NeoHunter: Flexible software for systematically detecting neoantigens from sequencing data

Tianxing Ma, Zetong Zhao, Haochen Li, Lei Wei, Xuegong Zhang

PDF(2311 KB)
PDF(2311 KB)
Quant. Biol. ›› 2024, Vol. 12 ›› Issue (1) : 70-84. DOI: 10.1002/qub2.28
RESEARCH ARTICLE

NeoHunter: Flexible software for systematically detecting neoantigens from sequencing data

Author information +
History +

Abstract

Complicated molecular alterations in tumors generate various mutant peptides. Some of these mutant peptides can be presented to the cell surface and then elicit immune responses, and such mutant peptides are called neoantigens. Accurate detection of neoantigens could help to design personalized cancer vaccines. Although some computational frameworks for neoantigen detection have been proposed, most of them can only detect SNV- and indel-derived neoantigens. In addition, current frameworks adopt oversimplified neoantigen prioritization strategies. These factors hinder the comprehensive and effective detection of neoantigens. We developed NeoHunter, flexible software to systematically detect and prioritize neoantigens from sequencing data in different formats. NeoHunter can detect not only SNV- and indel-derived neoantigens but also gene fusion- and aberrant splicing-derived neoantigens. NeoHunter supports both direct and indirect immunogenicity evaluation strategies to prioritize candidate neoantigens. These strategies utilize binding characteristics, existing biological big data, and T-cell receptor specificity to ensure accurate detection and prioritization. We applied NeoHunter to the TESLA dataset, cohorts of melanoma and non-small cell lung cancer patients. NeoHunter achieved high performance across the TESLA cancer patients and detected 79% (27 out of 34) of validated neoantigens in total. SNV- and indel-derived neoantigens accounted for 90% of the top 100 candidate neoantigens while neoantigens from aberrant splicing accounted for 9%. Gene fusion-derived neoantigens were detected in one patient. NeoHunter is a powerful tool to ‘catch all’ neoantigens and is available for free academic use on Github (XuegongLab/NeoHunter).

Keywords

cancer vaccine / molecular alteration / neoantigen / neoantigen prioritization

Cite this article

Download citation ▾
Tianxing Ma, Zetong Zhao, Haochen Li, Lei Wei, Xuegong Zhang. NeoHunter: Flexible software for systematically detecting neoantigens from sequencing data. Quant. Biol., 2024, 12(1): 70‒84 https://doi.org/10.1002/qub2.28

