Deterministic modelling of asymptomatic spread and disease stage progression in vaccine preventable infectious diseases

Gabor Kiss, Salissou Moutari, Cara Mctaggart, Lynsey Patterson, Frank Kee, Felicity Lamrock

PDF(1592 KB)
PDF(1592 KB)
Quant. Biol. ›› 2024, Vol. 12 ›› Issue (4) : 400-413. DOI: 10.1002/qub2.50
RESEARCH ARTICLE

Deterministic modelling of asymptomatic spread and disease stage progression in vaccine preventable infectious diseases

Author information +
History +

Abstract

This study introduces a deterministic formulation for modelling the asymptotic spread of a vaccine preventable disease as well as the different stages for the progression of the disease. We derive the formula for the associated basic reproduction number. To illustrate the proposed model, we use data from the 2017–2018 diphtheria outbreak in Yemen and fit the parameters of the model. A sensitivity analysis of the basic reproduction number, with respect to the model parameters, show that this number increases with an increase of the transmission rate while this number decreases when vaccination rate increases.

Cite this article

Download citation ▾
Gabor Kiss, Salissou Moutari, Cara Mctaggart, Lynsey Patterson, Frank Kee, Felicity Lamrock. Deterministic modelling of asymptomatic spread and disease stage progression in vaccine preventable infectious diseases. Quant. Biol., 2024, 12(4): 400‒413 https://doi.org/10.1002/qub2.50

