Population dynamics of cancer cells with cell state conversions

Da Zhou, Dingming Wu, Zhe Li, Minping Qian, Michael Q. Zhang

PDF(225 KB)
PDF(225 KB)
Quant. Biol. ›› 2013, Vol. 1 ›› Issue (3) : 201-208. DOI: 10.1007/s40484-013-0014-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Population dynamics of cancer cells with cell state conversions

Author information +
History +

Cite this article

Download citation ▾
Da Zhou, Dingming Wu, Zhe Li, Minping Qian, Michael Q. Zhang. Population dynamics of cancer cells with cell state conversions. Quant. Biol., 2013, 1(3): 201‒208 https://doi.org/10.1007/s40484-013-0014-2

References

[1]
Reya, T., Morrison, S. J., Clarke, M. F. and Weissman, I. L. (2001) Stem cells, cancer, and cancer stem cells. Nature, 414, 105–111
Pubmed
[2]
Jordan, C. T., Guzman, M. L. and Noble, M. (2006) Cancer stem cells. N. Engl. J. Med., 355, 1253–1261
Pubmed
[3]
Nguyen, L. V., Vanner, R., Dirks, P. and Eaves, C. J. (2012) Cancer stem cells: an evolving concept. Nat. Rev. Cancer, 12, 133–143
Pubmed
[4]
Dalerba, P., Cho, R. W. and Clarke, M. F. (2007) Cancer stem cells: models and concepts. Annu. Rev. Med., 58, 267–284
Pubmed
[5]
Hermann, P. C., Huber, S. L., Herrler, T., Aicher, A., Ellwart, J. W., Guba, M., Bruns, C. J. and Heeschen, C. (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1, 313–323
Pubmed
[6]
Rosen, J. M. and Jordan, C. T. (2009) The increasing complexity of the cancer stem cell paradigm. Science, 324, 1670–1673.
[7]
Alison, M. R., Lim, S. M. L. and Nicholson, L. J. (2011) Cancer stem cells: problems for therapy? J. Pathol., 223, 147–161
Pubmed
[8]
Chaffer, C. L., Brueckmann, I., Scheel, C., Kaestli, A. J., Wiggins, P. A., Rodrigues, L. O., Brooks, M., Reinhardt, F., Su, Y., Polyak, K., (2011) Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc. Natl. Acad. Sci. U.S.A., 108, 7950–7955
Pubmed
[9]
Meyer, M. J., Fleming, J. M., Ali, M. A., Pesesky, M. W., Ginsburg, E. and Vonderhaar, B. K. (2009) Dynamic regulation of CD24 and the invasive, CD44posCD24neg phenotype in breast cancer cell lines. Breast Cancer Res., 11, R82
Pubmed
[10]
Gupta, P. B., Fillmore, C. M., Jiang, G., Shapira, S. D., Tao, K., Kuperwasser, C. and Lander, E. S. (2011) Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell, 146, 633–644
Pubmed
[11]
Scaffidi, P. and Misteli, T. (2011) In vitro generation of human cells with cancer stem cell properties. Nat. Cell Biol., 13, 1051–1061
Pubmed
[12]
Iliopoulos, D., Hirsch, H. A., Wang, G. and Struhl, K. (2011) Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc. Natl. Acad. Sci. U.S.A., 108, 1397–1402
Pubmed
[13]
Yang, G., Quan, Y., Wang, W., Fu, Q., Wu, J., Mei, T., Li, J., Tang, Y., Luo, C., Ouyang, Q., (2012) Dynamic equilibrium between cancer stem cells and non-stem cancer cells in human SW620 and MCF-7 cancer cell populations. Br. J. Cancer, 106, 1512–1519
Pubmed
[14]
Zapperi, S. and La Porta, C. A. M. (2012) Do cancer cells undergo phenotypic switching? The case for imperfect cancer stem cell markers. Sci. Rep., 2, 441
Pubmed
[15]
Nordling, C. O. (1953) A new theory on the cancer-inducing mechanism. Br. J. Cancer, 7, 68–72.
[16]
Armitage, P. and Doll, R. (1954) The age distribution of cancer and a multi-stage theory of carcinogenesis. Br. J. Cancer, 8, 1–12
Pubmed
[17]
Fisher, J. C. (1958) Multiple-mutation theory of carcinogenesis. Nature, 181, 651–652
Pubmed
[18]
Ganguly, R. and Puri, I. K. (2006) Mathematical model for the cancer stem cell hypothesis. Cell Prolif., 39, 3–14
Pubmed
[19]
Enderling, H., Chaplain,M. A. J., Anderson, A. R. A. and Vaidya, J. S. (2007) A mathematical model of breast cancer development, local treatment and recurrence. J. Theor. Biol., 246, 245–259
Pubmed
[20]
Michor, F. (2008) Mathematical models of cancer stem cells. J. Clin. Oncol., 26, 2854–2861
Pubmed
[21]
La Porta, C. A. M., Zapperi, S. and Sethna, J. P. (2012) Senescent cells in growing tumors: population dynamics and cancer stem cells. PLoS Comput. Biol., 8, e1002316
Pubmed
