) The protein data bank. Nucleic Acids Res., 28, 235–242.
CrossRef Pubmed Google scholar
[39]
Dunitz, J. D. and Gavezzotti, A. (2005) Molecular recognition in organic crystals: directed intermolecular bonds or nonlocalized bonding? Angew. Chem. Int. Ed. Engl., 44, 1766–1787.
CrossRef Pubmed Google scholar
[40]
Chen, R., Li, L. and Weng, Z. (2003) ZDOCK: an initial-stage protein-docking algorithm. Proteins, 52, 80–87.
CrossRef Pubmed Google scholar
[41]
Kozakov, D.Brenke, R.Comeau, S. R. and Vajda, S. (2006) PIPER: an FFT-based protein docking program with pairwise potentials. Proteins, 65, 392–406.
CrossRef Pubmed Google scholar
[42]
Kozakov, D.Hall, D. R.Beglov, D.Brenke, R.Comeau, S. R.Shen, Y.Li, K.Zheng, J.Vakili, P.Paschalidis, I. C. (2010) Achieving reliability and high accuracy in automated protein docking: Cluspro PIPER SDU and stability analysis in CAPRI rounds 13–19, Proteins. Proteins, 78, 3124–3130.
CrossRef Google scholar
[43]
de Vries, S. J.van Dijk, M. and Bonvin, A. M. (2010) The HADDOCK web server for data-driven biomolecular docking. Nat. Protoc., 5, 883–897.
CrossRef Pubmed Google scholar
[44]
Lyskov, S. and Gray, J. J. (2008) The RosettaDock server for local protein-protein docking. Nucleic Acids Res., 36, W233-8.
CrossRef Pubmed Google scholar
[45]
Schneidman-Duhovny, D.Inbar, Y.Nussinov, R. and Wolfson, H. J. (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res., 33, W363-7.
CrossRef Pubmed Google scholar
[46]
Fernández-Recio, J. and Sternberg, M. J. E. (2010) The 4th meeting on the Critical Assessment of Predicted Interaction (CAPRI) held at the Mare NostrumBarcelona Proteins, 78, 3065–3066.
[47]
Aloy, P. and Russell, R. B. (2002) Interrogating protein interaction networks through structural biology. Proc. Natl. Acad. Sci. U.S.A., 99, 5896–5901.
CrossRef Pubmed Google scholar
[48]
Aloy, P. and Russell, R. B. (2003) InterPreTS: protein interaction prediction through tertiary structure. Bioinformatics, 19, 161–162.
CrossRef Pubmed Google scholar
[49]
Kundrotas, P. J.Lensink, M. F. and Alexov, E. (2008) Homology-based modeling of 3D structures of protein-protein complexes using alignments of modified sequence profiles. Int. J. Biol. Macromol., 43, 198–208.
CrossRef Pubmed Google scholar
[50]
Zhang, Q. C.Petrey, D.Deng, L.Qiang, L.Shi, Y.Thu, C. A.Bisikirska, B.Lefebvre, C.Accili, D.Hunter, T. (2012) Structure-based prediction of protein-protein interactions on a genome-wide scale. Nature, 490, 556–560
CrossRef Pubmed Google scholar
[51]
Ogmen, U.Keskin, O.Aytuna, A. S.Nussinov, R. and Gursoy, A. (2005) PRISM: protein interactions by structural matching. Nucleic Acids Res., 33, W331-6.
CrossRef Pubmed Google scholar
[52]
Gunther, S.May, P.Hoppe, A.Frommel, C. and Preissner, R. (2007) Docking without docking: ISEARCH-prediction of interactions using known interfaces. Proteins, 69, 839–844.
CrossRef Google scholar
[53]
Sinha, R.Kundrotas, P. J. and Vakser, I. A. (2010) Docking by structural similarity at protein-protein interfaces. Proteins, 78, 3235–3241.
