Computational methodology for ChIP-seq analysis

Hyunjin Shin, Tao Liu, Xikun Duan, Yong Zhang, X. Shirley Liu

PDF(634 KB)
PDF(634 KB)
Quant. Biol. ›› 2013, Vol. 1 ›› Issue (1) : 54-70. DOI: 10.1007/s40484-013-0006-2
REVIEW
REVIEW

Computational methodology for ChIP-seq analysis

Author information +
History +

Abstract

Chromatin immunoprecipitation coupled with massive parallel sequencing (ChIP-seq) is a powerful technology to identify the genome-wide locations of DNA binding proteins such as transcription factors or modified histones. As more and more experimental laboratories are adopting ChIP-seq to unravel the transcriptional and epigenetic regulatory mechanisms, computational analyses of ChIP-seq also become increasingly comprehensive and sophisticated. In this article, we review current computational methodology for ChIP-seq analysis, recommend useful algorithms and workflows, and introduce quality control measures at different analytical steps. We also discuss how ChIP-seq could be integrated with other types of genomic assays, such as gene expression profiling and genome-wide association studies, to provide a more comprehensive view of gene regulatory mechanisms in important physiological and pathological processes.

Cite this article

Download citation ▾
Hyunjin Shin, Tao Liu, Xikun Duan, Yong Zhang, X. Shirley Liu. Computational methodology for ChIP-seq analysis. Quant Biol, 2013, 1(1): 54‒70 https://doi.org/10.1007/s40484-013-0006-2

