Personal genomes, quantitative dynamic omics and personalized medicine

George I. Mias, Michael Snyder

PDF(800 KB)
PDF(800 KB)
Quant. Biol. ›› 2013, Vol. 1 ›› Issue (1) : 71-90. DOI: 10.1007/s40484-013-0005-3
REVIEW
REVIEW

Personal genomes, quantitative dynamic omics and personalized medicine

Author information +
History +

Abstract

The rapid technological developments following the Human Genome Project have made possible the availability of personalized genomes. As the focus now shifts from characterizing genomes to making personalized disease associations, in combination with the availability of other omics technologies, the next big push will be not only to obtain a personalized genome, but to quantitatively follow other omics. This will include transcriptomes, proteomes, metabolomes, antibodyomes, and new emerging technologies, enabling the profiling of thousands of molecular components in individuals. Furthermore, omics profiling performed longitudinally can probe the temporal patterns associated with both molecular changes and associated physiological health and disease states. Such data necessitates the development of computational methodology to not only handle and descriptively assess such data, but also construct quantitative biological models. Here we describe the availability of personal genomes and developing omics technologies that can be brought together for personalized implementations and how these novel integrated approaches may effectively provide a precise personalized medicine that focuses on not only characterization and treatment but ultimately the prevention of disease.

Cite this article

Download citation ▾
George I. Mias, Michael Snyder. Personal genomes, quantitative dynamic omics and personalized medicine. Quant. Biol., 2013, 1(1): 71‒90 https://doi.org/10.1007/s40484-013-0005-3