CrossRef Pubmed Google scholar
[54]
Tyagi, M.Thangudu, R. R.Zhang, D.Bryant, S. H.Madej, T. and Panchenko, A. R. (2012) Homology inference of protein-protein interactions via conserved binding sites. PLoS ONE, 7, e28896
CrossRef Pubmed Google scholar
[55]
Fraser, H. B.Wall, D. P. and Hirsh, A. E. (2003) A simple dependence between protein evolution rate and the number of protein-protein interactions. BMC Evol. Biol., 3, 11.
CrossRef Pubmed Google scholar
[56]
Fraser, H. B. (2005) Modularity and evolutionary constraint on proteins. Nat. Genet., 37, 351–352.
CrossRef Pubmed Google scholar
[57]
Choi, Y. S.Yang, J. S.Choi, Y.Ryu, S. H. and Kim, S. (2009) Evolutionary conservation in multiple faces of protein interaction. Proteins, 77, 14–25.
CrossRef Pubmed Google scholar
[58]
Zhao, J.Dundas, J.Kachalo, S.Ouyang, Z. and Liang, J. (2011) Accuracy of functional surfaces on comparatively modeled protein structures. J. Struct. Funct. Genomics, 12, 97–107.
CrossRef Pubmed Google scholar
[59]
Naveed, H.Jackups, R. Jr and Liang, J. (2009) Predicting weakly stable regions oligomerization state and protein-protein interfaces in transmembrane domains of outer membrane proteins. Proc. Natl. Acad. Sci. U. S. A., 106, 12735–12740
CrossRef Google scholar
[60]
Bordner, A. J. (2009) Predicting protein-protein binding sites in membrane proteins. BMC Bioinformatics, 10, 312.
CrossRef Pubmed Google scholar
[61]
Gessmann, D.Mager, F.Naveed, H.Arnold, T.Weirich, S.Linke, D.Liang, J. and Nussberger, S. (2011) Improving the resistance of a eukaryotic β-barrel protein to thermal and chemical perturbations. J. Mol. Biol., 413, 150–161.
CrossRef Pubmed Google scholar
[62]
Geula, S.Naveed, H.Liang, J. and Shoshan-Barmatz, V. (2012) Structure-based analysis of VDAC1 protein: defining oligomer contact sites. J. Biol. Chem., 287, 2179–2190
CrossRef Pubmed Google scholar
[63]
Naveed, H.Jimenez-Morales, D.Tian, J.Pasupuleti, V.Kenney, L. J. and Liang, J. (2012) Engineered oligomerization state of OmpF protein through computational design decouples oligomer dissociation from unfolding. J. Mol. Biol., 419, 89–101.
CrossRef Pubmed Google scholar
[64]
Naveed, H. and Liang, J. (2012) TMBB-Explorer: A Webserver to Predict the Structure, Oligomerization State PPI Interface and Thermodynamic Properties of the Transmembrane Domains of Outer Membrane Proteins. Biophys. J., 102, 469a.
CrossRef Google scholar
[65]
Levitt, D. G. and Banaszak, L. J. (1992) POCKET: a computer graphics method for identifying and displaying protein cavities and their surrounding amino acids. J. Mol. Graph., 10, 174–177.
CrossRef Pubmed Google scholar
[66]
Dundas, J.Ouyang, Z.Tseng, J.Binkowski, A.Turpaz, Y. and Liang, J. (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res., 34, W116-8.
CrossRef Pubmed Google scholar
[67]
Eyrisch, S. and Helms, V. (2007) Transient pockets on protein surfaces involved in protein-protein interaction. J. Med. Chem., 50, 3457–3464.
CrossRef Pubmed Google scholar
[68]
Shoemaker, B. A.Zhang, D.Tyagi, M.Thangudu, R. R.Fong, J. H.Marchler-Bauer, A.Bryant, S. H.Madej, T. and Panchenko, A. R. (2012) IBIS (Inferred Biomolecular Interaction Server) reports predicts and integrates multiple types of conserved interactions for proteins. Nucleic Acids Res., 40, D834–D840.
