Role of ACLY in the development of gastric cancer under hyperglycemic conditions

Keran Sun , Jingyuan Ning , Keqi Jia , Xiaoqing Fan , Hongru Li , Jize Ma , Meiqi Meng , Cuiqing Ma , Lin Wei

Quant. Biol. ›› 2024, Vol. 12 ›› Issue (1) : 100 -116.

PDF (2873KB)
Quant. Biol. ›› 2024, Vol. 12 ›› Issue (1) : 100 -116. DOI: 10.1002/qub2.36
RESEARCH ARTICLE

Role of ACLY in the development of gastric cancer under hyperglycemic conditions

Author information +
History +
PDF (2873KB)

Abstract

To investigate the impact of hyperglycemia on the prognosis of patients with gastric cancer and identify key molecules associated with high glucose levels in gastric cancer development, RNA sequencing data and clinical features of gastric cancer patients were obtained from The Cancer Genome Atlas (TCGA) database. High glucose-related genes strongly associated with gastric cancer were identified using weighted gene co-expression network and differential analyses. A gastric cancer prognosis signature was constructed based on these genes and patients were categorized into high- and low-risk groups. The immune statuses of the two patient groups were compared. ATP citrate lyase (ACLY), a gene significantly related to the prognosis, was found to be upregulated upon high-glucose stimulation. Immunohistochemistry and molecular analyses confirmed high ACLY expression in gastric cancer tissues and cells. Gene Set Enrichment Analysis (GSEA) revealed the involvement of ACLY in cell cycle and DNA replication processes. Inhibition of ACLY affected the proliferation and migration of gastric cancer cells induced by high glucose levels. These findings suggest that ACLY, as a high glucose-related gene, plays a critical role in gastric cancer progression.

Keywords

ACLY / gastric cancer / high glucose / immune microenvironment

Cite this article

Download citation ▾
Keran Sun, Jingyuan Ning, Keqi Jia, Xiaoqing Fan, Hongru Li, Jize Ma, Meiqi Meng, Cuiqing Ma, Lin Wei. Role of ACLY in the development of gastric cancer under hyperglycemic conditions. Quant. Biol., 2024, 12(1): 100-116 DOI:10.1002/qub2.36

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

[2]

Rawla P, Barsouk A. Epidemiology of gastric cancer: global trends, risk factors and prevention. Przeglad Gastroenterol. 2019;14(1):26–38.

[3]

Du S, Li Y, Su Z, Shi X, Johnson NL, Li P, et al. Index-based dietary patterns in relation to gastric cancer risk: a systematic review and meta-analysis. Br J Nutr. 2020;123(9):964–74.

[4]

Tian T, Zhang LQ, Ma XH, Zhou JN, Shen J. Diabetes mellitus and incidence and mortality of gastric cancer: a meta-analysis. Exp Clin Endocrinol Diabetes Off J Ger Soc Endocrinol Ger Diabetes Assoc. 2012;120(04):217–23.

[5]

Yoon JM. Pre-existing diabetes mellitus increases the risk of gastric cancer: a meta-analysis. World J Gastroenterol. 2013;19(6):936.

[6]

Chocarro-Calvo A, García-Martínez JM, Ardila-González S, De la Vieja A, García-Jiménez C. Glucose-induced β-catenin acetylation enhances Wnt signaling in cancer. Mol Cell. 2013;49(3):474–86.

[7]

Yang H.-J, Kang D, Chang Y, Ahn J, Ryu S, Cho J, et al. Diabetes mellitus is associated with an increased risk of gastric cancer: a cohort study. Gastric Cancer. 2020;23(3):382–90.

[8]

Tseng C.-H. Diabetes and gastric cancer: the potential links. World J Gastroenterol. 2014;20(7):1701.

[9]

Tseng C.-H. The relationship between diabetes mellitus and gastric cancer and the potential benefits of metformin: an extensive review of the literature. Biomolecules. 2021;11(7):1022.