References

[1]
Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., (2001) Initial sequencing and analysis of the human genome. Nature, 409, 860-921.
CrossRef Pubmed Google scholar
[2]
Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., Smith, H. O., Yandell, M., Evans, C. A., Holt, R. A., (2001) The sequence of the human genome. Science, 291, 1304-1351.
CrossRef Pubmed Google scholar
[3]
International Human Genome Sequencing Consortium. (2004) Finishing the euchromatic sequence of the human genome. Nature, 431, 931-945.
CrossRef Pubmed Google scholar
[4]
Wang, J., Wang, W., Li, R., Li, Y., Tian, G., Goodman, L., Fan, W., Zhang, J., Li, J., Zhang, J., (2008) The diploid genome sequence of an Asian individual. Nature, 456, 60-65.
CrossRef Pubmed Google scholar
[5]
Bentley, D. R., Balasubramanian, S., Swerdlow, H. P., Smith, G. P., Milton, J., Brown, C. G., Hall, K. P., Evers, D. J., Barnes, C. L., Bignell, H. R., (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature, 456, 53-59.
CrossRef Pubmed Google scholar
[6]
Wheeler, D. A., Srinivasan, M., Egholm, M., Shen, Y., Chen, L., McGuire, A., He, W., Chen, Y. J., Makhijani, V., Roth, G. T., (2008) The complete genome of an individual by massively parallel DNA sequencing. Nature, 452, 872-876.
CrossRef Pubmed Google scholar
[7]
Levy, S., Sutton, G., Ng, P. C., Feuk, L., Halpern, A. L., Walenz, B. P., Axelrod, N., Huang, J., Kirkness, E. F., Denisov, G., (2007) The diploid genome sequence of an individual human. PLoS Biol., 5, e254.
CrossRef Pubmed Google scholar
[8]
Snyder, M., Du, J. and Gerstein, M. (2010) Personal genome sequencing: current approaches and challenges. Genes Dev., 24, 423-431.
CrossRef Pubmed Google scholar
[9]
Mardis, E. R. (2011) A decade’s perspective on DNA sequencing technology. Nature, 470, 198-203.
CrossRef Pubmed Google scholar
[10]
Tucker, T., Marra, M. and Friedman, J. M. (2009) Massively parallel sequencing: the next big thing in genetic medicine. Am. J. Hum. Genet., 85, 142-154.
CrossRef Pubmed Google scholar
[11]
Ronaghi, M., Uhlén, M. and Nyrén, P. (1998) A sequencing method based on real-time pyrophosphate. Science, 281, 363, 365.
[12]
Ronaghi, M., Karamohamed, S., Pettersson, B., Uhlén, M. and Nyrén, P. (1996) Real-time DNA sequencing using detection of pyrophosphate release. Anal. Biochem., 242, 84-89.
CrossRef Pubmed Google scholar
[13]
Nyrén, P. (2007) The history of pyrosequencing. Methods Mol. Biol., 373, 1-14.
Pubmed
[14]
Nutter, R. C. (2008) New frontiers in plant functional genomics using next generation sequencing technologies. In Kahl, G. and Meksem, K. (eds.), The Handbook of Plant Functional Genomics: Concepts and Protocels. Wiley-VCH Verlag GmbH & Co. KGaA, Chapter 21, 431-446.
[15]
Dai, M., Thompson, R. C., Maher, C., Contreras-Galindo, R., Kaplan, M. H., Markovitz, D. M., Omenn, G. and Meng, F. (2010) NGSQC: cross-platform quality analysis pipeline for deep sequencing data. BMC Genomics, 11, S7.
CrossRef Pubmed Google scholar
[16]
Pandey, V., Nutter, R. C. and Prediger, E. (2008) Applied biosystems SOLiD™ system: ligation-based sequencing. In Janitz, M. (ed.), Next Generation Genome Sequencing: Towards Personalized Medicine. Wiley-VCH Verlag GmbH & Co. KGaA, Chapter 3, 29-42.
[17]
Drmanac, R., Sparks, A. B., Callow, M. J., Halpern, A. L., Burns, N. L., Kermani, B. G., Carnevali, P., Nazarenko, I., Nilsen, G. B., Yeung, G., (2010) Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science, 327, 78-81.
CrossRef Pubmed Google scholar
[18]
Braslavsky, I., Hebert, B., Kartalov, E. and Quake, S. R. (2003) Sequence information can be obtained from single DNA molecules. Proc. Natl. Acad. Sci. USA, 100, 3960-3964.
CrossRef Pubmed Google scholar
[19]
Korlach, J., Bjornson, K. P., Chaudhuri, B. P., Cicero, R. L., Flusberg, B. A., Gray, J. J., Holden, D., Saxena, R., Wegener, J. and Turner, S. W. (2010) Real-time DNA sequencing from single polymerase molecules. Methods Enzymol., 472, 431-455.
CrossRef Pubmed Google scholar
[20]
Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P., Bettman, B., (2009) Real-time DNA sequencing from single polymerase molecules. Science, 323, 133-138.
CrossRef Pubmed Google scholar
[21]
Schadt, E. E., Turner, S. and Kasarskis, A. (2010) A window into third-generation sequencing. Hum. Mol. Genet., 19, R227-R240.
CrossRef Pubmed Google scholar
[22]
Hayden, E. (2012) Nanopore genome sequencer makes its debut. Nature,
CrossRef Google scholar
[23]
Bainbridge, M. N., Wang, M., Burgess, D. L., Kovar, C., Rodesch, M. J., D’Ascenzo, M., Kitzman, J., Wu, Y. Q., Newsham, I., Richmond, T. A., (2010) Whole exome capture in solution with 3 Gbp of data. Genome Biol., 11, R62.
CrossRef Pubmed Google scholar
[24]
Clark, M. J., Chen, R., Lam, H. Y., Karczewski, K. J., Chen, R., Euskirchen, G., Butte, A. J. and Snyder, M. (2011) Performance comparison of exome DNA sequencing technologies. Nat. Biotechnol., 29, 908-914.
CrossRef Pubmed Google scholar
[25]
.The International HapMap Consortium. (2005) A haplotype map of the human genome. Nature, 437, 1299-1320.
CrossRef Pubmed Google scholar
[26]
.The International HapMap Consortium, Frazer, K. A., Ballinger, D. G., Cox, D. R., Hinds, D. A., Stuve, L. L., Gibbs, R. A., Belmont, J. W., Boudreau, A., Hardenbol, P., Leal, S. M., (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature, 449, 851-861.
CrossRef Pubmed Google scholar
[27]
Sherry, S. T., Ward, M. H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M. and Sirotkin, K. (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res., 29, 308-311.
CrossRef Pubmed Google scholar
[28]
Altshuler, D. and Clark, A. G. (2005) Genetics. Harvesting medical information from the human family tree. Science, 307, 1052-1053.
CrossRef Pubmed Google scholar
[29]
Jakobsson, M., Scholz, S. W., Scheet, P., Gibbs, J. R., VanLiere, J. M., Fung, H. C., Szpiech, Z. A., Degnan, J. H., Wang, K., Guerreiro, R., (2008) Genotype, haplotype and copy-number variation in worldwide human populations. Nature, 451, 998-1003.
CrossRef Pubmed Google scholar
[30]
Novembre, J., Johnson, T., Bryc, K., Kutalik, Z., Boyko, A. R., Auton, A., Indap, A., King, K. S., Bergmann, S., Nelson, M. R., (2008) Genes mirror geography within Europe. Nature, 456, 98-101.
CrossRef Pubmed Google scholar
[31]
Kidd, J. M., Gravel, S., Byrnes, J., Moreno-Estrada, A., Musharoff, S., Bryc, K., Degenhardt, J. D., Brisbin, A., Sheth, V., Chen, R., (2012) Population genetic inference from personal genome data: impact of ancestry and admixture on human genomic variation. Am. J. Hum. Genet., 91, 660-671.
CrossRef Pubmed Google scholar
[32]
Galanter, J. M., Fernandez-Lopez, J. C., Gignoux, C. R., Barnholtz-Sloan, J., Fernandez-Rozadilla, C., Via, M., Hidalgo-Miranda, A., Contreras, A. V., Figueroa, L. U., Raska, P., (2012) Development of a panel of genome-wide ancestry informative markers to study admixture throughout the Americas. PLoS Genet., 8, e1002554.
CrossRef Pubmed Google scholar
[33]
Bryc, K., Auton, A., Nelson, M. R., Oksenberg, J. R., Hauser, S. L., Williams, S., Froment, A., Bodo, J. M., Wambebe, C., Tishkoff, S. A., (2010) Genome-wide patterns of population structure and admixture in West Africans and African Americans. Proc. Natl. Acad. Sci. USA, 107, 786-791.
CrossRef Pubmed Google scholar
[34]
Redon, R., Ishikawa, S., Fitch, K. R., Feuk, L., Perry, G. H., Andrews, T. D., Fiegler, H., Shapero, M. H., Carson, A. R., Chen, W., (2006) Global variation in copy number in the human genome. Nature, 444, 444-454.
CrossRef Pubmed Google scholar
[35]
Conrad, D. F., Pinto, D., Redon, R., Feuk, L., Gokcumen, O., Zhang, Y., Aerts, J., Andrews, T. D., Barnes, C., Campbell, P., (2010) Origins and functional impact of copy number variation in the human genome. Nature, 464, 704-712.
CrossRef Pubmed Google scholar
[36]
Alkan, C., Coe, B. P. and Eichler, E. E. (2011) Genome structural variation discovery and genotyping. Nat. Rev. Genet., 12, 363-376.
CrossRef Pubmed Google scholar
[37]
Haraksingh, R. R., Abyzov, A., Gerstein, M., Urban, A. E. and Snyder, M. (2011) Genome-wide mapping of copy number variation in humans: comparative analysis of high resolution array platforms. PLoS ONE, 6, e27859.
CrossRef Pubmed Google scholar
[38]
Korbel, J. O., Urban, A. E., Affourtit, J. P., Godwin, B., Grubert, F., Simons, J. F., Kim, P. M., Palejev, D., Carriero, N. J., Du, L., (2007) Paired-end mapping reveals extensive structural variation in the human genome. Science, 318, 420-426.