References

[1]
Metzker, M. L. (2010) Sequencing technologies - the next generation. Nat. Rev. Genet., 11, 31-46.
CrossRef Pubmed Google scholar
[2]
Ansorge, W. J. (2009) Next-generation DNA sequencing techniques. New Biotechnol., 25, 195-203.
CrossRef Pubmed Google scholar
[3]
Kircher, M., Heyn,P. and Kelso, J. (2011) Addressing challenges in the production and analysis of illumina sequencing data. BMC Genomics, 12, 382.
CrossRef Pubmed Google scholar
[4]
Schuster, S. C. (2008) Next-generation sequencing transforms today’s biology. Nat. Methods, 5, 16-18.
CrossRef Pubmed Google scholar
[5]
Solomon, M. J., Larsen, P. L. and Varshavsky, A. (1988) Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell, 53, 937-947.
CrossRef Pubmed Google scholar
[6]
Hurtado, A., Holmes, K. A., Ross-Innes, C. S., Schmidt, D. and Carroll, J. S. (2011) FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat. Genet.,43, 27-33.
CrossRef Pubmed Google scholar
[7]
Lupien, M., Eeckhoute, J., Meyer, C. A., Wang, Q., Zhang,Y., Li, W., Carroll, J. S., Liu, X. S. and Brown, M. (2008) FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell, 132, 958-970.
CrossRef Pubmed Google scholar
[8]
Young, R. A. (2011) Control of the embryonic stem cell state. Cell, 144, 940-954.
CrossRef Pubmed Google scholar
[9]
Kagey, M. H., Newman, J. J., Bilodeau, S., Zhan, Y., Orlando, D. A., van Berkum, N. L., Ebmeier, C. C., Goossens, J., Rahl, P. B., Levine, S. S., (2010) Mediator and cohesin connect gene expression and chromatin architecture. Nature, 467, 430-435.
CrossRef Pubmed Google scholar
[10]
Chen, X., Xu,H., Yuan, P., Fang, F., Huss, M., Vega, V. B., Wong,E., Orlov, Y. L., Zhang, W., Jiang, J., (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell, 133, 1106-1117.
CrossRef Pubmed Google scholar
[11]
Kim, J., Chu,J., Shen, X., Wang, J. and Orkin, S. H. (2008) An extended transcriptional network for pluripotency of embryonic stem cells. Cell, 132, 1049-1061.
CrossRef Pubmed Google scholar
[12]
Rahl, P. B., Lin,C. Y., Seila, A. C., Flynn, R. A., McCuine, S., Burge, C. B., Sharp,P. A. and Young, R. A. (2010) c-Myc regulates transcriptional pause release. Cell, 141, 432-445.
CrossRef Pubmed Google scholar
[13]
Handoko, L., Xu,H., Li, G., Ngan, C. Y., Chew, E., Schnapp, M., Lee,C. W., Ye, C., Ping, J. L., Mulawadi, F., (2011) CTCF-mediated functional chromatin interactome in pluripotent cells. Nat. Genet., 43, 630-638.
CrossRef Pubmed Google scholar
[14]
Dostie, J., Richmond, T. A., Arnaout, R. A., Selzer, R. R., Lee,W. L., Honan, T. A., Rubio, E. D., Krumm, A., Lamb, J., Nusbaum, C., (2006) Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res., 16, 1299-1309.
CrossRef Pubmed Google scholar
[15]
Espinoza, C. A. and Ren, B. (2011) Mapping higher order structure of chromatin domains. Nat. Genet., 43, 615-616.
CrossRef Pubmed Google scholar
[16]
Fullwood, M. J., Han, Y., Wei, C. L., Ruan, X.and Ruan, Y. (2010) Chromatin interaction analysis using paired-end tag sequencing. Curr. Protoc. Mol. Biol., Chapter 21, Unit 21.15.1-25.
[17]
Fullwood, M. J., Liu,M. H., Pan, Y. F., Liu, J., Xu, H., Mohamed, Y. B., Orlov,Y. L., Velkov, S., Ho, A., Mei, P. H., (2009) An oestrogen-receptor-alpha-bound human chromatin interactome. Nature, 462, 58-64.
CrossRef Pubmed Google scholar
[18]
Li, G., Fullwood, M. J., Xu, H., Mulawadi, F. H., Velkov, S., Vega, V., Ariyaratne, P. N., Mohamed, Y. B., Ooi, H. S., Tennakoon, C., (2010) ChIA-PET tool for comprehensive chromatin interaction analysis with paired-end tag sequencing. Genome Biol., 11, R22.
CrossRef Pubmed Google scholar
[19]
Lieberman-Aiden, E., van Berkum, N. L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B. R., Sabo, P. J., Dorschner, M. O., (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326, 289-293.
CrossRef Pubmed Google scholar
[20]
Rusk, N. (2009) When ChIA PETs meet Hi-C. Nat. Methods, 6, 863.
CrossRef Google scholar
[21]
Schoenfelder, S., Sexton, T., Chakalova, L., Cope, N. F., Horton, A., Andrews, S., Kurukuti, S., Mitchell, J. A., Umlauf, D., Dimitrova, D. S., (2010) Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat. Genet., 42, 53-61.
CrossRef Pubmed Google scholar
[22]
Theodorou, V. and Carroll, J. S. (2010) Estrogen receptor action in three dimensions - looping the loop. Breast Cancer Res., 12, 303.
CrossRef Pubmed Google scholar
[23]
Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Schones, D. E., Wang, Z., Wei, G., Chepelev, I. and Zhao, K. (2007) High-resolution profiling of histone methylations in the human genome. Cell, 129, 823-837.
CrossRef Pubmed Google scholar
[24]
Wang, Z., Zang, C., Rosenfeld, J. A., Schones, D. E., Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Peng, W., Zhang, M. Q., (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat. Genet., 40, 897-903.