[10]

Tseng C.-H. Diabetes conveys a higher risk of gastric cancer mortality despite an age-standardised decreasing trend in the general population in Taiwan. Gut. 2011;60(6):774–9.

[11]

Wieser V, Moschen AR, Tilg H. Inflammation, cytokines and insulin resistance: a clinical perspective. Arch Immunol Ther Exp (Warsz). 2013;61(2):119–25.

[12]

Katoh M. Dysregulation of stem cell signaling network due to germline mutation, SNP, Helicobacter pylori infection, epigenetic change and genetic alteration in gastric cancer. Cancer Biol Ther. 2007;6:832–9.

[13]

Yoshizawa N, Yamaguchi H, Yamamoto M, Shimizu N, Furihata C, Tatematsu M, et al. Gastric carcinogenesis by N-Methyl-N-nitrosourea is enhanced in db/db diabetic mice. Cancer Sci. 2009;100(7):1180–5.

[14]

Lorenzi M, Montisano DF, Toledo S, Barrieux A. High glucose induces DNA damage in cultured human endothelial cells. J Clin Invest. 1986;77(1):322–5.

[15]

Mahdy RA, Nada WM. Evaluation of the role of vascular endothelial growth factor in diabetic retinopathy. Ophthalmic Res. 2011;45(2):87–91.

[16]

Ma RCW. Epidemiology of diabetes and diabetic complications in China. Diabetologia. 2018;61(6):1249–60.

[17]

Li C, Zhang L, Qiu Z, Deng W, Wang W. Key molecules of fatty acid metabolism in gastric cancer. Biomolecules. 2022;12(5):706.

[18]

Yang S, Zou X, Li J, Yang H, Zhang A, Zhu Y, et al. Immunoregulation and clinical significance of neutrophils/NETs- ANGPT2 in tumor microenvironment of gastric cancer. Front Immunol. 2022;13:1010434.

[19]

Piao H.-Y, Guo S, Jin H, Wang Y, Zhang J. LINC00184 involved in the regulatory network of ANGPT2 via ceRNA mediated miR-145 inhibition in gastric cancer. J Cancer. 2021;12(8):2336–50.

[20]

Pan Y.-M, Wang C.-G, Zhu M, Xing R, Cui J.-T, Li W.-M, et al. STAT3 signaling drives EZH2 transcriptional activation and mediates poor prognosis in gastric cancer. Mol Cancer. 2016;15(1):79.

[21]

Yu W, Liu N, Song X, Chen L, Wang M, Xiao G, et al. EZH2: an accomplice of gastric cancer. Cancers. 2023;15(2):425.

[22]

Higashimori A, Dong Y, Zhang Y, Kang W, Nakatsu G, Ng SSM, et al. Forkhead box F2 suppresses gastric cancer through a novel FOXF2-IRF2BPL-β-catenin signaling Axis. Cancer Res. 2018;78(7):1643–56.

[23]

Pero SC, Oligino L, Daly RJ, Soden AL, Liu C, Roller PP, et al. Identification of novel non-phosphorylated ligands, which bind selectively to the SH2 domain of Grb7. J Biol Chem. 2002;277(14):11918–26.

[24]

Wang Y, Wang S, Yang Q, Li J, Yu F, Zhao E. Norepinephrine enhances aerobic glycolysis and may act as a predictive factor for immunotherapy in gastric cancer. J Immunol Res. 2021:5580672.

[25]

Zhao J, Du P, Cui P, Qin Y, Hu C, Wu J, et al. LncRNA PVT1 promotes angiogenesis via activating the STAT3/VEGFA axis in gastric cancer. Oncogene. 2018;37(30):4094–109.

[26]

Chen W, Fan D, Guo B, Liu S, Li Z, Duan J, et al. The role of lncRNA PVT1 and hsa-miR-30a-3p in the development of gastric cancer. Ann Clin Lab Sci. 2022;52:292–300.