CrossRef Pubmed Google scholar
[39]
Chen, K., Wallis, J. W., McLellan, M. D., Larson, D. E., Kalicki, J. M., Pohl, C. S., McGrath, S. D., Wendl, M. C., Zhang, Q., Locke, D. P., (2009) BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat. Methods, 6, 677-681.
CrossRef Pubmed Google scholar
[40]
Korbel, J. O., Abyzov, A., Mu, X. J., Carriero, N., Cayting, P., Zhang, Z., Snyder, M. and Gerstein, M. B. (2009) PEMer: a computational framework with simulation-based error models for inferring genomic structural variants from massive paired-end sequencing data. Genome Biol., 10, R23.
CrossRef Pubmed Google scholar
[41]
Quinlan, A. R. and Hall, I. M. (2012) Characterizing complex structural variation in germline and somatic genomes. Trends Genet., 28, 43-53.
CrossRef Pubmed Google scholar
[42]
The ENCODE Project Consortium, Dunham, I., Kundaje, A., Aldred, S. F., Collins, P. J., Davis, C. A., Doyle, F., Epstein, C. B., Frietze, S., Harrow, J., Kaul, R., (2012) An integrated encyclopedia of DNA elements in the human genome. Nature, 489, 57-74.
CrossRef Pubmed Google scholar
[43]
Gerstein, M. B., Kundaje, A., Hariharan, M., Landt, S. G., Yan, K. K., Cheng, C., Mu, X. J., Khurana, E., Rozowsky, J., Alexander, R., (2012) Architecture of the human regulatory network derived from ENCODE data. Nature, 489, 91-100.
CrossRef Pubmed Google scholar
[44]
Ecker, J. R., Bickmore, W. A., Barroso, I., Pritchard, J. K., Gilad, Y. and Segal, E. (2012) Genomics: ENCODE explained. Nature, 489, 52-55.
CrossRef Pubmed Google scholar
[45]
Birney, E. (2012) The making of ENCODE: lessons for big-data projects. Nature, 489, 49-51.
CrossRef Pubmed Google scholar
[46]
Boyle, A. P., Hong,E. L., Hariharan, M., Cheng, Y., Schaub, M. A., Kasowski, M., Karczewski, K. J., Park, J., Hitz, B. C., Weng, S., (2012) Annotation of functional variation in personal genomes using RegulomeDB. Genome Res., 22, 1790-1797.
CrossRef Pubmed Google scholar
[47]
1000 Genomes Project Consortium. (2010) A map of human genome variation from population-scale sequencing. Nature, 467, 1061-1073.
[48]
Hindorff, L. A., Sethupathy, P., Junkins, H. A., Ramos, E. M., Mehta, J. P., Collins, F. S. and Manolio, T. A. (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA, 106, 9362-9367.
CrossRef Pubmed Google scholar
[49]
Haack, T. B., Danhauser, K., Haberberger, B., Hoser, J., Strecker, V., Boehm, D., Uziel, G., Lamantea, E., Invernizzi, F., Poulton, J., (2010) Exome sequencing identifies ACAD9 mutations as a cause of complex I deficiency. Nat. Genet., 42, 1131-1134.
CrossRef Pubmed Google scholar
[50]
Vissers, L. E., de Ligt, J., Gilissen, C., Janssen, I., Steehouwer, M., de Vries, P., van Lier, B., Arts,P., Wieskamp, N., del Rosario, M., (2010) A de novo paradigm for mental retardation. Nat. Genet., 42, 1109-1112.
CrossRef Pubmed Google scholar
[51]
Johnson, J. O., Mandrioli, J., Benatar, M., Abramzon, Y., Van Deerlin, V. M., Trojanowski, J. Q., Gibbs, J. R., Brunetti, M., Gronka, S., Wuu, J., (2010) Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron, 68, 857-864.
CrossRef Pubmed Google scholar
[52]
Bilgüvar, K., Oztürk, A. K., Louvi, A., Kwan, K. Y., Choi,M., Tatli, B., Yalnizoğlu, D., Tüysüz,B., Cağlayan, A. O., Gökben, S., (2010) Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature, 467, 207-210.
CrossRef Pubmed Google scholar
[53]
Ng, S. B., Buckingham, K. J., Lee, C., Bigham, A. W., Tabor, H. K., Dent, K. M., Huff, C. D., Shannon, P. T., Jabs, E. W., Nickerson, D. A., (2010) Exome sequencing identifies the cause of a mendelian disorder. Nat. Genet., 42, 30-35.
CrossRef Pubmed Google scholar
[54]
Ng, S. B., Bigham, A. W., Buckingham, K. J., Hannibal, M. C., McMillin, M. J., Gildersleeve, H. I., Beck, A. E., Tabor, H. K., Cooper, G. M., Mefford, H. C., (2010) Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat. Genet., 42, 790-793.
CrossRef Pubmed Google scholar
[55]
Musunuru, K., Pirruccello, J. P., Do, R., Peloso, G. M., Guiducci, C., Sougnez, C., Garimella, K. V., Fisher, S., Abreu, J., Barry, A. J., (2010) Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N. Engl. J. Med., 363, 2220-2227.
CrossRef Pubmed Google scholar
[56]
Sanders, S. J., Murtha, M. T., Gupta, A. R., Murdoch, J. D., Raubeson, M. J., Willsey, A. J., Ercan-Sencicek, A. G., DiLullo, N. M., Parikshak, N. N., Stein, J. L., (2012) De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature, 485, 237-241.
CrossRef Pubmed Google scholar
[57]
Pugh, T. J., Weeraratne, S. D., Archer, T. C., Pomeranz Krummel, D. A., Auclair, D., Bochicchio, J., Carneiro, M. O., Carter, S. L., Cibulskis, K., Erlich, R. L., (2012) Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature, 488, 106-110.
CrossRef Pubmed Google scholar
[58]
Agrawal, N., Frederick, M. J., Pickering, C. R., Bettegowda, C., Chang, K., Li, R. J., Fakhry, C., Xie,T. X., Zhang, J., Wang, J., (2011) Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science, 333, 1154-1157.
CrossRef Pubmed Google scholar
[59]
Xu, X., Hou,Y., Yin, X., Bao, L., Tang, A., Song, L., Li,F., Tsang, S., Wu, K., Wu, H., (2012) Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell, 148, 886-895.
CrossRef Pubmed Google scholar
[60]
Hou, Y., Song,L., Zhu, P., Zhang, B., Tao, Y., Xu, X., Li,F., Wu, K., Liang, J., Shao, D., (2012) Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell, 148, 873-885.
CrossRef Pubmed Google scholar
[61]
.The Cancer Genome Atlas Research Network. (2011) Integrated genomic analyses of ovarian carcinoma. Nature, 474, 609-615.
CrossRef Pubmed Google scholar
[62]
Küntzer, J., Maisel, D., Lenhof, H. P., Klostermann, S. and Burtscher, H. (2011) The Roche Cancer Genome Database 2.0. BMC Med. Genomics, 4, 43.
CrossRef Pubmed Google scholar
[63]
Barretina, J., Caponigro, G., Stransky, N., Venkatesan, K., Margolin, A. A., Kim, S., Wilson, C. J., Lehár, J., Kryukov, G. V., Sonkin, D., (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 483, 603-607.
CrossRef Pubmed Google scholar
[64]
Pleasance, E. D., Cheetham, R. K., Stephens, P. J., McBride, D. J., Humphray, S. J., Greenman, C. D., Varela, I., Lin,M. L., Ordóñez, G. R., Bignell, G. R., (2010) A comprehensive catalogue of somatic mutations from a human cancer genome. Nature, 463, 191-196.
CrossRef Pubmed Google scholar
[65]
Puente, X. S., Pinyol, M., Quesada, V., Conde, L., Ordóñez, G. R., Villamor, N., Escaramis, G., Jares, P., Beà, S., González-Díaz, M., (2011) Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature, 475, 101-105.
CrossRef Pubmed Google scholar
[66]
Ellis, M. J., Ding,L., Shen, D., Luo, J., Suman, V. J., Wallis, J. W., Van Tine, B. A., Hoog, J., Goiffon, R. J., Goldstein, T. C., (2012) Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature, 486, 353-360.
Pubmed
[67]
Ding, L., Ellis, M. J., Li, S., Larson, D. E., Chen,K., Wallis, J. W., Harris, C. C., McLellan, M. D., Fulton, R. S., Fulton, L. L., (2010) Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature, 464, 999-1005.
CrossRef Pubmed Google scholar
[68]
Yost, S. E., Smith, E. N., Schwab, R. B., Bao, L., Jung,H., Wang, X., Voest, E., Pierce, J. P., Messer, K., Parker, B. A., (2012) Identification of high-confidence somatic mutations in whole genome sequence of formalin-fixed breast cancer specimens. Nucleic Acids Res., 40, e107.
CrossRef Pubmed Google scholar
[69]
Natrajan, R., Mackay, A., Lambros, M. B., Weigelt, B., Wilkerson, P. M., Manie, E., Grigoriadis, A., A’hern, R., van der Groep, P., Kozarewa, I., (2012) A whole-genome massively parallel sequencing analysis of BRCA1 mutant oestrogen receptor-negative and-positive breast cancers. J. Pathol., 227, 29-41.
CrossRef Pubmed Google scholar
[70]
Ley, T. J., Mardis, E. R., Ding, L., Fulton, B., McLellan, M. D., Chen, K., Dooling, D., Dunford-Shore, B. H., McGrath, S., Hickenbotham, M., (2008) DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature, 456, 66-72.
CrossRef Pubmed Google scholar
[71]
Link, D. C., Schuettpelz, L. G., Shen, D., Wang, J., Walter, M. J., Kulkarni, S., Payton, J. E., Ivanovich, J., Goodfellow, P. J., Le Beau, M., (2011) Identification of a novel TP53 cancer susceptibility mutation through whole-genome sequencing of a patient with therapy-related AML. JAMA, 305, 1568-1576.
[72]