[25]
.The ENCODE Project Consortium. (2011) A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol., 9, e1001046.
CrossRef Pubmed Google scholar
[26]
The modENCODE Consortium, Roy, S., Ernst, J., Kharchenko, P. V., Kheradpour, P., Negre, N., Eaton, M. L., Landolin, J. M., Bristow, C. A., Ma, L., Lin, M. F., et al. (2010) Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science, 330, 1787-1797.
[27]
Liu, T., Rechtsteiner, A., Egelhofer, T. A., Vielle, A., Latorre, I., Cheung, M. S., Ercan, S., Ikegami, K., Jensen, M., Kolasinska-Zwierz, P., (2011) Broad chromosomal domains of histone modification patterns in C. elegans. Genome Res., 21, 227-236.
CrossRef Pubmed Google scholar
[28]
Kharchenko, P. V., Alekseyenko, A. A., Schwartz, Y. B., Minoda, A., Riddle, N. C., Ernst, J., Sabo, P. J., Larschan, E., Gorchakov, A. A., Gu, T., (2011) Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature, 471, 480-485.
CrossRef Pubmed Google scholar
[29]
Ernst, J., Kheradpour, P., Mikkelsen, T. S., Shoresh, N., Ward,L. D., Epstein, C. B., Zhang, X., Wang,L., Issner, R., Coyne, M., (2011) Mapping and analysis of chromatin state dynamics in nine human cell types. Nature, 473, 43-49.
CrossRef Pubmed Google scholar
[30]
Auerbach, R. K., Euskirchen, G., Rozowsky, J., Lamarre-Vincent, N., Moqtaderi, Z., Lefrançois, P., Struhl, K., Gerstein, M. and Snyder, M. (2009) Mapping accessible chromatin regions using Sono-Seq. Proc. Natl. Acad. Sci. USA, 106, 14926-14931.
CrossRef Pubmed Google scholar
[31]
Park, P. J. (2009) ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet., 10, 669-680.
CrossRef Pubmed Google scholar
[32]
de Magalhães, J. P., Finch, C. E. and Janssens, G. (2010) Next-generation sequencing in aging research: emerging applications, problems, pitfalls and possible solutions. Ageing Res. Rev., 9, 315-323.
CrossRef Pubmed Google scholar
[33]
Hamady, M., Walker, J. J., Harris, J. K., Gold, N. J. and Knight, R. (2008) Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat. Methods, 5, 235-237.
CrossRef Pubmed Google scholar
[34]
Kim, J. B., Porreca, G. J., Song, L., Greenway, S. C., Gorham, J. M., Church, G. M., Seidman, C. E. and Seidman, J. G. (2007) Polony multiplex analysis of gene expression (PMAGE) in mouse hypertrophic cardiomyopathy. Science, 316, 1481-1484.
CrossRef Pubmed Google scholar
[35]
Meyer, M. and Kircher M. (2010) Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc., 2010, pdb.prot5448.
[36]
Liu, T., Ortiz,J. A., Taing, L., Meyer, C. A., Lee, B., Zhang, Y., Shin,H., Wong, S. S., Ma, J., Lei, Y., (2011) Cistrome: an integrative platform for transcriptional regulation studies. Genome Biol., 12, R83.
CrossRef Pubmed Google scholar
[37]
Ji, H., Jiang,H., Ma, W., Johnson, D. S., Myers, R. M. and Wong, W. H. (2008) An integrated software system for analyzing ChIP-chip and ChIP-seq data. Nat. Biotechnol., 26, 1293-1300.
CrossRef Pubmed Google scholar
[38]
Ji, H., Jiang, H., Ma, W. and Wong, W. H. (2011) Using CisGenome to analyze ChIP-chip and ChIP-seq data. Curr. Protoc. Bioinformatics, Chapter 2, Unit2.13.
[39]
Langmead, B., Trapnell, C., Pop, M. and Salzberg, S. L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol., 10, R25.
CrossRef Pubmed Google scholar
[40]
Langmead, B. and Salzberg, S. L. (2012) Fast gapped-read alignment with Bowtie 2. Nat. Methods, 9, 357-359.
CrossRef Pubmed Google scholar
[41]
Li, H. and Durbin, R. (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25, 1754-1760.
CrossRef Pubmed Google scholar
[42]
Li, H. and Durbin, R. (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics, 26, 589-595.
CrossRef Pubmed Google scholar
[43]
Li, H., Ruan,J. and Durbin, R. (2008) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res., 18, 1851-1858.
CrossRef Pubmed Google scholar
[44]
Lunter, G. and Goodson, M. (2011) Stampy: a statistical algorithm for sensitive and fast mapping of Illumina sequence reads. Genome Res., 21, 936-939.
CrossRef Pubmed Google scholar
[45]
Krawitz, P., Rödelsperger, C., Jäger, M., Jostins, L., Bauer,S. and Robinson, P. N. (2010) Microindel detection in short-read sequence data. Bioinformatics, 26, 722-729.
CrossRef Pubmed Google scholar
[46]
Li, R., Yu,C., Li, Y., Lam, T. W., Yiu, S. M., Kristiansen, K. and Wang, J. (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 25, 1966-1967.
CrossRef Pubmed Google scholar
[47]
Bao, S., Jiang, R., Kwan, W., Wang, B., Ma, X. and Song, Y. Q. (2011) Evaluation of next-generation sequencing software in mapping and assembly. J. Hum. Genet., 56, 406-414.
[48]
