Computational neuroanatomy and co-expression of genes in the adult mouse brain, analysis tools for the Allen Brain Atlas

Pascal Grange, Michael Hawrylycz, and Partha P. Mitra

PDF(563 KB)
PDF(563 KB)
Quant. Biol. ›› 2013, Vol. 1 ›› Issue (1) : 91-100. DOI: 10.1007/s40484-013-0011-5
REVIEW
REVIEW

Computational neuroanatomy and co-expression of genes in the adult mouse brain, analysis tools for the Allen Brain Atlas

Author information +
History +

Abstract

We review quantitative methods and software developed to analyze genome-scale, brain-wide spatially-mapped gene-expression data. We expose new methods based on the underlying high-dimensional geometry of voxel space and gene space, and on simulations of the distribution of co-expression networks of a given size. We apply them to the Allen Atlas of the adult mouse brain, and to the co-expression network of a set of genes related to nicotine addiction retrieved from the NicSNP database. The computational methods are implemented in BrainGeneExpressionAnalysis (BGEA), a Matlab toolbox available for download.

Graphical abstract

Cite this article

Download citation ▾
Pascal Grange, Michael Hawrylycz, and Partha P. Mitra. Computational neuroanatomy and co-expression of genes in the adult mouse brain, analysis tools for the Allen Brain Atlas. Quant. Biol., 2013, 1(1): 91‒100 https://doi.org/10.1007/s40484-013-0011-5