Dewey, F. E., Chen,R., Cordero, S. P., Ormond, K. E., Caleshu, C., Karczewski, K. J., Whirl-Carrillo, M., Wheeler, M. T., Dudley, J. T., Byrnes, J. K., (2011) Phased whole-genome genetic risk in a family quartet using a major allele reference sequence. PLoS Genet., 7, e1002280.
CrossRef Pubmed Google scholar
[73]
Chen, R., Mias,G. I., Li-Pook-Than, J., Jiang, L., Lam,H. Y., Chen, R., Miriami, E., Karczewski, K. J., Hariharan, M., Dewey, F. E., (2012) Personal omics profiling reveals dynamic molecular and medical phenotypes. Cell, 148, 1293-1307.
CrossRef Pubmed Google scholar
[74]
Roach, J. C., Glusman, G., Smit, A. F., Huff, C. D., Hubley, R., Shannon, P. T., Rowen, L., Pant,K. P., Goodman, N., Bamshad, M., (2010) Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science, 328, 636-639.
CrossRef Pubmed Google scholar
[75]
Bainbridge, M. N., Wiszniewski, W., Murdock, D. R., Friedman, J., Gonzaga-Jauregui, C., Newsham, I., Reid, J. G., Fink,J. K., Morgan, M. B., Gingras, M. C., (2011) Whole-genome sequencing for optimized patient management. Sci. Transl. Med., 3, 87re3.
CrossRef Pubmed Google scholar
[76]
Ashley, E. A., Butte, A. J., Wheeler, M. T., Chen, R., Klein, T. E., Dewey, F. E., Dudley, J. T., Ormond, K. E., Pavlovic, A., Morgan, A. A., (2010) Clinical assessment incorporating a personal genome. Lancet, 375, 1525-1535.
CrossRef Pubmed Google scholar
[77]
Lesko, L. J. and Schmidt, S. (2012) Individualization of drug therapy: history, present state, and opportunities for the future. Clin. Pharmacol. Ther., 92, 458-466.
Pubmed
[78]
Evans, W. E. and Relling, M. V. (2004) Moving towards individualized medicine with pharmacogenomics. Nature, 429, 464-468.
CrossRef Pubmed Google scholar
[79]
Zineh, I. and Johnson, J. A. (2006) Pharmacogenetics of chronic cardiovascular drugs: applications and implications. Expert Opin. Pharmacother., 7, 1417-1427.
CrossRef Pubmed Google scholar
[80]
Gupta, S., Jain,S., Brahmachari, S. K. and Kukreti, R. (2006) Pharmacogenomics: a path to predictive medicine for schizophrenia. Pharmacogenomics, 7, 31-47.
CrossRef Pubmed Google scholar
[81]
Thorn, C. F., Klein, T. E. and Altman, R. B. (2010) Pharmacogenomics and bioinformatics: PharmGKB. Pharmacogenomics, 11, 501-505.
CrossRef Pubmed Google scholar
[82]
McDonagh, E. M., Whirl-Carrillo, M., Garten, Y., Altman, R. B. and Klein, T. E. (2011) From pharmacogenomic knowledge acquisition to clinical applications: the PharmGKB as a clinical pharmacogenomic biomarker resource. Biomark. Med., 5, 795-806.
CrossRef Pubmed Google scholar
[83]
Lunshof, J. E., Bobe,J., Aach, J., Angrist, M., Thakuria, J. V., Vorhaus, D. B., Hoehe, M. R. and Church, G. M. (2010) Personal genomes in progress: from the human genome project to the personal genome project. Dialogues Clin. Neurosci., 12, 47-60.
Pubmed
[84]
Ball, M. P., Thakuria, J. V., Zaranek, A. W., Clegg, T., Rosenbaum, A. M., Wu, X., Angrist, M., Bhak,J., Bobe, J., Callow, M. J., (2012) A public resource facilitating clinical use of genomes. Proc. Natl. Acad. Sci. USA, 109, 11920-11927.
CrossRef Pubmed Google scholar
[85]
Church, G. M. (2005) The personal genome project. Mol. Syst. Biol., 1, 2005.0030.
[86]
Jones, B. (2012) Genomics: personal genome project. Nat. Rev. Genet., 13, 599.
CrossRef Pubmed Google scholar
[87]
Clark, T. A., Sugnet, C. W. and Ares, M. Jr. (2002) Genomewide analysis of mRNA processing in yeast using splicing-specific microarrays. Science, 296, 907-910.
CrossRef Pubmed Google scholar
[88]
Cheng, J., Kapranov, P., Drenkow, J., Dike, S., Brubaker, S., Patel, S., Long, J., Stern, D., Tammana, H., Helt, G., (2005) Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science, 308, 1149-1154.
CrossRef Pubmed Google scholar
[89]
Bertone, P., Stolc, V., Royce, T. E., Rozowsky, J. S., Urban, A. E., Zhu, X., Rinn, J. L., Tongprasit, W., Samanta, M., Weissman, S., (2004) Global identification of human transcribed sequences with genome tiling arrays. Science, 306, 2242-2246.
CrossRef Pubmed Google scholar
[90]
Yamada, K., Lim,J., Dale, J. M., Chen, H., Shinn, P., Palm, C. J., Southwick, A. M., Wu, H. C., Kim, C., Nguyen, M., (2003) Empirical analysis of transcriptional activity in the Arabidopsis genome. Science, 302, 842-846.
CrossRef Pubmed Google scholar
[91]
David, L., Huber, W., Granovskaia, M., Toedling, J., Palm,C. J., Bofkin, L., Jones, T., Davis, R. W. and Steinmetz, L. M. (2006) A high-resolution map of transcription in the yeast genome. Proc. Natl. Acad. Sci. USA, 103, 5320-5325.
CrossRef Pubmed Google scholar
[92]
Okoniewski, M. J. and Miller, C. J. (2006) Hybridization interactions between probesets in short oligo microarrays lead to spurious correlations. BMC Bioinformatics, 7, 276.
CrossRef Pubmed Google scholar
[93]
Royce, T. E., Rozowsky, J. S. and Gerstein, M. B. (2007) Toward a universal microarray: prediction of gene expression through nearest-neighbor probe sequence identification. Nucleic Acids Res., 35, e99.
CrossRef Pubmed Google scholar
[94]
Wang, Z., Gerstein, M. and Snyder, M. (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet., 10, 57-63.
CrossRef Pubmed Google scholar
[95]
Wilhelm, B. T., Marguerat, S., Watt, S., Schubert, F., Wood,V., Goodhead, I., Penkett, C. J., Rogers, J. and Bähler, J. (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature, 453, 1239-1243.
CrossRef Pubmed Google scholar
[96]
Nagalakshmi, U., Wang,Z., Waern, K., Shou, C., Raha, D., Gerstein, M. and Snyder, M. (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science, 320, 1344-1349.
CrossRef Pubmed Google scholar
[97]
Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. and Wold, B. (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods, 5, 621-628.
CrossRef Pubmed Google scholar
[98]
Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M. and Gilad, Y. (2008) RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res., 18, 1509-1517.
CrossRef Pubmed Google scholar
[99]
Maher, C. A., Kumar-Sinha, C., Cao, X., Kalyana-Sundaram, S., Han, B., Jing, X., Sam, L., Barrette, T., Palanisamy, N. and Chinnaiyan, A. M. (2009) Transcriptome sequencing to detect gene fusions in cancer. Nature, 458, 97-101.
CrossRef Pubmed Google scholar
[100]
Mayr, C. and Bartel, D. P. (2009) Widespread shortening of 3’UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell, 138, 673-684.
CrossRef Pubmed Google scholar
[101]
Campbell, P. J., Stephens, P. J., Pleasance, E. D., O’Meara, S., Li, H., Santarius, T., Stebbings, L. A., Leroy, C., Edkins, S., Hardy, C., (2008) Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nat. Genet., 40, 722-729.
CrossRef Pubmed Google scholar
[102]
Shah, S. P., Roth,A., Goya, R., Oloumi, A., Ha, G., Zhao, Y., Turashvili, G., Ding, J., Tse, K., Haffari, G., (2012) The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature, 486, 395-399.
Pubmed
[103]
Delahaye, N. F., Rusakiewicz, S., Martins, I., Ménard, C., Roux,S., Lyonnet, L., Paul, P., Sarabi, M., Chaput, N., Semeraro, M., (2011) Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors. Nat. Med., 17, 700-707.
CrossRef Pubmed Google scholar
[104]
Rajan, P., Elliott, D. J., Robson, C. N. and Leung, H. Y. (2009) Alternative splicing and biological heterogeneity in prostate cancer. Nat. Rev. Urol., 6, 454-460.
CrossRef Pubmed Google scholar
[105]
Gygi, S. P., Rochon, Y., Franza, B. R. and Aebersold, R. (1999) Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol., 19, 1720-1730.
Pubmed
[106]
Lu, P., Vogel, C., Wang, R., Yao, X. and Marcotte, E. M. (2007) Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat. Biotechnol., 25, 117-124.
CrossRef Pubmed Google scholar
[107]
Cravatt, B. F., Simon, G. M. and Yates, J. R. 3rd. (2007) The biological impact of mass-spectrometry-based proteomics. Nature, 450, 991-1000.
CrossRef Pubmed Google scholar
[108]
Aebersold, R. and Mann, M. (2003) Mass spectrometry-based proteomics. Nature, 422, 198-207.
CrossRef Pubmed Google scholar
[109]
Aebersold, R. (2003) Quantitative proteome analysis: methods and applications. J. Infect. Dis., 187, S315-S320.
CrossRef Pubmed Google scholar
[110]
Aebersold, R. (2003) A mass spectrometric journey into protein and proteome research. J. Am. Soc. Mass Spectrom., 14, 685-695.
CrossRef Pubmed Google scholar
[111]
Yates, J. R. 3rd, Gilchrist, A., Howell, K. E. and Bergeron, J. J. (2005) Proteomics of organelles and large cellular structures. Nat. Rev. Mol. Cell Biol., 6, 702-714.
CrossRef Pubmed Google scholar
[112]