Zhang, Y., Liu,T., Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein, B. E., Nusbaum, C., Myers, R. M., Brown, M., Li,W., (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol., 9, R137.
CrossRef Pubmed Google scholar
[49]
Kharchenko, P. V., Tolstorukov, M. Y. and Park, P. J. (2008) Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat. Biotechnol., 26, 1351-1359.
CrossRef Pubmed Google scholar
[50]
Nix, D. A., Courdy, S. J. and Boucher, K. M. (2008) Empirical methods for controlling false positives and estimating confidence in ChIP-Seq peaks. BMC Bioinformatics, 9, 523.
CrossRef Pubmed Google scholar
[51]
Zang, C., Schones, D. E., Zeng, C., Cui, K., Zhao, K. and Peng, W. (2009) A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics, 25, 1952-1958.
[52]
Rozowsky, J., Euskirchen, G., Auerbach, R. K., Zhang, Z. D., Gibson, T., Bjornson, R., Carriero, N., Snyder, M. and Gerstein, M. B. (2009) PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls. Nat. Biotechnol., 27, 66-75.
CrossRef Pubmed Google scholar
[53]
Ji, H. (2010) Computational analysis of ChIP-seq data. Methods Mol. Biol., 674, 143-159.
CrossRef Pubmed Google scholar
[54]
Fejes, A. P., Robertson, G., Bilenky, M., Varhol, R., Bainbridge, M. and Jones, S. J. (2008) FindPeaks 3.1: a tool for identifying areas of enrichment from massively parallel short-read sequencing technology. Bioinformatics, 24, 1729-1730.
CrossRef Pubmed Google scholar
[55]
Jothi, R., Cuddapah, S., Barski, A., Cui, K. and Zhao, K. (2008) Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res., 36, 5221-5231.
CrossRef Pubmed Google scholar
[56]
Garber, M., Grabherr, M. G., Guttman, M. and Trapnell, C. (2011) Computational methods for transcriptome annotation and quantification using RNA-seq. Nat. Methods, 8, 469-477.
CrossRef Pubmed Google scholar
[57]
Pepke, S., Wold,B. and Mortazavi, A. (2009) Computation for ChIP-seq and RNA-seq studies. Nat. Methods, 6, S22-S32.
CrossRef Pubmed Google scholar
[58]
Wilbanks, E. G. and Facciotti, M. T. (2010) Evaluation of algorithm performance in ChIP-seq peak detection. PLoS ONE, 5, e11471.
CrossRef Pubmed Google scholar
[59]
Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B, 57, 289-300.
[60]
Storey, J. D. (2002) A direct approach to false discovery rates. J. R. Stat. Soc. B, 64, 479-498.
[61]
Storey, J. D. and Tibshirani, R. (2003) Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA, 100, 9440-9445.
CrossRef Pubmed Google scholar
[62]
Valouev, A., Johnson, D. S., Sundquist, A., Medina, C., Anton,E., Batzoglou, S., Myers, R. M. and Sidow, A. (2008) Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat. Methods, 5, 829-834.
CrossRef Pubmed Google scholar
[63]
Tuteja, G., White,P., Schug, J. and Kaestner, K. H. (2009) Extracting transcription factor targets from ChIP-Seq data. Nucleic Acids Res., 37, e113.
CrossRef Pubmed Google scholar
[64]
Johnson, D. S., Mortazavi, A., Myers, R. M. and Wold, B. (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science, 316, 1497-1502.
CrossRef Pubmed Google scholar
[65]
Zhang, Y., Shin,H., Song, J. S., Lei, Y. and Liu, X. S. (2008) Identifying positioned nucleosomes with epigenetic marks in human from ChIP-Seq. BMC Genomics, 9, 537.
CrossRef Pubmed Google scholar
[66]
Chen, Y., Meyer,C. A., Liu, T., Li, W., Liu, J. S. and Liu, X. S. (2011) MM-ChIP enables integrative analysis of cross-platform and between-laboratory ChIP-chip or ChIP-seq data. Genome Biol., 12, R11.
CrossRef Pubmed Google scholar
[67]
Kent, W. J., Sugnet, C. W., Furey, T. S., Roskin, K. M., Pringle, T. H., Zahler, A. M. and Haussler, D. (2002) The human genome browser at UCSC. Genome Res., 12, 996-1006.
[68]
Fujita, P. A., Rhead,B., Zweig, A. S., Hinrichs, A. S., Karolchik, D., Cline, M. S., Goldman, M., Barber, G. P., Clawson, H., Coelho, A., (2011) The UCSC Genome Browser database: update 2011. Nucleic Acids Res., 39, D876-D882.
CrossRef Pubmed Google scholar
[69]
Karolchik, D., Hinrichs, A. S., Furey, T. S., Roskin, K. M., Sugnet, C. W., Haussler, D. and Kent, W. J. (2004) The UCSC Table Browser data retrieval tool. Nucleic Acids Res., 32, D493-D496.
CrossRef Pubmed Google scholar
[70]
Raney, B. J., Cline,M. S., Rosenbloom, K. R., Dreszer, T. R., Learned, K., Barber, G. P., Meyer, L. R., Sloan,C. A., Malladi, V. S., Roskin, K. M., (2011) ENCODE whole-genome data in the UCSC genome browser (2011 update). Nucleic Acids Res., 39, D871-D875.
CrossRef Pubmed Google scholar
[71]
Robinson, J. T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E. S., Getz, G. and Mesirov, J. P. (2011) Integrative genomics viewer. Nat. Biotechnol., 29, 24-26.
CrossRef Pubmed Google scholar
[72]
Nicol, J. W., Helt,G. A., Blanchard, S. G. Jr, Raja, A. and Loraine, A. E. (2009) The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets. Bioinformatics, 25, 2730-2731.