References

[1]
Dietz K , Heesterbeek JAP . Daniel Bernoulli’s epidemiological model revisited. Math Biosci. 2002; 180 (1‐2): 1- 21.
[2]
Bernoulli D . Essai d’une nouvelle analyse de la mortalité causée par la petite vérole, et des avantages de l’inoculation pour la prévenir. Histoire de l’Acad., Roy. Sci. (Paris) avec Mem. 1760: 1- 45.
[3]
Bacaër N , Bernoulli D . d’Alembert and the inoculation of smallpox (1760). London: Springer; 2011. p. 21- 30.
[4]
Brauer F , Van den Driessche P , Wu J , Allen LJS . Mathematical epidemiology, 1945. Springer; 2008.
[5]
Murray JD . Mathematical biology: I. An introduction. Springer; 2002.
[6]
Martcheva M . An introduction to mathematical epidemiology, 61. Springer; 2015.
[7]
Viruses . Topical collection “mathematical modeling of viral infection”. 2020.
[8]
Kermack WO , McKendrick AG . A contribution to the mathematical theory of epidemics. Proc R Soc Lond A Math Phys Sci. 1927; 115 (772): 700- 21.
[9]
Hall PA , Kiss G , Kuhn T , Moutari S , Patterson E , Smith E . Mathematical modelling of the COVID-19 epidemic in Northern Ireland in 2020. Open J Model Simulat. 2021; 9 (2): 91- 110.
[10]
Hall PA , Kiss G , Kuhn T , Moutari S , Patterson E , Smith E . Estimating the level of asymptomatic COVID-19 infections in Northern Ireland in 2020. Open J Model Simulat. 2022; 10 (2): 190- 218.
[11]
Van den Driessche P , Watmough J . Reproduction numbers and sub‐threshold endemic equilibria for compartmental models of disease transmission. Math Biosci. 2002; 180 (1‐2): 29- 48.
[12]
Moghalles SA , Aboasba BA , Alamad MA , Khader YS . Epidemiology of diphtheria in Yemen, 2017-2018: surveillance data analysis. JMIR Public Health Surveill. 2021; 7 (6): e27590.
[13]
Truelove SA , Keegan LT , Moss WJ , Chaisson LH , Macher E , Azman AS , et al. Clinical and epidemiological aspects of diphtheria: a systematic review and pooled analysis. Clin Infect Dis. 2020; 71 (1): 89- 97.
[14]
Diphtheria . Available at the website of NHS.
[15]
Yemen . Yemen birth rate 1950-2023. Available at the website of Macrotrends.
[16]
Hartman P . Ordinary differential equations. 2nd ed. Boston: Birkhäuser; 1982.
[17]
Diekmann O , Heesterbeek JAP , Roberts MG . The construction of next-generation matrices for compartmental epidemic models. J R Soc Interface. 2010; 7 (47): 873- 85.
[18]
Diphtheria: causes and how it spreads. Available at the website of CDC in US. 2022.
[19]
Clinical information. Available at the website of CDC in US. 2022.
[20]
Diphtheria vaccination. Available at the website of CDC in US. 2022.
[21]
Diphtheria. Available at the website of World Health Organization.
[22]
About diphtheria, tetanus, and pertussis vaccination. Available at the website of CDC in US. 2022.
[23]
Yemen: 2018 humanitarian needs overview ‐ Yemen. Available at the website of reliefweb. 2017.
[24]
UN Office for the Coordination of Humanitarian Affairs. Yemen humanitarian update, covering 12-18 February 2018.
[25]
United Nations, Department of Economic and Social Affairs, Population Division, Online Edition. World population prospects. 2022.
[26]
Macrotrends LLC . Ibb, Yemen metro area population 1950-2023. Available at the website of Macrotrends. 2023.
[27]
Macrotrends LLC . Al‐Hudaydah, Yemen metro area population 1950-2023. Available at the website of Macrotrends. 2023.
[28]
Dureab F , Al-Sakkaf M , Ismail O , Kuunibe N , Krisam J , Müller O , et al. Diphtheria outbreak in Yemen: the impact of conflict on a fragile health system. Conflict Health. 2019; 13 (1): 1- 7.
[29]
MATLAB . Version 9.13.0.2166757 (R2022b). Natick: The MathWorks Inc.; 2020.
[30]
Efron B , Tibshirani R . Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci. 1986: 54- 75.
[31]
McKay MD , Beckman RJ , Conover WJ . A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics. 2000; 42 (1): 55- 61.
[32]
Partial correlation coefficients. Available at the website of search. r‐project.
[33]
Tiemersma EW , van der Werf MJ , Borgdorff MW , Williams BG , Nagelkerke NJD . Natural history of tuberculosis: duration and fatality of untreated pulmonary tuberculosis in HIV negative patients: a systematic review. PLoS One. 2011; 6 (4): e17601.
[34]
Hyman JM , Jia L , Stanley EA . The differential infectivity and staged progression models for the transmission of HIV. Math Biosci. 1999; 155 (2): 77- 109.
[35]
Opoku-Sarkodie R , Bartha FA , Polner M , Röst G . Dynamics of an SIRWS model with waning of immunity and varying immune boosting period. J Biol Dynam. 2022; 16 (1): 596- 618.
[36]
Carlsson R-M , Childs LM , Feng Z , Glasser JW , Heffernan JM , Li J , et al. Modeling the waning and boosting of immunity from infection or vaccination. J Theor Biol. 2020; 497: 110265.
[37]
Inaba H . Age‐structured population dynamics in demography and epidemiology. Springer; 2017.
[38]
Cushing JM . An introduction to structured population dynamics. SIAM; 1998.
[39]
Julien A . Spatio-temporal spread of infectious pathogens of humans. Infect Dis Model. 2017; 2 (2): 218- 28.
[40]
Rass L , Radcliffe J . Spatial deterministic epidemics. American Mathematical Soc.; 2003.
[41]
Diekmann O , Heesterbeek JAP , Metz JAJ . The legacy of Kermack and McKendrick. Issue 5 of Publications of the Newton Institute, Volume 5 of Publications of the Newton Institute: Isaac Newton Institute for Mathematical Sciences. In: Mollison D, editor. Epidemic models: their structure and relation to data, 5. Cambridge University Press; 1995. p. 424.

RIGHTS & PERMISSIONS

2024 2024 The Author(s). Quantitative Biology published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.
AI Summary AI Mindmap
PDF(1592 KB)

Accesses

Citations

Detail

Sections
Recommended

/