References

[1]
Bota, M., Dong, H. W. and Swanson, L. W. (2003) From gene networks to brain networks. Nat. Neurosci. 6, 795-799. Available at:
CrossRef Pubmed Google scholar
[2]
Lein, E.S., Hawrylycz, M.J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., Boe, A.F., Boguski, M.S., Brockway, K. S., Byrnes, E. J., (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168-176. Available at:
CrossRef Pubmed Google scholar
[3]
Sunkin, S. M., Hohmann, J. G. (2007) Insights from spatially mapped gene expression in the mouse brain. Hum. Mol. Genet. 16, 2.
[4]
Ng, L., Hawrylycz, M. and Haynor, D. (2005) Automated high-throughput registration for localizing 3D mouse brain gene expression using ITK, Insight-Journal.
[5]
Ng, L., Pathak, S. D., Kuan, C., Lau, C., Dong, H., (2007) Neuroinformatics for genome-wide 3D gene expression mapping in the mouse brain. IEEE/ACM Trans. Comput. Biol. Bioinform. Jul-Sep 4(3), 382-393.
[6]
Jones, A. R., Overly, C. C. and Sunkin, S. M. (2009) The Allen Brain Atlas: 5 years and beyond. Nat. Rev. Neurosci. 10, 821-828. Available at: and
CrossRef Pubmed Google scholar
[7]
Hawrylycz, M., Ng, L., Page, D., Morris, J., Lau, C., Faber, S., Faber, V., Sunkin, S., Menon, V., Lein, E., (2011) Multi-scale correlation structure of gene expression in the brain. Neural Netw. 24, 933-942. Available at: and
CrossRef Pubmed Google scholar
[8]
Computational analysis of user-defined sets of genes from the Allen Atlas of mouse and human brain can be conducted online at addiction.brainarchitecture.org
[9]
Grange, P., Bohland, J. W., Hawrylycz, M. and Mitra, P. P.Brain Gene Expression Analysis: a MATLAB toolbox for the analysis of brain-wide gene-expression data, arXiv:1211.6177 [q-bio.QM].
[10]
Li, C. Y., Mao, X. and Wei, L. (2008) Genes and (common) pathways underlying drug addiction. PLOS Comput. Biol. 4, e2. Available at: and
CrossRef Pubmed Google scholar
[11]
Saccone, S. F., Saccone, N. L., Swan, G. E., Madden, P. A. F., Goate, A. M., Rice, J. P. and Bierut, L. J. (2008) Systematic biological prioritization after a genome-wide association study: an application to nicotine dependence. Bioinformatics 24, 1805-1811. Available at: and
CrossRef Pubmed Google scholar
[12]
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403-410. Available at:
Pubmed
[13]
Ng, L., Lau, C., Young, R., Pathak, S., Kuan, L., Sodt, A., Sutram, M., Lee, C. K., Dang, C. and Hawrylycz, M. (2007) NeuroBlast: a 3D spatial homology search tool for gene expression. BMC Neurosci. 8, 11. Available at: and
CrossRef Pubmed Google scholar
[14]
Ng, L., Bernard, A., Lau, C., Overly, C. C., Dong, H. W., Kuan, C., Pathak, S., Sunkin, S. M., Dang, C., Bohland, J. W., (2009) An anatomic gene expression atlas of the adult mouse brain. Nat. Neurosci. 12, 356-362. Available at: and
CrossRef Pubmed Google scholar
[15]
Zhang, B. and Horvath, S. (2005) A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, e17. Available at: and
CrossRef Pubmed Google scholar
[16]
Olszewski, P. K., Cedernaes, J., Olsson, F., Levine, A. S. and Schiöth, H.B. (2008) Analysis of the network of feeding neuroregulators using the Allen Brain Atlas. Neurosci. Biobehav. Rev. 32, 945-956. Available at: and
CrossRef Pubmed Google scholar
[17]
Dong, H. W. (2007) The Allen reference atlas: a digital brain atlas of the C57BL/6J male mouse, Wiley.
[18]
Grange, P. and Mitra, P. P. (2012) Computational neuroanatomy and gene expression: Optimal sets of marker genes for brain regions. IEEE, in CISS 2012, 46th annual conference on Information Science and Systems (Princeton), arXiv:1205.2721 [q-bio.QM].
[19]
Lau, C., Ng, L., Thompson, C., Pathak, S., Kuan, L., Jones, A. and Hawrylycz, M. (2008) Exploration and visualization of gene expression with neuroanatomy in the adult mouse brain. BMC Bioinformatics 9, 153. Available at: and
CrossRef Pubmed Google scholar
[20]
Hawrylycz, M., Baldock, R. A., Burger, A., Hashikawa, T., Johnson, G. A., Martone, M., Ng, L., Lau, C., Larson, S. D., Nissanov, J., (2011) Digital atlasing and standardization in the mouse brain. PLOS Comput. Biol. 7, e1001065. Available at: and
CrossRef Pubmed Google scholar
[21]
.The Allen Brain Atlas can be used online at www.brain-map.org/
[22]