CrossRef Pubmed Google scholar
[73]
Donlin, M. J. (2009) Using the Generic Genome Browser (GBrowse). Curr. Protoc. Bioinformatics, Chapter 9, Unit 9.9.
[74]
Podicheti, R. and Dong, Q. (2011) Administering GBrowse sites with WebGBrowse. Curr. Protoc. Bioinformatics, Chapter 9, Unit 9.14.
[75]
Huang, W. and Marth, G. (2008) EagleView: a genome assembly viewer for next-generation sequencing technologies. Genome Res., 18, 1538-1543.
CrossRef Pubmed Google scholar
[76]
Milne, I., Bayer,M., Cardle, L., Shaw, P., Stephen, G., Wright, F. and Marshall, D. (2010) Tablet — next generation sequence assembly visualization. Bioinformatics, 26, 401-402.
CrossRef Pubmed Google scholar
[77]
Nicol, J. W., Helt,G. A., Blanchard, S. G. Jr, Raja, A. and Loraine, A. E. (2009) The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets. Bioinformatics, 25, 2730-2731.
CrossRef Pubmed Google scholar
[78]
Bao, H., Guo,H., Wang, J., Zhou, R., Lu, X. and Shi, S. (2009) MapView: visualization of short reads alignment on a desktop computer. Bioinformatics, 25, 1554-1555.
CrossRef Pubmed Google scholar
[79]
Lewis, S. E., Searle, S. M., Harris, N., Gibson, M., Lyer, V., Richter, J., Wiel, C., Bayraktaroglir, L., Birney, E., Crosby, M. A., . (2002) Apollo: a sequence annotation editor. Genome Biol., 3, RESEARCH0082.
[80]
Li, Q. H., Brown,J. B., Huang, H. and Bickel, P. J. (2011) Measuring reproducibility of high-throughput experiments. Ann. Appl. Stat., 5, 1752-1779.
CrossRef Google scholar
[81]
Siepel, A., Bejerano, G., Pedersen, J. S., Hinrichs, A. S., Hou,M., Rosenbloom, K., Clawson, H., Spieth, J., Hillier, L. W., Richards, S., (2005) Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res., 15, 1034-1050.
CrossRef Pubmed Google scholar
[82]
Robasky, K. and Bulyk, M. L. (2011) UniPROBE, update 2011: expanded content and search tools in the online database of protein-binding microarray data on protein-DNA interactions. Nucleic Acids Res., 39, D124-D128.
CrossRef Pubmed Google scholar
[83]
Xie, Z., Hu,S., Blackshaw, S., Zhu, H. and Qian, J. (2010) hPDI: a database of experimental human protein-DNA interactions. Bioinformatics, 26, 287-289.
CrossRef Pubmed Google scholar
[84]
Bryne, J. C., Valen,E., Tang, M. H., Marstrand, T., Winther, O., da Piedade, I., Krogh,A., Lenhard, B. and Sandelin, A. (2008) JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids Res., 36, D102-D106.
CrossRef Pubmed Google scholar
[85]
AlQuraishi, M. and McAdams, H. H. (2011) Direct inference of protein-DNA interactions using compressed sensing methods. Proc. Natl. Acad. Sci. USA, 108, 14819-14824.
[86]
Nutiu, R., Friedman, R. C., Luo, S., Khrebtukova, I., Silva,D., Li, R., Zhang, L., Schroth, G. P. and Burge, C. B. (2011) Direct measurement of DNA affinity landscapes on a high-throughput sequencing instrument. Nat. Biotechnol., 29, 659-664.
CrossRef Pubmed Google scholar
[87]
Bailey, T. L. (2011) DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics, 27, 1653-1659.
[88]
Machanick, P. and Bailey T. L. (2011) MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics, 27, 1696-1697.
[89]
Liu, X. S., Brutlag, D. L. and Liu, J. S. (2002) An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments. Nat. Biotechnol., 20, 835-839.
Pubmed
[90]
Ma, X., Kulkarni, A., Zhang, Z., Xuan, Z., Serfling, R. and Zhang, M. Q. (2012) A highly efficient and effective motif discovery method for ChIP-seq/ChIP-chip data using positional information. Nucleic Acids Res., 40, e50.
CrossRef Pubmed Google scholar
[91]
Meyer, C. A., He, H. H., Brown, M. and Liu, X. S. (2011) BINOCh: binding inference from nucleosome occupancy changes. Bioinformatics, 27, 1867-1868.
[92]
Bell, O., Tiwari, V. K., Thomä, N. H. and Schübeler, D. (2011) Determinants and dynamics of genome accessibility. Nat. Rev. Genet., 12, 554-564.
CrossRef Pubmed Google scholar
[93]
Crawford, G. E., Holt,I. E., Mullikin, J. C., Tai, D., Blakesley, R., Bouffard, G., Young, A., Masiello, C., Green, E. D., Wolfsberg, T. G., (2004) Identifying gene regulatory elements by genome-wide recovery of DNase hypersensitive sites. Proc. Natl. Acad. Sci. USA, 101, 992-997.
CrossRef Pubmed Google scholar
[94]
Sabo, P. J., Humbert, R., Hawrylycz, M., Wallace, J. C., Dorschner, M. O., McArthur, M. and Stamatoyannopoulos, J. A. (2004) Genome-wide identification of DNaseI hypersensitive sites using active chromatin sequence libraries. Proc. Natl. Acad. Sci. USA, 101, 4537-4542.
CrossRef Pubmed Google scholar
[95]
Bernstein, B. E., Stamatoyannopoulos, J. A., Costello, J. F., Ren, B., Milosavljevic, A., Meissner, A., Kellis, M., Marra,M. A., Beaudet, A. L., Ecker, J. R., (2010) The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol., 28, 1045-1048.