[27]

Lv H, Zhou D, Liu G. PVT1/miR-16/CCND1 axis regulates gastric cancer progression. Open Med Wars Pol. 2023;18(1):20220550.

[28]

Aponte-López A, Muñoz-Cruz S. Mast cells in the tumor microenvironment. Adv Exp Med Biol. 2020;1273:159–73.

[29]

Sammarco G, Varricchi G, Ferraro V, Ammendola M, De Fazio M, Altomare DF, et al. Mast cells, angiogenesis and lymphangiogenesis in human gastric cancer. Int J Mol Sci. 2019;20(9):2106.

[30]

Chang W.-J, Du Y, Zhao X, Ma L.-Y, Cao G.-W. Inflammation-related factors predicting prognosis of gastric cancer. World J Gastroenterol. 2014;20(16):4586–96.

[31]

Huang S, Ma L, Lan B, Liu N, Nong W, Huang Z. Comprehensive analysis of prognostic genes in gastric cancer. Aging. 2021;13(20):23637–51.

[32]

Wang M, Li Z, Peng Y, Fang J, Fang T, Wu J, et al. Identification of immune cells and mRNA associated with prognosis of gastric cancer. BMC Cancer. 2020;20(1):206.

[33]

Dai S, Liu T, Liu X.-Q, Li X.-Y, Xu K, Ren T, et al. Identification of an immune-related signature predicting survival risk and immune microenvironment in gastric cancer. Front Cell Dev Biol. 2021;9:687473.

[34]

Zhou Y, Yu K. Th1, Th2, and Th17 cells and their corresponding cytokines are associated with anxiety, depression, and cognitive impairment in elderly gastric cancer patients. Front Surg. 2022;9:996680.

[35]

Goulitquer S, Croyal M, Lalande J, Royer A.-L, Guitton Y, Arzur D, et al. Consequences of blunting the mevalonate pathway in cancer identified by a pluri-omics approach. Cell Death Dis. 2018;9(7):745.

[36]

Zheng X, Wang X, Zheng L, Zhao H, Li W, Wang B, et al. Construction and analysis of the tumor-specific mRNA-miRNAlncRNA network in gastric cancer. Front Pharmacol. 2020;11:1112.

[37]

Cheng Y, Jia B, Wang Y, Wan S. miR-133b acts as a tumor suppressor and negatively regulates ATP citrate lyase via PPARγ in gastric cancer. Oncol Rep. 2017;38(5):3220–6.

[38]

Liu W, Wang Q, Chang J. Global metabolomic profiling of trastuzumab resistant gastric cancer cells reveals major metabolic pathways and metabolic signatures based on UHPLC-Q exactive-MS/MS. RSC Adv. 2019;9(70):41192–208.

[39]

Cao Y, Sun Y, Zou S, Li M, Xu X. Orally administered baker’s yeast β-glucan promotes glucose and lipid homeostasis in the livers of obesity and diabetes model mice. J Agric Food Chem. 2017;65(44):9665–74.

[40]

Bradshaw PC. Acetyl-CoA metabolism and histone acetylation in the regulation of aging and lifespan. Antioxid Basel Switz. 2021;10(4):572.

[41]

Hong KU, Salazar-González RA, Walls KM, Hein DW. Transcriptional regulation of human arylamine N-acetyltransferase 2 gene by glucose and insulin in liver cancer cell lines. Toxicol Sci Off J Soc Toxicol. 2022;190:158–72.

[42]

Wang J, Li R, Cao Y, Gu Y, Fang H, Fei Y, et al. Intratumoral CXCR5+CD8+T associates with favorable clinical outcomes and immunogenic contexture in gastric cancer. Nat Commun. 2021;12(1):3080.

[43]

Thompson ED, Zahurak M, Murphy A, Cornish T, Cuka N, Abdelfatah E, et al. Patterns of PD-L1 expression and CD8 T cell infiltration in gastric adenocarcinomas and associated immune stroma. Gut. 2017;66(5):794–801.