References

[1]
Campbell PJ, Getz G, Korbel JO, Stuart JM, Jennings JL, Stein LD, et al. Pan-cancer analysis of whole genomes. Nature. 2020;578(7793):82–93.
CrossRef Google scholar
[2]
Lang F, Schrörs B, Löwer M, Türeci Ö, Sahin U. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat Rev Drug Discov. 2022:21–3.
CrossRef Google scholar
[3]
Pearlman AH, Hwang MS, Konig MF, Hsiue EHC, Douglass J, DiNapoli SR, et al. Targeting public neoantigens for cancer immunotherapy. Nat Can. 2021;2(5):487–97.
CrossRef Google scholar
[4]
Sellars MC, Wu CJ, Fritsch EF. Cancer vaccines: building a bridge over troubled waters. Cell. 2022;185(15):2770–88.
CrossRef Google scholar
[5]
Zhou C, Wei Z, Zhang Z, Zhang B, Zhu C, Chen K, et al. PTuneos: prioritizing tumor neoantigens from next-generation sequencing data. Genome Med. 2019;11:1–17.
CrossRef Google scholar
[6]
Hundal J, Kiwala S, McMichael J, Miller CA, Xia H, Wollam AT, et al. PVACtools: a computational toolkit to identify and visualize cancer neoantigens. Cancer Immunol Res. 2020;8(3):409–20.
CrossRef Google scholar
[7]
Yang W, Lee KW, Srivastava RM, Kuo F, Krishna C, Chowell D, et al. Immunogenic neoantigens derived from gene fusions stimulate T cell responses. Nat Med. 2019;25(5):767–75.
CrossRef Google scholar
[8]
Wei Z, Zhou C, Zhang Z, Guan M, Zhang C, Liu Z, et al. The landscape of tumor fusion neoantigens: a pan-cancer analysis. iScience. 2019;21:249–60.
CrossRef Google scholar
[9]
Rosenblatt J, Stone RM, Uhl L, Neuberg D, Joyce R, Levine JD, et al. Individualized vaccination of AML patients in remission is associated with induction of antileukemia immunity and prolonged remissions. Sci Transl Med. 2016;8(368):1–8.
CrossRef Google scholar
[10]
Gao Q, Liang WW, Foltz SM, Mutharasu G, Jayasinghe RG, Cao S, et al. Driver fusions and their implications in the development and treatment of human cancers. Cell Rep. 2018;23(1):227.e3–238.e3.
[11]
Bonnal SC, López-Oreja I, Valcárcel J. Roles and mechanisms of alternative splicing in cancer—implications for care. Nat Rev Clin Oncol. 2020;17(8):457–74.
CrossRef Google scholar
[12]
Oka M, Xu L, Suzuki T, Yoshikawa T, Sakamoto H, Uemura H, et al. Aberrant splicing isoforms detected by full-length transcriptome sequencing as transcripts of potential neoantigens in non-small cell lung cancer. Genome Biol. 2021;22:1–30.
CrossRef Google scholar
[13]
Wang TY, Liu Q, Ren Y, Alam SK, Wang L, Zhu Z, et al. A pancancer transcriptome analysis of exitron splicing identifies novel cancer driver genes and neoepitopes. Mol Cell. 2021;81(10):2246.e12–2260.e12.
CrossRef Google scholar
[14]
Smart AC, Margolis CA, Pimentel H, He MX, Miao D, Adeegbe D, et al. Intron retention is a source of neoepitopes in cancer. Nat Biotechnol. 2018;36(11):1056–63.
CrossRef Google scholar
[15]
Kahles A, Lehmann KV, Toussaint NC, Hüser M, Stark SG, Sachsenberg T, et al. Comprehensive analysis of alternative splicing across tumors from 8705 patients. Cancer Cell. 2018;34(2):211–24.e6.
[16]
Bigot J, Lalanne AI, Lucibello F, Gueguen P, Houy A, Dayot S, et al. Splicing patterns in SF3B1 mutated uveal melanoma generate shared immunogenic tumor-specific neoepitopes. Cancer Discov. 2021;11(8):1938–51.
CrossRef Google scholar
[17]
Ehx G, Larouche JD, Durette C, Laverdure JP, Hesnard L, Vincent K, et al. Atypical acute myeloid leukemia-specific transcripts generate shared and immunogenic MHC class-Iassociated epitopes. Immunity. 2021;54(4):737–52.e10.
CrossRef Google scholar
[18]
Smith CC, Selitsky SR, Chai S, Armistead PM, Vincent BG, Serody JS. Alternative tumour-specific antigens. Nat Rev Cancer. 2019;19(8):465–78.
CrossRef Google scholar
[19]
Springer I, Tickotsky N, Louzoun Y. Contribution of T Cell receptor alpha and beta CDR3, MHC typing, V and J genes to peptide binding prediction. Front Immunol. 2021;12: 1–11.
CrossRef Google scholar
[20]
Lu T, Zhang Z, Zhu J, Wang Y, Jiang P, Xiao X, et al. Deep learning-based prediction of the T cell receptor–antigen binding specificity. Nat Mach Intell. 2021;3(10):864–75.
CrossRef Google scholar
[21]
Wells DK, van Buuren MM, Dang KK, Hubbard-Lucey VM, Sheehan KCF, Campbell KM, et al. Key parameters of tumor Epitope immunogenicity revealed through a consortium approach improve neoantigen prediction. Cell. 2020;183(3):818.e13–834.e13.
[22]
Bridgeman JS, Sewell AK, Miles JJ, Price DA, Cole DK. Structural and biophysical determinants of αβ T-cell antigen recognition. Immunology. 2012;135(1):9–18.
CrossRef Google scholar
[23]
Cole DK, Miles KM, Madura F, Holland CJ, Schauenburg AJA, Godkin AJ, et al. T-cell Receptor (TCR)-peptide specificity overrides affinity-enhancing TCR-major histocompatibility complex interactions. J Biol Chem. 2014;289(2):628–38.
CrossRef Google scholar
[24]