CrossRef Pubmed Google scholar
[96]
Gerstein, M. B., Lu,Z. J., Van Nostrand, E. L., Cheng, C., Arshinoff, B. I., Liu, T., Yip, K. Y., Robilotto, R., Rechtsteiner, A., Ikegami, K., (2010) Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science, 330, 1775-1787.
CrossRef Pubmed Google scholar
[97]
Moorman, C., Sun,L. V., Wang, J., de Wit, E., Talhout, W., Ward, L. D., Greil,F., Lu, X. J., White, K. P., Bussemaker, H. J., (2006) Hotspots of transcription factor colocalization in the genome of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA, 103, 12027-12032.
CrossRef Pubmed Google scholar
[98]
Nègre, N., Brown,C. D., Ma, L., Bristow, C. A., Miller, S. W., Wagner, U., Kheradpour, P., Eaton, M. L., Loriaux, P., Sealfon, R., (2011) A cis-regulatory map of the Drosophila genome. Nature, 471, 527-531.
CrossRef Pubmed Google scholar
[99]
Shin, H., Liu,T., Manrai, A. K. and Liu, X. S. (2009) CEAS: cis-regulatory element annotation system. Bioinformatics, 25, 2605-2606.
CrossRef Pubmed Google scholar
[100]
Wang, D., Garcia-Bassets, I., Benner, C., Li, W., Su, X., Zhou, Y., Qiu, J., Liu, W., Kaikkonen, M. U., Ohgi, K. A., et al. (2011) Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature, 474, 390-394.
[101]
Cheung, I., Shulha, H. P., Jiang, Y., Matevossian, A., Wang,J., Weng, Z. and Akbarian, S. (2010) Developmental regulation and individual differences of neuronal H3K4me3 epigenomes in the prefrontal cortex. Proc. Natl. Acad. Sci. USA, 107, 8824-8829.
CrossRef Pubmed Google scholar
[102]
Xu, H., Wei,C. L., Lin, F. and Sung, W. K. (2008) An HMM approach to genome-wide identification of differential histone modification sites from ChIP-seq data. Bioinformatics, 24, 2344-2349.
CrossRef Pubmed Google scholar
[103]
Robinson, M. D., McCarthy, D. J. and Smyth, G. K. (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139-140.
CrossRef Pubmed Google scholar
[104]
Anders, S. and Huber, W. (2010) Differential expression analysis for sequence count data. Genome Biol., 11, R106.
CrossRef Pubmed Google scholar
[105]
Hardcastle, T. J. and Kelly, K. A. (2010) baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics, 11, 422.
CrossRef Pubmed Google scholar
[106]
Verzi, M. P., Shin,H., He, H. H., Sulahian, R., Meyer, C. A., Montgomery, R. K., Fleet, J. C., Brown, M., Liu, X. S. and Shivdasani, R. A. (2010) Differentiation-specific histone modifications reveal dynamic chromatin interactions and partners for the intestinal transcription factor CDX2. Dev. Cell, 19, 713-726.
CrossRef Pubmed Google scholar
[107]
Tang, Q., Chen, Y., Meyer, C., Geistlinger, T., Lupien, M., Wang, Q., Liu, T., Zhang, Y., Brown, M. and Liu, X. S. (2011) A comprehensive view of nuclear receptor cancer cistromes. Cancer Res., 71, 6940-6947.
[108]
The ENCODE Project Consortium. (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature, 447, 799-816.
CrossRef Pubmed Google scholar
[109]
Wang, Q., Li,W., Zhang, Y., Yuan, X., Xu, K., Yu, J., Chen,Z., Beroukhim, R., Wang, H., Lupien, M., (2009) Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell, 138, 245-256.
CrossRef Pubmed Google scholar
[110]
Carroll, J. S., Meyer,C. A., Song, J., Li, W., Geistlinger, T. R., Eeckhoute, J., Brodsky, A. S., Keeton, E. K., Fertuck, K. C., Hall,G. F., (2006) Genome-wide analysis of estrogen receptor binding sites. Nat. Genet., 38, 1289-1297.
CrossRef Pubmed Google scholar
[111]
Huang, D. W., Sherman, B. T. and Lempicki, R. A. (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res., 37, 1-13.
CrossRef Pubmed Google scholar
[112]
Huang, D. W., Sherman, B. T. and Lempicki, R. A. (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc.,4, 44-57.
CrossRef Pubmed Google scholar
[113]
Thomas, P. D., Campbell, M. J., Kejariwal, A., Mi, H., Karlak, B., Daverman, R., Diemer, K., Muruganujan, A. and Narechania, A. (2003) PANTHER: a library of protein families and subfamilies indexed by function. Genome Res., 13, 2129-2141.
CrossRef Pubmed Google scholar
[114]
McLean, C. Y., Bristor, D., Hiller, M., Clarke, S. L., Schaar, B. T., Lowe, C. B., Wenger, A. M. and Bejerano, G. (2010) GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol., 28, 495-501.
CrossRef Pubmed Google scholar
[115]
Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert,B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA, 102, 15545-15550.
CrossRef Pubmed Google scholar
[116]
Zhang, Z., Chang, C. W., Goh, W. L., Sung, W. K. and Cheung, E. (2011) CENTDIST: discovery of co-associated factors by motif distribution. Nucleic Acids Res., 39, W391-W399.
[117]
Carroll, J. S., Liu,X. S., Brodsky, A. S., Li, W., Meyer,C. A., Szary, A. J., Eeckhoute, J., Shao, W., Hestermann, E. V., Geistlinger, T. R., (2005) Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell, 122, 33-43.