CrossRef Pubmed Google scholar
[69]
Brady, G. P. Jr and Stouten, P. F. W. (2000) Fast prediction and visualization of protein binding pockets with PASS. J. Comput. Aided Mol. Des., 14, 383–401.
CrossRef Pubmed Google scholar
[70]
Jeong, H.Tombor, B.Albert, R.Oltvai, Z. N. and Barabási, A.-L. (2000) The large-scale organization of metabolic networks. Nature,407, 651–654.
CrossRef Pubmed Google scholar
[71]
Mirzarezaee, M.Araabi, B. N. and Sadeghi, M. (2010) Features analysis for identification of date and party hubs in protein interaction network of Saccharomyces cerevisiae. BMC Syst. Biol., 4, 172.
CrossRef Pubmed Google scholar
[72]
Dunker, A. K.Cortese, M. S.Romero, P.Iakoucheva, L. M. and Uversky, V. N. (2005) Flexible nets. The roles of intrinsic disorder in protein interaction networks. FEBS J., 272, 5129–5148.
CrossRef Pubmed Google scholar
[73]
Sarmady, M.Dampier, W. and Tozeren, A. (2011) HIV protein sequence hotspots for crosstalk with host hub proteins. PLoS ONE, 6, e23293.
CrossRef Pubmed Google scholar
[74]
Matthews, L. R.Vaglio, P.Reboul, J.Ge, H.Davis, B. P.Garrels, J.Vincent, S. and Vidal, M. (2001) Identification of potential interaction networks using sequence-based searches for conserved protein-protein interactions or “interologs”. Genome Res., 11, 2120–2126.
CrossRef Pubmed Google scholar
[75]
Wang, X.Wei, X.Thijssen, B.Das, J.Lipkin, S. M. and Yu, H. (2012) Three-dimensional reconstruction of protein networks provides insight into human genetic disease. Nat. Biotechnol., 30, 159–164.
CrossRef Pubmed Google scholar
[76]
Tuncbag, N.Gursoy, A.Nussinov, R. and Keskin, O. (2011) Predicting protein-protein interactions on a proteome scale by matching evolutionary and structural similarities at interfaces using PRISM. Nat. Protoc., 6, 1341–1354.
CrossRef Pubmed Google scholar
[77]
Kuzu, G.Keskin, O.Gursoy, A. and Nussinov, R. (2012) Constructing structural networks of signaling pathways on the proteome scaleCurr. Opin. Struct. Biol., 22, 367–377.
[78]
Shin, C. J.Wong, S.Davis, M. J. and Ragan, M. A. (2009) Protein-protein interaction as a predictor of subcellular location. BMC Syst. Biol., 3, 28.
CrossRef Pubmed Google scholar
[79]
Jiang, J. Q. and Wu, M. (2012) Predicting multiplex subcellular localization of proteins using protein-protein interaction network: a comparative study. BMC Bioinformatics, 13, S20.
CrossRef Pubmed Google scholar
[80]
Liu, J.Zhao, H.Tan, J.Luo, D.Yu, W.Harner, E. J. and Shih, W. J. (2008) Is subcellular localization informative for modeling protein-protein interaction signal? Research Letters in Signal Processing, DOI: 10.1155/2008/365152
[81]
Kanehisa, M.Goto, S.Sato, Y.Furumichi, M. and Tanabe, M. (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res., 40, D109–D114.
CrossRef Pubmed Google scholar
[82]
Keseler, I. M.Mackie, A.Peralta-Gil, M.Santos-Zavaleta, A.Gama-Castro, S.Bonavides-Martínez, C.Fulcher, C.Huerta, A. M.Kothari, A.Krummenacker, M. (2013) EcoCyc: fusing model organism databases with systems biology. Nucleic Acids Res., 41, D605–D612.
CrossRef Pubmed Google scholar
[83]
Caspi, R.Altman, T.Dale, J. M.Dreher, K.Fulcher, C. A.Gilham, F.Kaipa, P.Karthikeyan, A. S.Kothari, A.Krummenacker, M. (2010) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res.,38, D473–D479.