Duan F, Duitama J, Al Seesi S, Ayres CM, Corcelli SA, Pawashe AP, et al. Genomic and bioinformatic profiling of mutational neoepitopes reveals new rules to predict anticancer immunogenicity. J Exp Med. 2014;211(11):2231–48.
CrossRef Google scholar
[25]
Luksza M, Riaz N, Makarov V, Balachandran VP, Hellmann MD, Solovyov A, et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature. 2017;551(7681):517–20.
CrossRef Google scholar
[26]
Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, et al. The immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 2019;47(D1):D339–43.
CrossRef Google scholar
[27]
Bolotin DA, Poslavsky S, Mitrophanov I, Shugay M, Mamedov IZ, Putintseva EV, et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat Methods. 2015;12(5):380–1.
CrossRef Google scholar
[28]
McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The Ensembl variant effect predictor. Genome Biol. 2016;17(1):122.
CrossRef Google scholar
[29]
Cingolani P, Platts A,Wang LL, Coon M, Nguyen T,Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012;6(2):80–92.
CrossRef Google scholar
[30]
Depristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43(5):491–501.
CrossRef Google scholar
[31]
Kohno T, Nakaoku T, Tsuta K, Tsuchihara K, Matsumoto S, Yoh K, et al. Beyond ALK-RET, ROS1 and other oncogene fusions in lung cancer. Transl Lung Cancer Res. 2015;4:156–64.
[32]
McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell. 2017;168(4): 613–28.
CrossRef Google scholar
[33]
Ma T, Li H, Zhang X. Discovering single-cell eQTLs from scRNA-seq data only. Gene. 2022;829:146520.
CrossRef Google scholar
[34]
Li H, Ma T, Hao M, Wei L, Zhang X. Decoding functional cellcell communication events by multi-view graph learning on spatial transcriptomics. Brief Bioinform. 2023;24(6):bbad359.
CrossRef Google scholar
[35]
Ma T, Liu Q, Li H, Zhou M, Jiang R, Zhang X. DualGCN: a dual graph convolutional network model to predict cancer drug response. BMC Bioinf. 2022;23(S4):1–13.
CrossRef Google scholar
[36]
McGranahan N, Rosenthal R, Hiley CT, Rowan AJ, Watkins TBK, Wilson GA, et al. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell. 2017;171(6):1259.e11–1271.e11.
[37]
La Gruta NL, Gras S, Daley SR, Thomas PG, Rossjohn J. Understanding the drivers of MHC restriction of T cell receptors. Nat Rev Immunol. 2018;18(7):467–78.
CrossRef Google scholar
[38]
Solomon BD, Zheng H, Dillon LW, Goldman JD, Hourigan CS, Heath JR, et al. Prediction of HLA genotypes from single-cell transcriptome data. Front Immunol. 2023;25(14):1146826.
CrossRef Google scholar
[39]
Stubbington MJT, Lönnberg T, Proserpio V, Clare S, Speak AO, Dougan G, et al. T cell fate and clonality inference from single-cell transcriptomes. Nat Methods. 2016;13(4):329–32.
CrossRef Google scholar
[40]
Pai JA, Satpathy AT. High-throughput and single-cell T cell receptor sequencing technologies. Nat Methods. 2021;18(8): 881–92.
CrossRef Google scholar
[41]
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997.
[42]
Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. Giga-Science. 2021;10(2):1–4.
CrossRef Google scholar
[43]
Haas BJ, Dobin A, Li B, Stransky N, Pochet N, Regev A. Accuracy assessment of fusion transcript detection via readmapping and de novo fusion transcript assembly-based methods. Genome Biol. 2019;20:1–16.
CrossRef Google scholar
[44]
Zhang Z, Zhou C, Tang L, Gong Y, Wei Z, Zhang G, et al. ASNEO: identification of personalized alternative splicing based neoantigens with RNA-seq. Aging. 2020;12(14):14633–48.
CrossRef Google scholar
[45]
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.
CrossRef Google scholar
[46]
Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45(6):580–5.
CrossRef Google scholar
[47]
Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34(5):525–7.
CrossRef Google scholar
[48]
Szolek A, Schubert B, Mohr C, Sturm M, Feldhahn M, Kohlbacher O. OptiType: precision HLA typing from next-generation sequencing data. Bioinformatics. 2014;30(23):3310–6.
CrossRef Google scholar
[49]
Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M. NetMHCpan-4.1 and NetMHCIIpan-4.0: improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 2021;48(W1):W449–54.
CrossRef Google scholar
[50]
Rasmussen M, Fenoy E, Harndahl M, Kristensen AB, Nielsen IK, Nielsen M, et al. Pan-specific prediction of peptide–MHC class I complex stability, a correlate of T cell immunogenicity. J Immunol. 2016;197(4):1517–24.
CrossRef Google scholar
[51]
Henikoff S, Henikoff JG. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci U S A. 1992;89(22): 10915–9.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 2024 The Authors. Quantitative Biology published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.
AI Summary AI Mindmap
PDF(2311 KB)

Accesses

Citations

Detail

Sections
Recommended

/