CrossRef Pubmed Google scholar
[118]
Giardine, B., Riemer, C., Hardison, R. C., Burhans, R., Elnitski, L., Shah, P., Zhang, Y., Blankenberg, D., Albert, I., Taylor, J., (2005) Galaxy: a platform for interactive large-scale genome analysis. Genome Res., 15, 1451-1455.
CrossRef Pubmed Google scholar
[119]
Quinlan, A. R. and Hall, I. M. (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics,26, 841-842.
CrossRef Pubmed Google scholar
[120]
Feng, D., Liu,T., Sun, Z., Bugge, A., Mullican, S. E., Alenghat, T., Liu,X. S. and Lazar, M. A. (2011) A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science, 331, 1315-1319.
CrossRef Pubmed Google scholar
[121]
Odom, D. T., Dowell, R. D., Jacobsen, E. S., Gordon, W., Danford, T. W., MacIsaac, K. D., Rolfe, P. A., Conboy, C. M., Gifford, D. K. and Fraenkel, E. (2007) Tissue-specific transcriptional regulation has diverged significantly between human and mouse. Nat. Genet., 39, 730-732.
CrossRef Pubmed Google scholar
[122]
Schmidt, D., Wilson, M. D., Ballester, B., Schwalie, P. C., Brown,G. D., Marshall, A., Kutter, C., Watt, S., Martinez-Jimenez, C. P., Mackay, S., (2010) Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science, 328, 1036-1040.
CrossRef Pubmed Google scholar
[123]
Chung, D., Kuan,P. F., Li, B., Sanalkumar, R., Liang, K., Bresnick, E. H., Dewey,C. and Keleş, S. (2011) Discovering transcription factor binding sites in highly repetitive regions of genomes with multi-read analysis of ChIP-Seq data. PLOS Comput. Biol., 7, e1002111.
CrossRef Pubmed Google scholar
[124]
Wang, T., Zeng,J., Lowe, C. B., Sellers, R. G., Salama, S. R., Yang, M., Burgess, S. M., Brachmann, R. K. and Haussler, D. (2007) Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. Proc. Natl. Acad. Sci. USA, 104, 18613-18618.
CrossRef Pubmed Google scholar
[125]
Eaton, M. L., Prinz,J. A., MacAlpine, H. K., Tretyakov, G., Kharchenko, P. V. and MacAlpine, D. M. (2011) Chromatin signatures of the Drosophila replication program. Genome Res., 21, 164-174.
CrossRef Pubmed Google scholar
[126]
Bernstein, B. E., Mikkelsen, T. S., Xie, X., Kamal, M., Huebert, D. J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125, 315-326.
CrossRef Pubmed Google scholar
[127]
Kolasinska-Zwierz, P., Down, T., Latorre, I., Liu, T., Liu,X. S. and Ahringer, J. (2009) Differential chromatin marking of introns and expressed exons by H3K36me3. Nat. Genet., 41, 376-381.
CrossRef Pubmed Google scholar
[128]
Creyghton, M. P., Cheng,A. W., Welstead, G. G., Kooistra, T., Carey,B. W., Steine, E. J., Hanna, J., Lodato, M. A., Frampton, G. M., Sharp, P. A., (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl. Acad. Sci. USA, 107, 21931-21936.
CrossRef Pubmed Google scholar
[129]
Heintzman, N. D., Stuart, R. K., Hon, G., Fu, Y., Ching,C. W., Hawkins, R. D., Barrera, L. O., Van Calcar, S., Qu, C., Ching, K. A., (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet., 39, 311-318.
CrossRef Pubmed Google scholar
[130]
Ernst, J. and Kellis, M. (2010) Discovery and characterization of chromatin states for systematic annotation of the human genome. Nat. Biotechnol., 28, 817-825.
CrossRef Pubmed Google scholar
[131]
Hoffman, M. M.,Buske, O. J., Wang, J., Weng, Z., Bilmes, J. A. and Noble, W. S. (2012) Unsupervised pattern discovery in human chromatin structure through genomic segmentation. Nat. Methods, 9, 473-476.
[132]
He, H. H., Meyer,C. A., Shin, H., Bailey, S. T., Wei, G., Wang, Q., Zhang,Y., Xu, K., Ni, M., Lupien, M., (2010) Nucleosome dynamics define transcriptional enhancers. Nat. Genet., 42, 343-347.
CrossRef Pubmed Google scholar
[133]
Kasowski, M., Grubert, F., Heffelfinger, C., Hariharan, M., Asabere, A., Waszak, S. M., Habegger, L., Rozowsky, J., Shi, M., Urban, A. E., (2010) Variation in transcription factor binding among humans. Science, 328, 232-235.
CrossRef Pubmed Google scholar
[134]
McDaniell, R., Lee,B. K., Song, L., Liu, Z., Boyle, A. P., Erdos, M. R., Scott,L. J., Morken, M. A., Kucera, K. S., Battenhouse, A., (2010) Heritable individual-specific and allele-specific chromatin signatures in humans. Science, 328, 235-239.
CrossRef Pubmed Google scholar
[135]
Ahmadiyeh, N., Pomerantz, M. M., Grisanzio, C., Herman, P., Jia,L., Almendro, V., He, H. H., Brown, M., Liu, X. S., Davis,M., (2010) 8q24 prostate, breast, and colon cancer risk loci show tissue-specific long-range interaction with MYC. Proc. Natl. Acad. Sci. USA, 107, 9742-9746.
CrossRef Pubmed Google scholar
[136]
Birney, E., Lieb,J. D., Furey, T. S., Crawford, G. E. and Iyer, V. R. (2010) Allele-specific and heritable chromatin signatures in humans. Hum. Mol. Genet., 19, R204-R209.