[44]

Ren F, Zhao Q, Zhao M, Zhu S, Liu B, Bukhari I, et al. Immune infiltration profiling in gastric cancer and their clinical implications. Cancer Sci. 2021;112(9):3569–84.

[45]

Zhang C, Liu J, Huang G, Zhao Y, Yue X, Wu H, et al. Cullin3–KLHL25 ubiquitin ligase targets ACLY for degradation to inhibit lipid synthesis and tumor progression. Genes Dev. 2016;30(17): 1956–70.

[46]

Fu Y, Lu R, Cui J, Sun H, Yang H, Meng Q, et al. Inhibition of ATP citrate lyase (ACLY) protects airway epithelia from PM2.5-induced epithelial-mesenchymal transition. Ecotoxicol Environ Saf. 2019;167:309–16.

[47]

Wen J, Min X, Shen M, Hua Q, Han Y, Zhao L, et al. ACLY facilitates colon cancer cell metastasis by CTNNB1. J Exp Clin Cancer Res CR. 2019;38(1):401.

[48]

Ascenção K, Dilek N, Augsburger F, Panagaki T, Zuhra K, Szabo C. Pharmacological induction of mesenchymal-epithelial transition via inhibition of H2S biosynthesis and consequent suppression of ACLY activity in colon cancer cells. Pharmacol Res. 2021;165:105393.

[49]

Zhang C, Wang X.-Y, Zhang P, He T.-C, Han J.-H, Zhang R, et al. Cancer-derived exosomal HSPC111 promotes colorectal cancer liver metastasis by reprogramming lipid metabolism in cancer-associated fibroblasts. Cell Death Dis. 2022;13(1):57.

[50]

Chen Y, Li K, Gong D, Zhang J, Li Q, Zhao G, et al. ACLY: a biomarker of recurrence in breast cancer. Pathol Res Pract. 2020;216(9):153076.

[51]

Adorno-Cruz V, Hoffmann AD, Liu X, Dashzeveg NK, Taftaf R, Wray B, et al. ITGA2 promotes expression of ACLY and CCND1 in enhancing breast cancer stemness and metastasis. Genes Dis. 2021;8(4):493–508.

[52]

Wei X, Shi J, Lin Q, Ma X, Pang Y, Mao H, et al. Targeting ACLY attenuates tumor growth and acquired cisplatin resistance in ovarian cancer by inhibiting the PI3K-AKT pathway and activating the AMPK-ROS pathway. Front Oncol. 2021;11:642229.

[53]

Carrer A, Trefely S, Zhao S, Campbell SL, Norgard RJ, Schultz KC, et al. Acetyl-CoA metabolism supports multistep pancreatic tumorigenesis. Cancer Discov. 2019;9(3):416–35.

[54]

Liu Q, Ge W, Wang T, Lan J, Martínez-Jarquín S, Wolfrum C, et al. High-throughput single-cell mass spectrometry reveals abnormal lipid metabolism in pancreatic ductal adenocarcinoma. Angew Chem Int Ed Engl. 2021;60(46):24534–42.

[55]

Dłubek J, Rysz J, Jabłonowski Z, Gluba-Brzózka A, Franczyk B. The correlation between lipid metabolism disorders and prostate cancer. Curr Med Chem. 2021;28(10):2048–61.

[56]

Singh KB, Hahm E.-R, Kim S.-H, Wendell SG, Singh SV. A novel metabolic function of Myc in regulation of fatty acid synthesis in prostate cancer. Oncogene. 2021;40(3):592–602.

[57]

Shah S, Carriveau WJ, Li J, Campbell SL, Kopinski PK, Lim H.-W, et al. Targeting ACLY sensitizes castration-resistant prostate cancer cells to AR antagonism by impinging on an ACLYAMPK- AR feedback mechanism. Oncotarget. 2016;7(28): 43713–30.

[58]

Zhang Q, Yin X, Pan Z, Cao Y, Han S, Gao G, et al. Identification of potential diagnostic and prognostic biomarkers for prostate cancer. Oncol Lett. 2019;18:4237–45.

