Parallel processes of temporal control in the supplementary motor area and the frontoparietal circuit

  • Xuanyu Wang , 1,2 ,
  • Shunyu Shi 1 ,
  • Yan Bao , 1,3,4
Expand
  • 1. School of Psychological and Cognitive Sciences, Peking University, Beijing, China
  • 2. Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Munich, Germany
  • 3. Institute of Medical Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
  • 4. Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
xuanyu.wang@tum.de
baoyan@pku.edu.cn

Received date: 28 Jul 2023

Accepted date: 04 Oct 2023

Published date: 20 Mar 2024

Copyright

2023 2023 The Authors. PsyCh Journal published by Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

Abstract

Durations in the several seconds' range are cognitively accessible during active timing. Functional neuroimaging studies suggest the engagement of the basal ganglia (BG) and supplementary motor area (SMA). However, their functional relevance and arrangement remain unclear because non-timing cognitive processes temporally coincide with the active timing. To examine the potential contamination by parallel processes, we introduced a sensory control and a motor control to the duration-reproduction task. By comparing their hemodynamic functions, we decomposed the neural activities in multiple brain loci linked to different cognitive processes. Our results show a dissociation of two cortical neural circuits: the SMA for both active timing and motor preparation, followed by a prefrontal–parietal circuit related to duration working memory. We argue that these cortical processes represent duration as the content but at different levels of abstraction, while the subcortical structures, including the BG and thalamus, provide the logistic basis of timing by coordinating the temporal framework across brain structures.

Cite this article

Xuanyu Wang , Shunyu Shi , Yan Bao . Parallel processes of temporal control in the supplementary motor area and the frontoparietal circuit[J]. Psych Journal, 2024 , 13(3) : 355 -368 . DOI: 10.1002/pchj.701

1
Balcı, F., & Simen, P. (2016). A decision model of timing. Current Opinion in Behavioral Sciences, 8, 94–101.

DOI

2
Bao, Y., Pöppel, E., Wang, L. Y., Lin, X. X., Yang, T. X., Avram, M., Blautzik, J., Paolini, M., Silveira, S., Vedder, A., Zaytseva, Y., & Zhou, B. (2015). Synchronization as a biological, psychological and social mechanism to create common time: A theoretical frame and a single case study. PsyCh Journal, 4(4), 243–254.

DOI

3
Bao, Y., Yang, T., Lin, X., & Pöppel, E. (2016). Donders revisited: Discrete or continuous temporal processing underlying reaction time distributions? PsyCh Journal, 5(3), 177–179.

DOI

4
Barbey, A. K., Koenigs, M., & Grafman, J. (2013). Dorsolateral prefrontal contributions to human working memory. Cortex, 49(5), 1195–1205.

DOI

5
Brainard, D. H., & Vision, S. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436.

DOI

6
Brett, M., Anton, J.-L., Valabregue, R., & Poline, J.-B. (2002). Region of interest analysis using an SPM toolbox. In 8th international conference on functional mapping of the human brain, June 2–6, 2002. Japan.

7
Bruce, R. A., Weber, M. A., Volkman, R. A., Oya, M., Emmons, E. B., Kim, Y., & Narayanan, N. S. (2021). Experience-related enhancements in striatal temporal encoding. European Journal of Neuroscience, 54(3), 5063–5074.

DOI

8
Bueti, D., & Walsh, V. (2009). The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1525), 1831–1840.

DOI

9
Cappelletti, M., Gessaroli, E., Hithersay, R., Mitolo, M., Didino, D., Kanai, R., Cohen Kadosh, R., & Walsh, V. (2013). Transfer of cognitive training across magnitude dimensions achieved with concurrent brain stimulation of the parietal lobe. Journal of Neuroscience, 33(37), 14899–14907.

DOI

10
Casini, L., & Vidal, F. (2011). The SMAs: Neural substrate of the temporal accumulator? Frontiers in Integrative Neuroscience, 5, 35.

DOI

11
Chen, S., Cai, M., & Bao, Y. (2020). The two- to three-second time window of shot durations in movies. PsyCh Journal, 9(4), 516–518.

DOI

12
Cheng, R.-K., Tipples, J., Narayanan, N. S., & Meck, W. H. (2016). Clock speed as a window into dopaminergic control of emotion and time perception. Timing & Time Perception, 4(1), 99–122.

DOI

13
Coull, J. T., & Nobre, A. (2008). Dissociating explicit timing from temporal expectation with fMRI. Current Opinion in Neurobiology, 18(2), 137–144.

DOI

14
Cueva, C. J., Saez, A., Marcos, E., Genovesio, A., Jazayeri, M., Romo, R., Salzman, C. D., Shadlen, M. N., & Fusi, S. (2020). Low-dimensional dynamics for working memory and time encoding. Proceedings of the National Academy of Sciences, 117(37), 23021–23032.