CrossRef Pubmed Google scholar
[137]
Pickrell, J. K., Gaffney, D. J., Gilad, Y. and Pritchard, J. K. (2011) False positive peaks in ChIP-seq and other sequencing-based functional assays caused by unannotated high copy number regions. Bioinformatics, 27, 2144-2146.
CrossRef Pubmed Google scholar
[138]
Verzi, M. P., Shin,H., Ho, L. L., Liu, X. S. and Shivdasani, R. A. (2011) Essential and redundant functions of caudal family proteins in activating adult intestinal genes. Mol. Cell. Biol., 31, 2026-2039.
CrossRef Pubmed Google scholar
[139]
Iyengar, S., Ivanov, A. V., Jin, V. X., Rauscher, F. J. 3rd and Farnham, P. J. (2011) Functional analysis of KAP1 genomic recruitment. Mol. Cell. Biol., 31, 1833-1847.
CrossRef Pubmed Google scholar
[140]
O’Geen, H., Echipare, L. and Farnham, P. J. (2011) Using ChIP-seq technology to generate high-resolution profiles of histone modifications. Methods Mol. Biol., 791, 265-286.
CrossRef Pubmed Google scholar
[141]
Adli, M., Zhu,J. and Bernstein, B. E. (2010) Genome-wide chromatin maps derived from limited numbers of hematopoietic progenitors. Nat. Methods, 7, 615-618.
CrossRef Pubmed Google scholar
[142]
Shankaranarayanan, P., Mendoza-Parra, M. A., Walia, M., Wang, L., Li,N., Trindade, L. M. and Gronemeyer, H. (2011) Single-tube linear DNA amplification (LinDA) for robust ChIP-seq. Nat. Methods, 8, 565-567.
CrossRef Pubmed Google scholar
[143]
Rhee, H. S. and Pugh, B. F. (2011) Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell, 147, 1408-1419.
CrossRef Pubmed Google scholar
[144]
Cokus, S. J., Feng,S., Zhang, X., Chen, Z., Merriman, B., Haudenschild, C. D., Pradhan, S., Nelson, S. F., Pellegrini, M. and Jacobsen, S. E. (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature, 452, 215-219.
CrossRef Pubmed Google scholar
[145]
Lister, R., O’Malley, R. C., Tonti-Filippini, J., Gregory, B. D., Berry,C. C., Millar, A. H. and Ecker, J. R. (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell, 133, 523-536.
CrossRef Pubmed Google scholar
[146]
Lister, R., Pelizzola, M., Dowen, R. H., Hawkins, R. D., Hon,G., Tonti-Filippini, J., Nery, J. R., Lee,L., Ye, Z., Ngo, Q. M., (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462, 315-322.
CrossRef Pubmed Google scholar
[147]
47Xiang, H., Zhu,J., Chen, Q., Dai, F., Li, X., Li, M., Zhang,H., Zhang, G., Li, D., Dong, Y., (2010) Single base-resolution methylome of the silkworm reveals a sparse epigenomic map. Nat. Biotechnol., 28, 516-520.
CrossRef Pubmed Google scholar
[148]
Bar-Joseph, Z., Gerber, G. K., Lee, T. I., Rinaldi, N. J., Yoo,J. Y., Robert, F., Gordon, D. B., Fraenkel, E., Jaakkola, T. S., Young,R. A., (2003) Computational discovery of gene modules and regulatory networks. Nat. Biotechnol., 21, 1337-1342.
CrossRef Pubmed Google scholar
[149]
Basso, K., Margolin, A. A., Stolovitzky, G., Klein, U., Dalla-Favera, R. and Califano, A. (2005) Reverse engineering of regulatory networks in human B cells. Nat. Genet., 37, 382-390.
CrossRef Pubmed Google scholar
[150]
Friedman, N. (2004) Inferring cellular networks using probabilistic graphical models. Science, 303, 799-805.
CrossRef Pubmed Google scholar
[151]
Lee, I., Date,S. V., Adai, A. T. and Marcotte, E. M. (2004) A probabilistic functional network of yeast genes. Science, 306, 1555-1558.
CrossRef Pubmed Google scholar
[152]
Liao, J. C., Boscolo, R., Yang, Y. L., Tran, L. M., Sabatti, C. and Roychowdhury, V. P. (2003) Network component analysis: reconstruction of regulatory signals in biological systems. Proc. Natl. Acad. Sci. USA, 100, 15522-15527.
CrossRef Pubmed Google scholar
[153]
Lemmens, K., Dhollander, T., De Bie, T., Monsieurs, P., Engelen, K., Smets, B., Winderickx, J., De Moor, B. and Marchal, K. (2006) Inferring transcriptional modules from ChIP-chip, motif and microarray data. Genome Biol., 7, R37.
CrossRef Pubmed Google scholar
[154]
Liu, X., Jessen, W. J., Sivaganesan, S., Aronow, B. J. and Medvedovic, M. (2007) Bayesian hierarchical model for transcriptional module discovery by jointly modeling gene expression and ChIP-chip data. BMC Bioinformatics, 8, 283.
CrossRef Pubmed Google scholar
[155]
Youn, A., Reiss,D. J. and Stuetzle, W. (2010) Learning transcriptional networks from the integration of ChIP-chip and expression data in a non-parametric model. Bioinformatics, 26, 1879-1886.
CrossRef Pubmed Google scholar
[156]
Kinde, I., Wu, J., Papadopoulos, N., Kinzler, K. W. and Vogelstein, B. (2011) Detection and quantification of rare mutations with massively parallel sequencing. Proc. Natl. Acad. Sci. USA, 108, 9530-9535.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(634 KB)

Accesses

Citations

Detail

Sections
Recommended

/