Cox, J. and Mann, M. (2011) Quantitative, high-resolution proteomics for data-driven systems biology. Annu. Rev. Biochem., 80, 273-299.
CrossRef Pubmed Google scholar
[113]
Mann, M. and Jensen, O. N. (2003) Proteomic analysis of post-translational modifications. Nat. Biotechnol., 21, 255-261.
CrossRef Pubmed Google scholar
[114]
Allmer, J. (2012) Existing bioinformatics tools for the quantitation of post-translational modifications. Amino Acids, 42, 129-138.
CrossRef Pubmed Google scholar
[115]
Michalski, A., Damoc, E., Hauschild, J. P., Lange, O., Wieghaus, A., Makarov, A., Nagaraj, N., Cox,J., Mann, M. and Horning, S. (2011) Mass spectrometry-based proteomics using Q Exactive, a high-performance benchtop quadrupole Orbitrap mass spectrometer. Mol. Cell. Proteomics, 10, M111.011015.
[116]
Ong, S. E. and Mann, M. (2005) Mass spectrometry-based proteomics turns quantitative. Nat. Chem. Biol., 1, 252-262.
CrossRef Pubmed Google scholar
[117]
Ong, S. E. and Mann, M. (2007) Stable isotope labeling by amino acids in cell culture for quantitative proteomics. Methods Mol. Biol., 359, 37-52.
CrossRef Pubmed Google scholar
[118]
Ong, S. E. and Mann, M. (2006) A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat. Protoc., 1, 2650-2660.
CrossRef Pubmed Google scholar
[119]
Ong, S. E., Kratchmarova, I. and Mann, M. (2003) Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J. Proteome Res., 2, 173-181.
CrossRef Pubmed Google scholar
[120]
Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A. and Mann, M. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics, 1, 376-386.
CrossRef Pubmed Google scholar
[121]
Geiger, T., Wisniewski, J. R., Cox, J., Zanivan, S., Kruger, M., Ishihama, Y. and Mann, M. (2011) Use of stable isotope labeling by amino acids in cell culture as a spike-in standard in quantitative proteomics. Nat. Protoc., 6, 147-157.
CrossRef Pubmed Google scholar
[122]
Choe, L., D’Ascenzo, M., Relkin, N. R., Pappin, D., Ross,P., Williamson, B., Guertin, S., Pribil, P. and Lee, K. H. (2007) 8-plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer’s disease. Proteomics, 7, 3651-3660.
CrossRef Pubmed Google scholar
[123]
Ross, P. L., Huang, Y. N., Marchese, J. N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics, 3, 1154-1169.
CrossRef Pubmed Google scholar
[124]
Thompson, A., Schäfer, J., Kuhn, K., Kienle, S., Schwarz, J., Schmidt, G., Neumann, T., Johnstone, R., Mohammed, A. K. and Hamon, C. (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem., 75, 1895-1904.
CrossRef Pubmed Google scholar
[125]
Dayon, L., Hainard, A., Licker, V., Turck, N., Kuhn,K., Hochstrasser, D. F., Burkhard, P. R. and Sanchez, J. C. (2008) Relative quantification of proteins in human cerebrospinal fluids by MS/MS using 6-plex isobaric tags. Anal. Chem., 80, 2921-2931.
CrossRef Pubmed Google scholar
[126]
Domon, B. and Aebersold, R. (2006) Mass spectrometry and protein analysis. Science, 312, 212-217.
CrossRef Pubmed Google scholar
[127]
Zybailov, B. L., Florens, L. and Washburn, M. P. (2007) Quantitative shotgun proteomics using a protease with broad specificity and normalized spectral abundance factors. Mol. Biosyst., 3, 354-360.
CrossRef Pubmed Google scholar
[128]
Mueller, L. N., Rinner, O., Schmidt, A., Letarte, S., Bodenmiller, B., Brusniak, M. Y., Vitek, O., Aebersold, R. and Müller, M. (2007) SuperHirn - a novel tool for high resolution LC-MS-based peptide/protein profiling. Proteomics, 7, 3470-3480.
CrossRef Pubmed Google scholar
[129]
May, D., Fitzgibbon, M., Liu, Y., Holzman, T., Eng,J., Kemp, C. J., Whiteaker, J., Paulovich, A. and McIntosh, M. (2007) A platform for accurate mass and time analyses of mass spectrometry data. J. Proteome Res., 6, 2685-2694.
CrossRef Pubmed Google scholar
[130]
Lundgren, D. H., Hwang, S. I., Wu, L. and Han, D. K. (2010) Role of spectral counting in quantitative proteomics. Expert Rev. Proteomics, 7, 39-53.
CrossRef Pubmed Google scholar
[131]
Liu, H., Sadygov, R. G. and Yates, J. R. 3rd. (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem., 76, 4193-4201.
CrossRef Pubmed Google scholar
[132]
Kusunoki, M., Tsutsumi, K., Nakayama, M., Kurokawa, T., Nakamura, T., Ogawa, H., Fukuzawa, Y., Morishita, M., Koide, T. and Miyata, T. (2007) Relationship between serum concentrations of saturated fatty acids and unsaturated fatty acids and the homeostasis model insulin resistance index in Japanese patients with type 2 diabetes mellitus. J. Med. Invest., 54, 243-247.
CrossRef Pubmed Google scholar
[133]
Shaffer, J. P. (2007) Controlling the false discovery rate with constraints: the Newman-Keuls test revisited. Biom. J., 49, 136-143.
CrossRef Pubmed Google scholar
[134]
Peng, J., Schwartz, D., Elias, J. E., Thoreen, C. C., Cheng, D., Marsischky, G., Roelofs, J., Finley, D. and Gygi, S. P. (2003) A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol., 21, 921-926.
CrossRef Pubmed Google scholar
[135]
Ahdesmäki, M., Lähdesmäki, H., Pearson, R., Huttunen, H. and Yli-Harja, O. (2005) Robust detection of periodic time series measured from biological systems. BMC Bioinformatics, 6, 117.
CrossRef Pubmed Google scholar
[136]
Gygi, S. P., Rist,B., Gerber, S. A., Turecek, F., Gelb,M. H. and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol., 17, 994-999.
CrossRef Pubmed Google scholar
[137]
Washburn, M. P., Koller, A., Oshiro, G., Ulaszek, R. R., Plouffe, D., Deciu, C., Winzeler, E. and Yates, J. R. 3rd. (2003) Protein pathway and complex clustering of correlated mRNA and protein expression analyses in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA, 100, 3107-3112.
CrossRef Pubmed Google scholar
[138]
Ning, K., Fermin, D. and Nesvizhskii, A. I. (2012) Comparative analysis of different label-free mass spectrometry based protein abundance estimates and their correlation with RNA-Seq gene expression data. J. Proteome Res., 11, 2261-2271.
CrossRef Pubmed Google scholar
[139]
Lundberg, E., Fagerberg, L., Klevebring, D., Matic, I., Geiger, T., Cox, J., Algenäs, C., Lundeberg, J., Mann, M. and Uhlen, M. (2010) Defining the transcriptome and proteome in three functionally different human cell lines. Mol. Syst. Biol., 6, 450.
CrossRef Pubmed Google scholar
[140]
Kislinger, T., Cox,B., Kannan, A., Chung, C., Hu, P., Ignatchenko, A., Scott, M. S., Gramolini, A. O., Morris, Q., Hallett, M. T., (2006) Global survey of organ and organelle protein expression in mouse: combined proteomic and transcriptomic profiling. Cell, 125, 173-186.
CrossRef Pubmed Google scholar
[141]
Gry, M., Rimini, R., Strömberg, S., Asplund, A., Pontén, F., Uhlén, M. and Nilsson, P. (2009) Correlations between RNA and protein expression profiles in 23 human cell lines. BMC Genomics, 10, 365.
CrossRef Pubmed Google scholar
[142]
Greenbaum, D., Jansen, R. and Gerstein, M. (2002) Analysis of mRNA expression and protein abundance data: an approach for the comparison of the enrichment of features in the cellular population of proteins and transcripts. Bioinformatics, 18, 585-596.
CrossRef Pubmed Google scholar
[143]
Petricoin, E. F. III, Ardekani, A. M., Hitt, B. A., Levine, P. J., Fusaro, V. A., Steinberg, S. M., Mills, G. B., Simone, C., Fishman, D. A., Kohn, E. C., (2002) Use of proteomic patterns in serum to identify ovarian cancer. Lancet, 359, 572-577.
CrossRef Pubmed Google scholar
[144]
Nagaraj, N., Wisniewski, J. R., Geiger, T., Cox, J., Kircher, M., Kelso, J., Pääbo, S. and Mann, M. (2011) Deep proteome and transcriptome mapping of a human cancer cell line. Mol. Syst. Biol., 7, 548.
CrossRef Pubmed Google scholar
[145]
Guo, T., Fan,L., Ng, W. H., Zhu, Y., Ho, M., Wan, W. K., Lim,K. H., Ong, W. S., Lee, S. S., Huang, S., (2012) Multidimensional identification of tissue biomarkers of gastric cancer. J. Proteome Res., 11, 3405-3413.
[146]
Woolfson, A., Ellmark, P., Chrisp, J. S., A Scott, M. and Christopherson, R. I. (2006) The application of CD antigen proteomics to pharmacogenomics. Pharmacogenomics, 7, 759-771.
CrossRef Pubmed Google scholar
[147]
Griffin, N. M. and Schnitzer, J. E. (2011) Overcoming key technological challenges in using mass spectrometry for mapping cell surfaces in tissues. Mol. Cell. Proteomics, 10, R110.000935.
[148]
Suhre, K. and Gieger, C. (2012) Genetic variation in metabolic phenotypes: study designs and applications. Nat. Rev. Genet., 13, 759-769.
CrossRef Pubmed Google scholar
[149]