DOI

15
De Corte, B. J., Wagner, L. M., Matell, M. S., & Narayanan, N. S. (2019). Striatal dopamine and the temporal control of behavior. Behavioural Brain Research, 356, 375–379.

DOI

16
Donders, F. C. (1969). On the speed of mental processes. Acta Psychologica, 30, 412–431.

DOI

17
Dušek, P., Jech, R., Sieger, T., Vymazal, J., Růžička, E., Wackermann, J., & Mueller, K. (2012). Abnormal activity in the Precuneus during time perception in Parkinson's disease: An fMRI study. PLoS One, 7(1), e29635.

DOI

18
Ferrandez, A. M., Hugueville, L., Lehricy, S., Poline, J. B., Marsault, C., & Pouthas, V. (2003). Basal ganglia and supplementary motor area subtend duration perception: An fMRI study. NeuroImage, 19(4), 1532–1544.

DOI

19
Fung, B. J., Sutlief, E., & Hussain Shuler, M. G. (2021). Dopamine and the interdependency of time perception and reward. Neuroscience & Biobehavioral Reviews, 125, 380–391.

DOI

20
Haber, S. N. (2003). The primate basal ganglia: Parallel and integrative networks. Journal of Chemical Neuroanatomy, 26(4), 317–330.

DOI

21
Harrington, D., Castillo, G., Fong, C., & Reed, J. (2011). Neural underpinnings of distortions in the experience of time across senses. Frontiers in Integrative Neuroscience, 5, 32.

DOI

22
Högl, B., Agostino, P. V., Peralta, M. C., Gershanik, O., & Golombek, D. A. (2014). Alterations in time estimation in multiple system atrophy. Basal Ganglia, 4(3), 95–99.

DOI

23
Jacob, S. N., Vallentin, D., & Nieder, A. (2012). Relating magnitudes: The brain's code for proportions. Trends in Cognitive Sciences, 16(3), 157–166.

DOI

24
Jones, C. R., Malone, T. J., Dirnberger, G., Edwards, M., & Jahanshahi, M. (2008). Basal ganglia, dopamine and temporal processing: Performance on three timing tasks on and off medication in Parkinson's disease. Brain and Cognition, 68(1), 30–41.

DOI

25
Kononowicz, T., & van Rijn, H. (2014). Tonic and phasic dopamine fluctuations as reflected in Beta-power predict interval timing behavior. Procedia – Social and Behavioral Sciences, 126, 47.

DOI

26
Korb, F. M., Jiang, J., King, J. A., & Egner, T. (2017). Hierarchically organized medial frontal cortex-basal ganglia loops selectively control task- and response-selection. Journal of Neuroscience, 37(33), 7893–7905.

DOI

27
Kosillo, P., & Smith, A. T. (2010). The role of the human anterior insular cortex in time processing. Brain Structure and Function., 214, 623–628.

DOI

28
Kotz, S. A., Brown, R. M., & Schwartze, M. (2016). Cortico-striatal circuits and the timing of action and perception. Current Opinion in Behavioral Sciences, 8, 42–45.

DOI

29
Lourenco, S. F., Ayzenberg, V., & Lyu, J. (2016). A general magnitude system in human adults: Evidence from a subliminal priming paradigm. Cortex, 81, 93–103.

DOI

30
Maaß, S. C., Schlichting, N., & van Rijn, H. (2019). Eliciting contextual temporal calibration: The effect of bottom-up and top-down information in reproduction tasks. Acta Psychologica, 199, 102898.

DOI

31
Meck, W. H. (2005). Neuropsychology of timing and time perception. Brain and Cognition, 58(1), 1–8.

DOI

32
Mello, G. B. M., Soares, S., & Paton, J. J. (2015). A scalable population code for time in the striatum. Current Biology, 25(9), 1113–1122.

DOI

33
Mioni, G., Stablum, F., McClintock, S. M., & Grondin, S. (2014). Different methods for reproducing time, different results. Attention, Perception, & Psychophysics, 76(3), 675–681.

DOI

34
Morillon, B., Kell, C.a., & Giraud, A. L. (2009). Three stages and four neural Systems in Time Estimation. Journal of Neuroscience, 29, 14803–14811.

DOI

35
Nieder, A. (2016). The neuronal code for number. Nature Reviews Neuroscience, 17(6), 366–382.

DOI

36
Nieder, A., Diester, I., & Tudusciuc, O. (2006). Temporal and spatial enumeration processes in the primate parietal cortex. Science, 313(5792), 1431–1435.

DOI

37
Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7(1), 75–79.