CrossRef Pubmed Google scholar
[84]
Whitaker, J. W.Letunic, I.McConkey, G. A. and Westhead, D. R. (2009) MetaTIGER: a metabolic evolution resource. Nucleic Acids Res., 37, D531–D538.
CrossRef Pubmed Google scholar
[85]
Ideker, T. and Sharan, R. (2008) Protein networks in disease. Genome Res., 18, 644–652.
CrossRef Pubmed Google scholar
[86]
Wong, J. M.Ionescu, D. and Ingles, C. J. (2003) Interaction between BRCA2 and replication protein A is compromised by a cancer-predisposing mutation in BRCA2. Oncogene, 22, 28–33.
CrossRef Pubmed Google scholar
[87]
Bruncko, M.Oost, T. K.Belli, B. A.Ding, H.Joseph, M. K.Kunzer, A.Martineau, D.McClellan, W. J.Mitten, M.Ng, S. C. (2007) Studies leading to potent dual inhibitors of Bcl-2 and Bcl-xL. J. Med. Chem., 50, 641–662.
CrossRef Pubmed Google scholar
[88]
Schuster-Böckler, B. and Bateman, A. (2008) Protein interactions in human genetic diseases. Genome Biol., 9, R9.
CrossRef Pubmed Google scholar
[89]
London, N.Raveh, B.Movshovitz-Attias, D. and Schueler-Furman, O. (2010) Can self-inhibitory peptides be derived from the interface of globular protein-protein interactions? Proteins, 78, 3140–3149.
CrossRef Google scholar
[90]
Eldar-Finkelman, H. and Eisenstein, M. (2009) Peptide inhibitors targeting protein kinases. Curr. Pharm. Des., 15, 2463–2470.
CrossRef Pubmed Google scholar
[91]
Xie, L., Xie, L. and Bourne, P. E. (2011) Structure-based systems biology for analyzing off-target binding. Curr. Opin. Struct. Biol., 21, 189–199.
CrossRef Pubmed Google scholar
[92]
Nwaka, S. and Hudson, A. (2006) Innovative lead discovery strategies for tropical diseases. Nat. Rev. Drug Discov., 5, 941–955.
CrossRef Pubmed Google scholar
[93]
Arrowsmith, J. (2011) Trial watch: phase III and submission failures: 2007–2010. Nat. Rev. Drug Discov., 10, 87.
CrossRef Pubmed Google scholar
[94]
Arrowsmith, J. (2011) Trial watch: Phase II failures: 2008–2010. Nat. Rev. Drug Discov., 10, 328–329
CrossRef Pubmed Google scholar
[95]
Major, E. O. (2010) Progressive multifocal leukoencephalopathy in patients on immunomodulatory therapies. Annu. Rev. Med., 61, 35–47.
CrossRef Pubmed Google scholar
[96]
Booth, B. and Zemmel, R. (2003) Quest for the best. Nat. Rev. Drug Discov., 2, 838–841.
CrossRef Pubmed Google scholar
[97]
Mestres, J.Gregori-Puigjané, E.Valverde, S. and Solé, R. V. (2009) The topology of drug-target interaction networks: implicit dependence on drug properties and target families. Mol. Biosyst., 5, 1051–1057.
CrossRef Pubmed Google scholar
[98]
Müller, G. (2003) Medicinal chemistry of target family-directed masterkeys. Drug Discov. Today, 8, 681–691.
CrossRef Pubmed Google scholar
[99]
Hopkins, A. L. and Groom, C. R. (2002) The druggable genome. Nat. Rev. Drug Discov., 1, 727–730.
CrossRef Pubmed Google scholar
[100]
Bisson, W. H.Cheltsov, A. V.Bruey-Sedano, N.Lin, B.Chen, J.Goldberger, N.May, L. T.Christopoulos, A.Dalton, J. T.Sexton, P. M. (2007) Discovery of antiandrogen activity of nonsteroidal scaffolds of marketed drugs. Proc. Natl. Acad. Sci. U.S.A., 104, 11927–11932.