Theodoridis, G., Gika,H. G. and Wilson, I. D. (2011) Mass spectrometry-based holistic analytical approaches for metabolite profiling in systems biology studies. Mass Spectrom. Rev., 30, 884-906.
[150]
Psychogios, N., Hau,D. D., Peng, J., Guo, A. C., Mandal, R., Bouatra, S., Sinelnikov, I., Krishnamurthy, R., Eisner, R., Gautam, B., (2011) The human serum metabolome. PLoS ONE, 6, e16957.
CrossRef Pubmed Google scholar
[151]
Kanehisa, M. and Goto, S. (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 28, 27-30.
CrossRef Pubmed Google scholar
[152]
Wang, Y., Xiao,J., Suzek, T. O., Zhang, J., Wang,J., Zhou, Z., Han, L., Karapetyan, K., Dracheva, S., Shoemaker, B. A., (2012) PubChem’s BioAssay Database. Nucleic Acids Res., 40, D400-D412.
CrossRef Pubmed Google scholar
[153]
Caspi, R., Altman, T., Dreher, K., Fulcher, C. A., Subhraveti, P., Keseler, I. M., Kothari, A., Krummenacker, M., Latendresse, M., Mueller, L. A., (2012) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res., 40, D742-D753.
CrossRef Pubmed Google scholar
[154]
Tautenhahn, R., Cho,K., Uritboonthai, W., Zhu, Z., Patti, G. J. and Siuzdak, G. (2012) An accelerated workflow for untargeted metabolomics using the METLIN database. Nat. Biotechnol., 30, 826-828.
CrossRef Pubmed Google scholar
[155]
Sana, T. R., Roark, J. C., Li, X., Waddell, K. and Fischer, S. M. (2008) Molecular formula and METLIN Personal Metabolite Database matching applied to the identification of compounds generated by LC/TOF-MS. J. Biomol. Tech., 19, 258-266.
Pubmed
[156]
Smith, C. A., O’Maille, G., Want, E. J., Qin, C., Trauger, S. A., Brandon, T. R., Custodio, D. E., Abagyan, R. and Siuzdak, G. (2005) METLIN: a metabolite mass spectral database. Ther. Drug Monit., 27, 747-751.
CrossRef Pubmed Google scholar
[157]
Vastrik, I., D’Eustachio, P., Schmidt, E., Gopinath, G., Croft, D., de Bono, B., Gillespie, M., Jassal, B., Lewis, S., Matthews, L., (2007) Reactome: a knowledge base of biologic pathways and processes. Genome Biol., 8, R39.
CrossRef Pubmed Google scholar
[158]
Matthews, L., Gopinath, G., Gillespie, M., Caudy, M., Croft, D., de Bono, B., Garapati, P., Hemish, J., Hermjakob, H., Jassal, B., (2009) Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res., 37, D619-D622.
CrossRef Pubmed Google scholar
[159]
Matthews, L., D’Eustachio, P., Gillespie, M., Croft, D., de Bono, B., Gopinath, G., Jassal, B., Lewis, S., Schmidt, E., Vastrik, I., (2007) An introduction to the reactome knowledgebase of human biological pathways and processes. Bioinformatics Primer, NCI/Nature Pathway Interaction Database.
[160]
Joshi-Tope, G., Gillespie, M., Vastrik, I., D’Eustachio, P., Schmidt, E., de Bono, B., Jassal, B., Gopinath, G. R., Wu, G. R., Matthews, L., (2005) Reactome: a knowledgebase of biological pathways. Nucleic Acids Res., 33, D428-D432.
CrossRef Pubmed Google scholar
[161]
Croft, D., O’Kelly, G., Wu, G., Haw, R., Gillespie, M., Matthews, L., Caudy, M., Garapati, P., Gopinath, G., Jassal, B., (2011) Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res., 39, D691-D697.
CrossRef Pubmed Google scholar
[162]
Dumont, J., Huybrechts, I., Spinneker, A., Gottrand, F., Grammatikaki, E., Bevilacqua, N., Vyncke, K., Widhalm, K., Kafatos, A., Molnar, D., (2011) FADS1 genetic variability interacts with dietary α-linolenic acid intake to affect serum non-HDL-cholesterol concentrations in European adolescents. J. Nutr., 141, 1247-1253.
CrossRef Pubmed Google scholar
[163]
Lu, Y., Feskens, E. J., Dollé, M. E., Imholz, S., Verschuren, W. M., Müller, M. and Boer, J. M. (2010) Dietary n-3 and n-6 polyunsaturated fatty acid intake interacts with FADS1 genetic variation to affect total and HDL-cholesterol concentrations in the Doetinchem Cohort Study. Am. J. Clin. Nutr., 92, 258-265.
CrossRef Pubmed Google scholar
[164]
Serkova, N. J. and Glunde, K. (2009) Metabolomics of cancer. Methods Mol. Biol., 520, 273-295.
CrossRef Pubmed Google scholar
[165]
Griffin, J. L. and Shockcor, J. P. (2004) Metabolic profiles of cancer cells. Nat. Rev. Cancer, 4, 551-561.
CrossRef Pubmed Google scholar
[166]
Jain, M., Nilsson, R., Sharma, S., Madhusudhan, N., Kitami, T., Souza, A. L., Kafri, R., Kirschner, M. W., Clish, C. B. and Mootha, V. K. (2012) Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science, 336, 1040-1044.
CrossRef Pubmed Google scholar
[167]
Newgard, C. B. (2012) Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab., 15, 606-614.
CrossRef Pubmed Google scholar
[168]
Li, X., Gianoulis, T. A., Yip, K. Y., Gerstein, M. and Snyder, M. (2010) Extensive in vivo metabolite-protein interactions revealed by large-scale systematic analyses. Cell, 143, 639-650.
CrossRef Pubmed Google scholar
[169]
MacBeath, G. and Schreiber, S. L. (2000) Printing proteins as microarrays for high-throughput function determination. Science, 289, 1760-1763.
Pubmed
[170]
Haab, B. B., Dunham, M. J. and Brown, P. O. (2001) Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol., 2, RESEARCH0004.
[171]
Robinson, W. H., Steinman, L. and Utz, P. J. (2003) Protein arrays for autoantibody profiling and fine-specificity mapping. Proteomics, 3, 2077-2084.
CrossRef Pubmed Google scholar
[172]
Robinson, W. H., DiGennaro, C., Hueber, W., Haab, B. B., Kamachi, M., Dean, E. J., Fournel, S., Fong,D., Genovese, M. C., de Vegvar, H. E., (2002) Autoantigen microarrays for multiplex characterization of autoantibody responses. Nat. Med., 8, 295-301.
CrossRef Pubmed Google scholar
[173]
Sharon, D., Chen,R. and Snyder, M. (2010) Systems biology approaches to disease marker discovery. Dis. Markers, 28, 209-224.
Pubmed
[174]
Hudson, M. E., Pozdnyakova, I., Haines, K., Mor, G. and Snyder, M. (2007) Identification of differentially expressed proteins in ovarian cancer using high-density protein microarrays. Proc. Natl. Acad. Sci. USA, 104, 17494-17499.
CrossRef Pubmed Google scholar
[175]
Zhu, H., Hu,S., Jona, G., Zhu, X., Kreiswirth, N., Willey, B. M., Mazzulli, T., Liu, G., Song, Q., Chen,P., (2006) Severe acute respiratory syndrome diagnostics using a coronavirus protein microarray. Proc. Natl. Acad. Sci. USA, 103, 4011-4016.
CrossRef Pubmed Google scholar
[176]
Winer, D. A., Winer, S., Shen, L., Wadia, P. P., Yantha, J., Paltser, G., Tsui, H., Wu,P., Davidson, M. G., Alonso, M. N., (2011) B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat. Med., 17, 610-617.
CrossRef Pubmed Google scholar
[177]
Miersch, S. and LaBaer, J. (2011) Nucleic Acid programmable protein arrays: versatile tools for array-based functional protein studies. Curr. Protoc. Protein Sci., Chapter 27, Unit27.2.
[178]
Sibani, S. and LaBaer, J. (2011) Immunoprofiling using NAPPA protein microarrays. Methods Mol. Biol., 723, 149-161.
CrossRef Pubmed Google scholar
[179]
Andresen, H. and Bier, F. F. (2009) Peptide microarrays for serum antibody diagnostics. Methods Mol. Biol., 509, 123-134.
CrossRef Pubmed Google scholar
[180]
Andresen, H., Grötzinger, C., Zarse, K., Kreuzer, O. J., Ehrentreich-Förster, E. and Bier, F. F. (2006) Functional peptide microarrays for specific and sensitive antibody diagnostics. Proteomics, 6, 1376-1384.
CrossRef Pubmed Google scholar
[181]
Wong, S. J., Demarest, V. L., Boyle, R. H., Wang, T., Ledizet, M., Kar, K., Kramer, L. D., Fikrig, E. and Koski, R. A. (2004) Detection of human anti-flavivirus antibodies with a West Nile virus recombinant antigen microsphere immunoassay. J. Clin. Microbiol., 42, 65-72.
CrossRef Pubmed Google scholar
[182]
Weinstock, G. M. (2012) Genomic approaches to studying the human microbiota. Nature, 489, 250-256.
CrossRef Pubmed Google scholar
[183]
Clemente, J. C., Ursell, L. K., Parfrey, L. W. and Knight, R. (2012) The impact of the gut microbiota on human health: an integrative view. Cell, 148, 1258-1270.
CrossRef Pubmed Google scholar
[184]
Grice, E. A. and Segre, J. A. (2012) The human microbiome: our second genome. Annu. Rev. Genomics Hum. Genet., 13, 151-170.
CrossRef Pubmed Google scholar
[185]
Kuczynski, J., Lauber, C. L., Walters, W. A., Parfrey, L. W., Clemente, J. C., Gevers, D. and Knight, R. (2012) Experimental and analytical tools for studying the human microbiome. Nat. Rev. Genet., 13, 47-58.
CrossRef Pubmed Google scholar
[186]
Sonnenburg, J. L. and Fischbach, M. A. (2011) Community health care: therapeutic opportunities in the human microbiome. Sci. Transl. Med., 3, 78ps12.
CrossRef Pubmed Google scholar
[187]