DOI

38
Parker, K. L., Ruggiero, R. N., & Narayanan, N. S. (2015). Infusion of D1 dopamine receptor agonist into medial frontal cortex disrupts neural correlates of interval timing. Frontiers in Behavioral Neuroscience, 9, 294.

DOI

39
Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J., & Nichols, T. E. (2011). Statistical parametric mapping: The analysis of functional brain images. Elsevier.

40
Pfeuty, M., Dilharreguy, B., Gerlier, L., & Allard, M. (2015). FMRI identifies the right inferior frontal cortex as the brain region where time interval processing is altered by negative emotional arousal. Human Brain Mapping, 36(3), 981–995.

DOI

41
Pöppel, E. (1972). Oscillations as possible basis for time perception. In J. T. Fraser, F. C. Haber, & G. H. Müller (Eds.), The study of time: Proceedings of the first conference of the International Society for the Study of time Oberwolfach (Black Forest) — West Germany (pp. 219–241). Springer.

DOI

42
Pöppel, E. (1997). A hierarchical model of temporal perception. Trends in Cognitive Sciences, 1(2), 56–61.

DOI

43
Pöppel, E. (2004). Lost in time: A historical frame, elementary processing units and the 3-second window. Acta Neurobiologiae Experimentalis, 64(3), 295–301. https://www.ncbi.nlm.nih.gov/pubmed/15283473

44
Pöppel, E. (2009). Pre-semantically defined temporal windows for cognitive processing. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1525), 1887–1896.

DOI

45
Protopapa, F., Hayashi, M. J., Kulashekhar, S., van der Zwaag, W., Battistella, G., Murray, M. M., Kanai, R., & Bueti, D. (2019). Chronotopic maps in human supplementary motor area. PLoS Biology, 17(3), e3000026.

DOI

46
Rao, S. M., Mayer, A. R., & Harrington, D. L. (2001). The evolution of brain activation during temporal processing. Nature Neuroscience, 4(3), 317–323.

DOI

47
Shi, Z., Ganzenmüller, S., & Müller, H. J. (2013). Reducing bias in auditory duration reproduction by integrating the reproduced signal. PLoS One, 8(4), e62065.

DOI

48
Skagerlund, K., & Träff, U. (2014). Development of magnitude processing in children with developmental dyscalculia: Space, time, and number. Frontiers in Psychology, 5, 675.

DOI

49
Soares, S., Atallah, B. V., & Paton, J. J. (2016). Midbrain dopamine neurons control judgment of time. Science, 354(6317), 1273–1277.

DOI

50
Sokolowski, H. M., Fias, W., Bosah Ononye, C., & Ansari, D. (2017). Are numbers grounded in a general magnitude processing system? A functional neuroimaging meta-analysis. Neuropsychologia, 105, 50–69.

DOI

51
Teki, S., Grube, M., Kumar, S., & Griffiths, T. D. (2011). Distinct neural substrates of duration-based and beat-based auditory timing. Journal of Neuroscience, 31(10), 3805–3812.

DOI

52
Tudusciuc, O., & Nieder, A. (2007). Neuronal population coding of continuous and discrete quantity in the primate posterior parietal cortex. Proceedings of the National Academy of Sciences, 104(36), 14513–14518.

DOI

53
Turner, R. S., & Desmurget, M. (2010). Basal ganglia contributions to motor control: A vigorous tutor. Current Opinion in Neurobiology, 20(6), 704–716.

DOI

54
Ulbrich, P., Churan, J., Fink, M., & Wittmann, M. (2007). Temporal reproduction: Further evidence for two processes. Acta Psychologica, 125(1), 51–65.

DOI

55
Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483–488.

DOI

56
Wang, L., Lin, X., Zhou, B., Pöppel, E., & Bao, Y. (2016). Rubberband effect in temporal control of mismatch negativity. Frontiers in Psychology, 7, 1299.

DOI

57
Wittmann, M. (2013). The inner sense of time: How the brain creates a representation of duration. Nature Reviews Neuroscience, 14(3), 217–223.

DOI

58
Wittmann, M., Simmons, A. N., Aron, J. L., & Paulus, M. P. (2010). Accumulation of neural activity in the posterior insula encodes the passage of time. Neuropsychologia, 48(10), 3110–3120.

DOI

59
Yu, X., & Bao, Y. (2020). The three second time window in poems and language processing in general: Complementarity of discrete timing and temporal continuity. PsyCh Journal, 9(4), 429–443.

DOI

60
Zhao, C., Zhang, D., & Bao, Y. (2018). A time window of 3 s in the aesthetic appreciation of poems. PsyCh Journal, 7(1), 51–52.

DOI

61
Zhou, B., Poppel, E., & Bao, Y. (2014). In the jungle of time: The concept of identity as a way out. Frontiers in Psychology, 5, 844.

DOI

Options
Outlines

/