CrossRef Pubmed Google scholar
[101]
Liu, C. I.Liu, G. Y.Song, Y.Yin, F.Hensler, M. E.Jeng, W. Y.Nizet, V.Wang, A. H. and Oldfield, E. (2008) A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. Science, 319, 1391–1394.
CrossRef Pubmed Google scholar
[102]
Specker, E.Böttcher, J.Lilie, H.Heine, A.Schoop, A.Müller, G.Griebenow, N. and Klebe, G. (2005) An old target revisited: two new privileged skeletons and an unexpected binding mode for HIV-protease inhibitors. Angew. Chem. Int. Ed. Engl., 44, 3140–3144.
CrossRef Pubmed Google scholar
[103]
Weber, A.Casini, A.Heine, A.Kuhn, D.Supuran, C. T.Scozzafava, A. and Klebe, G. (2004) Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: new pharmacological opportunities due to related binding site recognition. J. Med. Chem.,47, 550–557.
CrossRef Pubmed Google scholar
[104]
Stauch, B.Hofmann, H.Perkovic, M.Weisel, M.Kopietz, F.Cichutek, K.Münk, C. and Schneider, G. (2009) Model structure of APOBEC3C reveals a binding pocket modulating ribonucleic acid interaction required for encapsidation. Proc. Natl. Acad. Sci. U.S.A.,106, 12079–12084.
CrossRef Pubmed Google scholar
[105]
Amaro, R. E.Schnaufer, A.Interthal, H.Hol, W.Stuart, K. D. and McCammon, J. A. (2008) Discovery of drug-like inhibitors of an essential RNA-editing ligase in Trypanosoma brucei. Proc. Natl. Acad. Sci. U.S.A., 105, 17278–17283.
CrossRef Pubmed Google scholar
[106]
Lounkine, E.Keiser, M. J.Whitebread, S.Mikhailov, D.Hamon, J.Jenkins, J. L.Lavan, P.Weber, E.Doak, A. K.Côté, S. (2012) Large-scale prediction and testing of drug activity on side-effect targets. Nature486, 361–367.
Pubmed
[107]
Butcher, E. C.Berg, E. L. and Kunkel, E. J. (2004) Systems biology in drug discovery. Nat. Biotechnol., 22, 1253–1259
CrossRef Pubmed Google scholar
[108]
Yildirim, M. A.Goh, K. I.Cusick, M. E.Barabási, A. L. and Vidal, M. (2007) Drug-target network. Nat. Biotechnol., 25, 1119–1126.
CrossRef Pubmed Google scholar
[109]
Taylor, I. W.Linding, R.Warde-Farley, D.Liu, Y.Pesquita, C.Faria, D.Bull, S.Pawson, T.Morris, Q. and Wrana, J. L. (2009) Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat. Biotechnol., 27, 199–204.
CrossRef Pubmed Google scholar
[110]
Chang, R. L.Xie, L.Xie, L.Bourne, P. E. and Palsson, B. Ø. (2010) Drug off-target effects predicted using structural analysis in the context of a metabolic network model. PLOS Comput. Biol., 6, e1000938.
CrossRef Pubmed Google scholar
[111]
Raman, K. and Chandra, N. (2008) Mycobacterium tuberculosis interactome analysis unravels potential pathways to drug resistance. BMC Microbiol., 8, 234.
CrossRef Pubmed Google scholar
[112]
DiMasi, J. A.Hansen, R. W. and Grabowski, H. G. (2003) The price of innovation: new estimates of drug development costs. J. Health Econ.,22, 151–185.
CrossRef Pubmed Google scholar
[113]
Hughes, J. P.Rees, S.Kalindjian, S. B. and Philpott, K. L. (2011) Principles of early drug discovery. Br. J. Pharmacol., 162, 1239–1249.
CrossRef Pubmed Google scholar
[114]
Ashburn, T. T. and Thor, K. B. (2004) Drug repositioning: identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov., 3, 673–683.