Bohland, J. W., Bokil, H., Pathak, S. D., Lee, C. K., Ng, L., Lau, C., Kuan, C., Hawrylycz, M. and Mitra, P. P. (2010) Clustering of spatial gene expression patterns in the mouse brain and comparison with classical neuroanatomy. Methods 50, 105-112. Available at: and
CrossRef Pubmed Google scholar
[23]
The developmental atlas of the mouse brain is available fromhttp://developingmouse.brain-map.org/
[24]
Menashe, I., Grange, P., Larsen, E. C., Banerjee-Basu, S. and Mitra, P. P. (2012) Co-expression profiling of autism genes in the mouse brain, SFN Abstracts, and submitted.
[25]
Hawrylycz, M. J., Lein, E. S., Guillozet-Bongaarts, A. L., Shen, E. H., Ng, L., Miller, J. A., van de Lagemaat, L. N., Smith, K. A., Ebbert, A., Riley, Z. L., (2012) An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391-399. Available at: and
CrossRef Pubmed Google scholar
[26]
Warren, W. C., Clayton, D. F., Ellegren, H., Arnold, A. P., Hillier, L. W., Künstner, A., Searle, S., White, S., Vilella, A. J. and Fairley, S. (2010) The genome of a songbird. Nature 464, 757-762. Available at: and
CrossRef Pubmed Google scholar
[27]
Data can be retrieved from the ZEBrA database. (Oregon Health and Science University, Portland, OR 97239; http://www.zebrafinchatlas.org).
[28]
Miller, J. A., Horvath, S. and Geschwind, D. H. (2010) Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways. Proc. Natl. Acad. Sci. USA 107, 12698-12703. Available at: and
CrossRef Pubmed Google scholar
[29]
Rossner, M. J., Hirrlinger, J., Wichert, S. P., Boehm, C., Newrzella, D., Hiemisch, H., Eisenhardt, G., Stuenkel, C., von Ahsen, O. and Nave, K. A. (2006) Global transcriptome analysis of genetically identified neurons in the adult cortex. J. Neurosci. 26, 9956-9966. Available at:
CrossRef Pubmed Google scholar
[30]
Cahoy, J. D., Emery, B., Kaushal, A., Foo, L. C., Zamanian, J. L., Christopherson, K. S., Xing, Y., Lubischer, J. L., Krieg, P. A., Krupenko, S. A., (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264-278. Available at: and
CrossRef Pubmed Google scholar
[31]
Doyle, J. P., Dougherty, J. D., Heiman, M., Schmidt, E. F., Stevens, T. R., Ma, G., Bupp, S., Shrestha, P., Shah, R. D., Doughty, M. L., (2008) Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135, 749-762. Available at: and
CrossRef Pubmed Google scholar
[32]
Chung, C. Y., Seo, H., Sonntag, K. C., Brooks, A., Lin, L. and Isacson, O. (2005) Cell type-specific gene expression of midbrain dopaminergic neurons reveals molecules involved in their vulnerability and protection. Hum. Mol. Genet. 14, 1709-1725. Available at:
CrossRef Pubmed Google scholar
[33]
Arlotta, P., Molyneaux, B. J., Chen, J., Inoue, J., Kominami, R. and Macklis, J. D. (2005) Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45, 207-221. Available at:
CrossRef Pubmed Google scholar
[34]
Heiman, M., Schaefer, A., Gong, S., Peterson, J. D., Day, M., Ramsey, K. E., Suárez-Fariñas M., Schwarz, C., Stephan, D. A., Surmeier, D. J., (2008) A translational profiling approach for the molecular characterization of CNS cell types. Cell 135, 738-748. Available at: and
CrossRef Pubmed Google scholar
[35]
Sugino, K., Hempel, C. M., Miller, M. N., Hattox, A. M., Shapiro, P., Wu, C., Huang, Z. J. and Nelson, S. B. (2006) Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat. Neurosci. 9, 99-107. Available at: and
CrossRef Pubmed Google scholar
[36]
Lee, C. K., Sunkin, S. M., Kuan, C., Thompson, C. L., Pathak, S., Ng, L., Lau, C., Fischer, S., Mortrud, M., Slaughterbeck, C., (2008) Quantitative methods for genome-scale analysis of in situ hybridization and correlation with microarray data. Genome Biol. 9, R23. Available at: and
CrossRef Pubmed Google scholar
[37]
Grange, P., Bohland, J. W., Bokil, H., Nelson, S., Okaty, B., Sugino, K., Ng, L., Hawrylycz, M. and Mitra, P.P.A cell-type based model explaining co-expression patterns of genes in the brain, arXiv:1111.6217 [q-bio.QM].
[38]
Tarjan, R. E. (1972) Depth first search and linear graph algorithms. SIAM J. Comput. 1, 146-160. Available at:
CrossRef Google scholar

ACKNOWLEDGMENTS

We thank Sharmila Banerjee-Basu, Idan Menashe, Eric C. Larsen, Hemant Bokil and Jason W. Bohland for discussions and collaboration. This research is supported by the NIH-NIDA Grant (1R21DA027644-01, Computational analysis of co-expression networks in the mouse and human brain).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(563 KB)

Accesses

Citations

Detail

Sections
Recommended

/