Cho, I. and Blaser, M. J. (2012) The human microbiome: at the interface of health and disease. Nat. Rev. Genet., 13, 260-270.
Pubmed
[188]
Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R. and Gordon, J. I. (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444, 1027-1031.
CrossRef Pubmed Google scholar
[189]
Wen, L., Ley,R. E., Volchkov, P. Y., Stranges, P. B., Avanesyan, L., Stonebraker, A. C., Hu, C., Wong,F. S., Szot, G. L., Bluestone, J. A., (2008) Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature, 455, 1109-1113.
CrossRef Pubmed Google scholar
[190]
Qin, J., Li,Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., Shen,D., (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 490, 55-60.
CrossRef Pubmed Google scholar
[191]
Littman, D. R. and Pamer, E. G. (2011) Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe, 10, 311-323.
CrossRef Pubmed Google scholar
[192]
Pelizzola, M. and Ecker, J. R. (2011) The DNA methylome. FEBS Lett., 585, 1994-2000.
CrossRef Pubmed Google scholar
[193]
Jones, P. A. (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet., 13, 484-492.
CrossRef Pubmed Google scholar
[194]
Bock, C. (2012) Analysing and interpreting DNA methylation data. Nat. Rev. Genet., 13, 705-719.
CrossRef Pubmed Google scholar
[195]
Laird, P. W. (2010) Principles and challenges of genomewide DNA methylation analysis. Nat. Rev. Genet., 11, 191-203.
CrossRef Pubmed Google scholar
[196]
Li, Y., Zhu,J., Tian, G., Li, N., Li, Q., Ye, M., Zheng, H., Yu, J., Wu, H., Sun,J., (2010) The DNA methylome of human peripheral blood mononuclear cells. PLoS Biol., 8, e1000533.
CrossRef Pubmed Google scholar
[197]
Lister, R., Pelizzola, M., Kida, Y. S., Hawkins, R. D., Nery,J. R., Hon, G., Antosiewicz-Bourget, J., O’Malley, R., Castanon, R., Klugman, S., (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature, 471, 68-73.
CrossRef Pubmed Google scholar
[198]
Green,E. D., Guyer, M. S.. and National Human Genome Research Institute. (2011) Charting a course for genomic medicine from base pairs to bedside. Nature, 470, 204-213.
CrossRef Pubmed Google scholar
[199]
Moch, H., Blank, P. R., Dietel, M., Elmberger, G., Kerr,K. M., Palacios, J., Penault-Llorca, F., Rossi, G. and Szucs, T. D. (2012) Personalized cancer medicine and the future of pathology. Virchows Archiv: an International Journal of Pathology, 460, 3-8.
[200]
Tsimberidou, A. M., Iskander, N. G., Hong, D. S., Wheler, J. J., Falchook, G. S., Fu, S., Piha-Paul, S. A., Naing, A., Janku, F., Luthra, R., (2012) Personalized medicine in a phase I clinical trials program: the MD Anderson Cancer Center Initiative. Clin. Cancer Res., 18, 6373-6383.
[201]
Parkinson, D. R., Johnson, B. E. and Sledge, G. W. (2012) Making personalized cancer medicine a reality: challenges and opportunities in the development of biomarkers and companion diagnostics. Clin. Cancer Res., 18, 619-624.
CrossRef Pubmed Google scholar
[202]
Modugno, F. and Edwards, R. P. (2012) Ovarian cancer: prevention, detection, and treatment of the disease and its recurrence. Molecular mechanisms and personalized medicine meeting report. Int. J. Gynecol. Cancer, 22, S45-S57.
[203]
Cho, S. H., Jeon,J. and Kim, S. I. (2012) Personalized medicine in breast cancer: a systematic review. J. Breast Cancer, 15, 265-272.
[204]
Roychowdhury, S., Iyer, M. K., Robinson, D. R., Lonigro, R. J., Wu,Y. M., Cao, X., Kalyana-Sundaram, S., Sam, L., Balbin, O. A., Quist, M. J., (2011) Personalized oncology through integrative high-throughput sequencing: a pilot study. Sci. Transl. Med., 3, 111ra121.
[205]
Bar-Joseph, Z., Gitter, A. and Simon, I. (2012) Studying and modelling dynamic biological processes using time-series gene expression data. Nat. Rev. Genet., 13, 552-564.
CrossRef Pubmed Google scholar
[206]
Dennis, G. Jr, Sherman, B. T., Hosack, D. A., Yang, J., Gao,W., Lane, H. C. and Lempicki, R. A. (2003) DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol., 4, P3.
CrossRef Pubmed Google scholar
[207]
Smoot, M. E., Ono,K., Ruscheinski, J., Wang, P. L. and Ideker, T. (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics, 27, 431-432.
CrossRef Pubmed Google scholar
[208]
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang,J. T., Ramage, D., Amin, N., Schwikowski, B. and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 13, 2498-2504.
CrossRef Pubmed Google scholar
[209]
Maere, S., Heymans, K. and Kuiper, M. (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics, 21, 3448-3449.
CrossRef Pubmed Google scholar
[210]
Cline, M. S., Smoot, M., Cerami, E., Kuchinsky, A., Landys, N., Workman, C., Christmas, R., Avila-Campilo, I., Creech, M., Gross, B., (2007) Integration of biological networks and gene expression data using Cytoscape. Nat. Protoc., 2, 2366-2382.
CrossRef Pubmed Google scholar
[211]
Lam, H. Y., Pan,C., Clark, M. J., Lacroute, P., Chen,R., Haraksingh, R., O’Huallachain, M., Gerstein, M. B., Kidd,J. M., Bustamante, C. D., (2012) Detecting and annotating genetic variations using the HugeSeq pipeline. Nat. Biotechnol., 30, 226-229.
CrossRef Pubmed Google scholar
[212]
Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S. J. and Marra, M. A. (2009) Circos: an information aesthetic for comparative genomics. Genome Res., 19, 1639-1645.
CrossRef Pubmed Google scholar
[213]
Dorogovtsev, S. N., Goltsev, A. V. and Mendes, J. F. F. (2008) Critical phenomena in complex networks. Rev. Mod. Phys., 80, 1275-1335.
CrossRef Google scholar
[214]
Albert, R. and Barabasi, A. L. (2002) Statistical mechanics of complex networks. Rev. Mod. Phys., 74, 47-97.
CrossRef Google scholar
[215]
Alon, U. (2003) Biological networks: the tinkerer as an engineer. Science, 301, 1866-1867.
CrossRef Pubmed Google scholar
[216]
Costa, L. F., Rodrigues, F. A. and Cristino, A. S. (2008) Complex networks: the key to systems biology. Genet. Mol. Biol., 31, 591-601.
CrossRef Google scholar
[217]
Levy, E. D. and Pereira-Leal, J. B. (2008) Evolution and dynamics of protein interactions and networks. Curr. Opin. Struct. Biol., 18, 349-357.
CrossRef Pubmed Google scholar
[218]
Schadt, E. E., Linderman, M. D., Sorenson, J., Lee, L. and Nolan, G. P. (2011) Cloud and heterogeneous computing solutions exist today for the emerging big data problems in biology. Nat. Rev. Genet., 12, 224, 10.1038/nrg2857-c2.
CrossRef Pubmed Google scholar
[219]
Trelles, O., Prins, P., Snir, M. and Jansen, R. C. (2011) Big data, but are we ready? Nat. Rev. Genet., 12, 224, 10.1038/nrg2857-c1.
CrossRef Pubmed Google scholar
[220]
Biesecker, L. G. (2012) Opportunities and challenges for the integration of massively parallel genomic sequencing into clinical practice: lessons from the ClinSeq project. Genet. Med., 14, 393-398.
[221]
Li, R., Li,Y., Kristiansen, K. and Wang, J. (2008) SOAP: short oligonucleotide alignment program. Bioinformatics, 24, 713-714.
CrossRef Pubmed Google scholar
[222]
Li, H. and Durbin, R. (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25, 1754-1760.
CrossRef Pubmed Google scholar
[223]
McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res., 20, 1297-1303.
CrossRef Pubmed Google scholar
[224]
Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R. and 1000 Genome Project Data Processing Subgroup. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25, 2078-2079.
CrossRef Pubmed Google scholar
[225]
Wang, K., Li,M. and Hakonarson, H. (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res., 38, e164.
CrossRef Pubmed Google scholar
[226]
Ng, P. C. and Henikoff, S. (2003) SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res., 31, 3812-3814.
CrossRef Pubmed Google scholar
[227]
Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., Kondrashov, A. S. and Sunyaev, S. R. (2010) A method and server for predicting damaging missense mutations. Nat. Methods, 7, 248-249.
CrossRef Pubmed Google scholar
[228]
Flanagan, S. E., Patch, A. M. and Ellard, S. (2010) Using SIFT and PolyPhen to predict loss-of-function and gain-of-function mutations. Genet. Test. Mol. Biomarkers, 14, 533-537.
[229]
Abyzov, A., Urban, A. E., Snyder, M. and Gerstein, M. (2011) CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res., 21, 974-984.
CrossRef Pubmed Google scholar
[230]
Wang, L. Y., Abyzov, A., Korbel, J. O., Snyder, M. and Gerstein, M. (2009) MSB: a mean-shift-based approach for the analysis of structural variation in the genome. Genome Res., 19, 106-117.
CrossRef Pubmed Google scholar
[231]