[59]

Bechmann LP, Hannivoort RA, Gerken G, Hotamisligil GS, Trauner M, Canbay A. The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol. 2012;56(4): 952–64.

[60]

da Fonseca GWP, Farkas J, Dora E, von Haehling S, Lainscak M. Cancer cachexia and related metabolic dysfunction. Int J Mol Sci. 2020;21(7):E2321.

[61]

Satriano L, Lewinska M, Rodrigues PM, Banales JM, Andersen JB. Metabolic rearrangements in primary liver cancers: cause and consequences. Nat Rev Gastroenterol Hepatol. 2019;16(12):748–66.

[62]

Pope ED, Kimbrough EO, Vemireddy LP, Surapaneni PK, Copland JA, Mody K. Aberrant lipid metabolism as a therapeutic target in liver cancer. Expert Opin Ther Targets. 2019;23(6): 473–83.

[63]

Paul B, Lewinska M, Andersen JB. Lipid alterations in chronic liver disease and liver cancer. JHEP Rep Innov Hepatol. 2022;4(6):100479.

[64]

Zheng Y, Zhou Q, Zhao C, Li J, Yu Z, Zhu Q. ATP citrate lyase inhibitor triggers endoplasmic reticulum stress to induce hepatocellular carcinoma cell apoptosis via p-eIF2α/ATF4/CHOP axis. J Cell Mol Med. 2021;25(3):1468–79.

[65]

Liu D, Zhang T, Chen X, Zhang B, Wang Y, Xie M, et al. ONECUT2 facilitates hepatocellular carcinoma metastasis by transcriptionally upregulating FGF2 and ACLY. Cell Death Dis. 2021;12:1113.

[66]

Gu L, Zhu Y, Lin X, Lu B, Zhou X, Zhou F, et al. The IKKβ- USP30-ACLY Axis controls lipogenesis and tumorigenesis. Hepatol Baltim Md. 2021;73(1):160–74.

[67]

Han Q, Chen C.-A, Yang W, Liang D, Lv H.-W, Lv G.-S, et al. ATP-citrate lyase regulates stemness and metastasis in hepatocellular carcinoma via the Wnt/β-catenin signaling pathway. Hepatobiliary Pancreat Dis Int HBPD INT. 2021;20(3):251–61.

[68]

Xu Y, Zhang Z, Xu D, Yang X, Zhou L, Zhu Y. Identification and integrative analysis of ACLY and related gene panels associated with immune microenvironment reveal prognostic significance in hepatocellular carcinoma. Cancer Cell Int. 2021;21(1):409.

[69]

Sun H, Wang F, Huang Y, Wang J, Zhang L, Shen Y, et al. Targeted inhibition of ACLY expression to reverse the resistance of sorafenib in hepatocellular carcinoma. J Cancer. 2022;13(3):951–64.

[70]

Sur S, Nakanishi H, Flaveny C, Ippolito JE, McHowat J, Ford DA, et al. Inhibition of the key metabolic pathways, glycolysis and lipogenesis, of oral cancer by bitter melon extract. Cell Commun Signal CCS. 2019;17(1):131.

[71]

Göttgens E.-L, van den Heuvel CN, de Jong MC, Kaanders JH, Leenders WP, Ansems M, et al. ACLY (ATP citrate lyase) mediates radioresistance in head and neck squamous cell carcinomas and is a novel predictive radiotherapy biomarker. Cancers. 2019;11(12):E1971.

[72]

Zheng Z.-Q, Li Z.-X, Guan J.-L, Liu X, Li J.-Y, Chen Y, et al. Long noncoding RNA TINCR-mediated regulation of acetyl-CoA metabolism promotes nasopharyngeal carcinoma progression and chemoresistance. Cancer Res. 2020;80(23):5174–88.

RIGHTS & PERMISSIONS

2024 The Authors. Quantitative Biology published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (2873KB)

692

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/