[22]
Johnston, M. D., Edwards, C. M., Bodmer, W. F., Maini, P. K. and Chapman, S. J. (2007) Mathematical modeling of cell population dynamics in the colonic crypt and in colorectal cancer. Proc. Natl. Acad. Sci. U.S.A., 104, 4008–4013
Pubmed
[23]
Boman, B. M., Wicha, M. S., Fields, J. Z. and Runquist, O. A. (2007) Symmetric division of cancer stem cells—a key mechanism in tumor growth that should be targeted in future therapeutic approaches. Clin. Pharmacol. Ther., 81, 893–898
Pubmed
[24]
Dingli, D., Traulsen, A. and Michor, F. (2007) (A)symmetric stem cell replication and cancer. PLoS Comput. Biol., 3, e53
Pubmed
[25]
Dingli, D., Traulsen, A. and Pacheco, J. M. (2007) Compartmental architecture and dynamics of hematopoiesis. PLoS ONE, 2, e345
Pubmed
[26]
Antal, T. and Krapivsky, P. L. (2011) Exact solution of a two-type branching process: models of tumor progression. J. Stat. Mech., P08018.
[27]
Sottoriva, A., Vermeulen, L. and Tavaré, S. (2011) Modeling evolutionary dynamics of epigenetic mutations in hierarchically organized tumors. PLoS Comput. Biol., 7, e1001132
Pubmed
[28]
Werner, B., Dingli, D., Lenaerts, T., Pacheco, J. M. and Traulsen, A. (2011) Dynamics of mutant cells in hierarchical organized tissues. PLoS Comput. Biol., 7, e1002290
Pubmed
[29]
Molina-Peña, R. and Álvarez, M. M. (2012) A simple mathematical model based on the cancer stem cell hypothesis suggests kinetic commonalities in solid tumor growth. PLoS ONE, 7, e26233
Pubmed
[30]
Holz, M. and Fahr, A. (2001) Compartment modeling. Adv. Drug Deliv. Rev., 48, 249–264
Pubmed
[31]
Tao, Y., Ruan, J., Yeh, S. H., Lu, X., Wang, Y., Zhai, W., Cai, J., Ling, S., Gong, Q., Chong, Z., (2011) Rapid growth of a hepatocellular carcinoma and the driving mutations revealed by cell-population genetic analysis of whole-genome data. Proc. Natl. Acad. Sci. U.S.A., 108, 12042–12047
Pubmed
[32]
Cai, L., Friedman, N. and Xie, X. S. (2006) Stochastic protein expression in individual cells at the single molecule level. Nature, 440, 358–362
Pubmed
[33]
Fillmore, C. M. and Kuperwasser, C. (2008) Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res., 10, R25
Pubmed
[34]
Cowan, C. A., Klimanskaya, I., McMahon, J., Atienza, J., Witmyer, J., Zucker, J. P., Wang, S., Morton, C. C., McMahon, A. P., Powers, D., (2004) Derivation of embryonic stem-cell lines from human blastocysts. N. Engl. J. Med., 350, 1353–1356
Pubmed
[35]
Marusyk, A., Almendro, V. and Polyak, K. (2012) Intra-tumour heterogeneity: a looking glass for cancer? Nat. Rev. Cancer, 12, 323–334
Pubmed
[36]
Axelrod, R., Axelrod, D. E. and Pienta, K. J. (2006) Evolution of cooperation among tumor cells. Proc. Natl. Acad. Sci. U.S.A., 103, 13474–13479
Pubmed
[37]
Ao, P., Galas, D., Hood, L. and Zhu, X. (2008) Cancer as robust intrinsic state of endogenous molecular-cellular network shaped by evolution. Med. Hypotheses, 70, 678–684
Pubmed
[38]
Chen, L., Liu, R., Liu, Z. P., Li, M. and Aihara, K. (2012) Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci. Rep., 2, 342
Pubmed
[39]
Zhang, X. J., Qian, H. and Qian, M. (2012) Stochastic theory of nonequilibrium steady states and its applications. part I. Phys. Rep., 510, 1–86.
[40]
Ge, H., Qian, M. and Qian, H. (2012) Stochastic theory of nonequilibrium steady states. part II: Applications in chemical biophysics. Phys. Rep., 510, 87–118.
[41]
Ao, P. (2008) Emerging of stochastic dynamical equalities and steady state thermodynamics from Darwinian dynamics. Commun. Theor. Phys., 49, 1073–1090
Pubmed

ACKNOWLEDGEMENTS

We thank Dr. Gen Yang for helpful discussions, and thank Drs. Ping Ao, Jiandong Huang, Wei Huang, Chen Jia, Hong Qian, Monica C. Sleumer, Weikang Wang and Zhongjun Zhou for constructive comments. This work is supported by NBRPC grant (No. 2012CB316503), CPSF grant (No. 2012M510402), NSFC grant (Nos. 91010016, 31061160497) and NIH grant (No. ES017166).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(225 KB)

Accesses

Citations

Detail

Sections
Recommended

/