Ye, K., Schulz, M. H., Long, Q., Apweiler, R. and Ning, Z. (2009) Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics, 25, 2865-2871.
CrossRef Pubmed Google scholar
[232]
Lam, H. Y., Mu,X. J., Stütz, A. M., Tanzer, A., Cayting, P. D., Snyder, M., Kim, P. M., Korbel, J. O. and Gerstein, M. B. (2010) Nucleotide-resolution analysis of structural variants using BreakSeq and a breakpoint library. Nat. Biotechnol., 28, 47-55.
CrossRef Pubmed Google scholar
[233]
Rausch, T., Zichner, T., Schlattl, A., Stütz, A. M., Benes, V. and Korbel, J. O. (2012) DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics, 28, i333-i339.
CrossRef Pubmed Google scholar
[234]
Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., Ge, Y., Gentry, J., (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol., 5, R80.
CrossRef Pubmed Google scholar
[235]
Langmead, B., Trapnell, C., Pop, M. and Salzberg, S. L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol., 10, R25.
CrossRef Pubmed Google scholar
[236]
Langmead, B. and Salzberg, S. L. (2012) Fast gapped-read alignment with Bowtie 2. Nat. Methods, 9, 357-359.
CrossRef Pubmed Google scholar
[237]
Langmead, B. (2010) Aligning short sequencing reads with Bowtie. Curr. Protoc. Bioinformatics, Chapter 11, Unit 11.7.
[238]
Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim,D., Kelley, D. R., Pimentel, H., Salzberg, S. L., Rinn, J. L. and Pachter, L. (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc., 7, 562-578.
CrossRef Pubmed Google scholar
[239]
Trapnell, C., Pachter, L. and Salzberg, S. L. (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics, 25, 1105-1111.
CrossRef Pubmed Google scholar
[240]
Roberts, A., Pimentel, H., Trapnell, C. and Pachter, L. (2011) Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics, 27, 2325-2329.
CrossRef Pubmed Google scholar
[241]
Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan,G., van Baren, M. J., Salzberg, S. L., Wold,B. J. and Pachter, L. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol., 28, 511-515.
CrossRef Pubmed Google scholar
[242]
Reich, M., Liefeld, T., Gould, J., Lerner, J., Tamayo, P. and Mesirov, J. P. (2006) GenePattern 2.0. Nat. Genet., 38, 500-501.
CrossRef Pubmed Google scholar
[243]
Kuehn, H., Liberzon, A., Reich, M. and Mesirov, J. P. (2008) Using GenePattern for gene expression analysis. Curr. Protoc. Bioinformatics, Chapter 7, Unit 7.12.
[244]
Guttman, M., Garber, M., Levin, J. Z., Donaghey, J., Robinson, J., Adiconis, X., Fan, L., Koziol, M. J., Gnirke, A., Nusbaum, C., (2010) Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat. Biotechnol., 28, 503-510.
CrossRef Pubmed Google scholar
[245]
Anders, S. and Huber, W. (2010) Differential expression analysis for sequence count data. Genome Biol., 11, R106.
CrossRef Pubmed Google scholar
[246]
Li, J. W., Schmieder, R., Ward, R. M., Delenick, J., Olivares, E. C. and Mittelman, D. (2012) SEQanswers: an open access community for collaboratively decoding genomes. Bioinformatics, 28, 1272-1273.
CrossRef Pubmed Google scholar
[247]
Martens, L., Chambers, M., Sturm, M., Kessner, D., Levander, F., Shofstahl, J., Tang, W. H., Rompp, A., Neumann, S., Pizarro, A. D., (2011) mzML - a community standard for mass spectrometry data. Mol. Cell. Proteomics, 10, R110.000133.
[248]
Deutsch, E. W. (2010) Mass spectrometer output file format mzML. Methods Mol. Biol., 604, 319-331.
CrossRef Pubmed Google scholar
[249]
Deutsch, E. (2008) mzML: a single, unifying data format for mass spectrometer output. Proteomics, 8, 2776-2777.
CrossRef Pubmed Google scholar
[250]
Kessner, D., Chambers, M., Burke, R., Agus, D. and Mallick, P. (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics, 24, 2534-2536.
CrossRef Pubmed Google scholar
[251]
Craig, R. and Beavis, R. C. (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics, 20, 1466-1467.
CrossRef Pubmed Google scholar
[252]
Eng, J. K., McCormack, A. L. and Yates, J. R. III. (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom., 5, 976-989.
CrossRef Google scholar
[253]
Perkins, D. N., Pappin, D. J., Creasy, D. M. and Cottrell, J. S. (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, 20, 3551-3567.
CrossRef Pubmed Google scholar
[254]
Geer, L. Y., Markey, S. P., Kowalak, J. A., Wagner, L., Xu,M., Maynard, D. M., Yang, X., Shi,W. and Bryant, S. H. (2004) Open mass spectrometry search algorithm. J. Proteome Res., 3, 958-964.
CrossRef Pubmed Google scholar
[255]
Peng, J., Elias, J. E., Thoreen, C. C., Licklider, L. J. and Gygi, S. P. (2003) Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. J. Proteome Res., 2, 43-50.
CrossRef Pubmed Google scholar
[256]
Elias, J. E., Gibbons, F. D., King, O. D., Roth, F. P. and Gygi, S. P. (2004) Intensity-based protein identification by machine learning from a library of tandem mass spectra. Nat. Biotechnol., 22, 214-219.
CrossRef Pubmed Google scholar
[257]
Zhang, J., Xin,L., Shan, B., Chen, W., Xie, M., Yuen, D., Zhang, W., Zhang, Z., Lajoie, G. A. and Ma, B. (2012) PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Mol. Cell. Proteomics, 11, M111.010587.
[258]
Pedrioli, P. G. (2010) Trans-proteomic pipeline: a pipeline for proteomic analysis. Methods Mol. Biol., 604, 213-238.
CrossRef Pubmed Google scholar
[259]
Keller, A. and Shteynberg, D. (2011) Software pipeline and data analysis for MS/MS proteomics: the trans-proteomic pipeline. Methods Mol. Biol., 694, 169-189.
CrossRef Pubmed Google scholar
[260]
Deutsch, E. W., Shteynberg, D., Lam, H., Sun, Z., Eng,J. K., Carapito, C., von Haller, P. D., Tasman, N., Mendoza, L., Farrah, T., (2010) Trans-Proteomic Pipeline supports and improves analysis of electron transfer dissociation data sets. Proteomics, 10, 1190-1195.
CrossRef Pubmed Google scholar
[261]
Deutsch, E. W., Mendoza, L., Shteynberg, D., Farrah, T., Lam,H., Tasman, N., Sun, Z., Nilsson, E., Pratt, B., Prazen, B., (2010) A guided tour of the Trans-Proteomic Pipeline. Proteomics, 10, 1150-1159.
CrossRef Pubmed Google scholar
[262]
Sturm, M., Bertsch, A., Gröpl, C., Hildebrandt, A., Hussong, R., Lange, E., Pfeifer, N., Schulz-Trieglaff, O., Zerck, A., Reinert, K., (2008) OpenMS - an open-source software framework for mass spectrometry. BMC Bioinformatics, 9, 163.
CrossRef Pubmed Google scholar
[263]
Kohlbacher, O., Reinert, K., Gröpl, C., Lange, E., Pfeifer, N., Schulz-Trieglaff,O. and Sturm, M. (2007) TOPP — the OpenMS proteomics pipeline. Bioinformatics, 23, e191-e197.
CrossRef Pubmed Google scholar
[264]
Bertsch, A., Gröpl, C., Reinert, K. and Kohlbacher, O. (2011) OpenMS and TOPP: open source software for LC-MS data analysis. Methods Mol. Biol., 696, 353-367.
CrossRef Pubmed Google scholar
[265]
Tautenhahn, R., Patti, G. J., Kalisiak, E., Miyamoto, T., Schmidt, M., Lo, F. Y., McBee, J., Baliga, N. S. and Siuzdak, G. (2011) metaXCMS: second-order analysis of untargeted metabolomics data. Anal. Chem., 83, 696-700.
CrossRef Pubmed Google scholar
[266]
Tautenhahn, R., Patti, G. J., Rinehart, D. and Siuzdak, G. (2012) XCMS Online: a web-based platform to process untargeted metabolomic data. Anal. Chem., 84, 5035-5039.
CrossRef Pubmed Google scholar
[267]
Smith, C. A., Want,E. J., O’Maille, G., Abagyan, R. and Siuzdak, G. (2006) XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem., 78, 779-787.
CrossRef Pubmed Google scholar
[268]
Pluskal, T., Castillo, S., Villar-Briones, A. and Oresic, M. (2010) MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11, 395.
CrossRef Pubmed Google scholar
[269]
Katajamaa, M., Miettinen, J. and Oresic, M. (2006) MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics, 22, 634-636.
CrossRef Pubmed Google scholar
[270]
Caspi, R., Foerster, H., Fulcher, C. A., Kaipa, P., Krummenacker, M., Latendresse, M., Paley, S., Rhee,S. Y., Shearer, A. G., Tissier, C., (2008) The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Res., 36, D623-D631.
CrossRef Pubmed Google scholar
[271]
Caspi, R., Altman, T., Dale, J. M., Dreher, K., Fulcher, C. A., Gilham, F., Kaipa, P., Karthikeyan, A. S., Kothari, A., Krummenacker, M., (2010) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res., 38, D473-D479.
CrossRef Pubmed Google scholar
[272]
Huang, D. W., Sherman, B. T. and Lempicki, R. A. (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc., 4, 44-57.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(800 KB)

Accesses

Citations

Detail

Sections
Recommended

/