CrossRef Pubmed Google scholar
[115]
Dudley, J. T.Deshpande, T. and Butte, A. J. (2011) Exploiting drug-disease relationships for computational drug repositioning. Brief. Bioinform., 12, 303–311.
CrossRef Pubmed Google scholar
[116]
von Eichborn, J.Murgueitio, M. S.Dunkel, M.Koerner, S.Bourne, P. E. and Preissner, R. (2011) PROMISCUOUS: a database for network-based drug-repositioning. Nucleic Acids Res., 39, D1060–D1066.
CrossRef Pubmed Google scholar
[117]
Chen, B.Dong, X.Jiao, D.Wang, H.Zhu, Q.Ding, Y. and Wild, D. J. (2010) Chem2Bio2RDF: a semantic framework for linking and data mining chemogenomic and systems chemical biology data. BMC Bioinformatics, 11, 255.
CrossRef Pubmed Google scholar
[118]
Ekins, S.Williams, A. J.Krasowski, M. D. and Freundlich, J. S. (2011) In silico repositioning of approved drugs for rare and neglected diseases. Drug Discov. Today, 16, 298–310.
CrossRef Pubmed Google scholar
[119]
Sardana, D.Zhu, C.Zhang, M.Gudivada, R. C.Yang, L. and Jegga, A. G. (2011) Drug repositioning for orphan diseases. Brief. Bioinform.,12, 346–356
CrossRef Pubmed Google scholar
[120]
Campillos, M.Kuhn, M.Gavin, A. C.Jensen, L. J. and Bork, P. (2008) Drug target identification using side-effect similarity. Science321, 263–266.
CrossRef Pubmed Google scholar
[121]
Duran-Frigola, M. and Aloy, P. (2012) Recycling side-effects into clinical markers for drug repositioning. Genome Med., 4 3.
CrossRef Pubmed Google scholar
[122]
Rajkumar, S. V. (2004) Thalidomide: tragic past and promising future. Mayo Clin. Proc., 79, 899–903.
CrossRef Pubmed Google scholar
[123]
Tatro, D. S. (1992) Drug Interaction Facts 1992. St Louis: Facts and Comparisons.
[124]
Huang, J.Niu, C.Green, C. D.Yang, L.Mei, H. and Han, J.-D. (2013) Systematic prediction of pharmacodynamic drug-drug interactions through protein-protein-interaction network. PLoS Comput. Biol., 9, e1002998.
CrossRef Pubmed Google scholar
[125]
Greco, F. and Vicent, M. J. (2009) Combination therapy: opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv. Drug Deliv. Rev., 61, 1203–1213.
CrossRef Pubmed Google scholar
[126]
Breen, E. C. and Walsh, J. J. (2010) Tubulin-targeting agents in hybrid drugs. Curr. Med. Chem., 17, 609–639.
CrossRef Pubmed Google scholar
[127]
Altundag, O.Dursun, P. and Ayhan, A. (2010) Emerging drugs in endometrial cancers. Expert Opin. Emerg. Drugs, 15, 557–568.
CrossRef Pubmed Google scholar
[128]
De Clercq, E. (2012) Where rilpivirine meets with tenofovir, the start of a new anti-HIV drug combination era. Biochem. Pharmacol.,84, 241–248.
CrossRef Pubmed Google scholar
[129]
Schuelter, E.Luebke, N.Jensen, B.Zazzi, M.Sönnerborg, A.Lengauer, T.Incardona, F.Camacho, R.Schmit, J.Clotet, B. (2012) Etravirine in protease inhibitor-free antiretroviral combination therapies. J. Int. AIDS Soc., 15, 18260.
CrossRef Google scholar
[130]
Bogojeska, J. and Lengauer, T. (2012) Hierarchical Bayes Model for predicting effectiveness of HIV combination therapies. Stat. Appl. Genet. Mol. Biol., 11, 11.
CrossRef Pubmed Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(196 KB)

Accesses

Citations

Detail

Sections
Recommended

/