Parallel processes of temporal control in the supplementary motor area and the frontoparietal circuit
Xuanyu Wang, Shunyu Shi, Yan Bao
Parallel processes of temporal control in the supplementary motor area and the frontoparietal circuit
Durations in the several seconds' range are cognitively accessible during active timing. Functional neuroimaging studies suggest the engagement of the basal ganglia (BG) and supplementary motor area (SMA). However, their functional relevance and arrangement remain unclear because non-timing cognitive processes temporally coincide with the active timing. To examine the potential contamination by parallel processes, we introduced a sensory control and a motor control to the duration-reproduction task. By comparing their hemodynamic functions, we decomposed the neural activities in multiple brain loci linked to different cognitive processes. Our results show a dissociation of two cortical neural circuits: the SMA for both active timing and motor preparation, followed by a prefrontal–parietal circuit related to duration working memory. We argue that these cortical processes represent duration as the content but at different levels of abstraction, while the subcortical structures, including the BG and thalamus, provide the logistic basis of timing by coordinating the temporal framework across brain structures.
duration reproduction / fMRI / neural mechanism / time perception
[1] |
Balcı, F., & Simen, P. (2016). A decision model of timing. Current Opinion in Behavioral Sciences, 8, 94–101.
CrossRef
Google scholar
|
[2] |
Bao, Y., Pöppel, E., Wang, L. Y., Lin, X. X., Yang, T. X., Avram, M., Blautzik, J., Paolini, M., Silveira, S., Vedder, A., Zaytseva, Y., & Zhou, B. (2015). Synchronization as a biological, psychological and social mechanism to create common time: A theoretical frame and a single case study. PsyCh Journal, 4(4), 243–254.
CrossRef
Google scholar
|
[3] |
Bao, Y., Yang, T., Lin, X., & Pöppel, E. (2016). Donders revisited: Discrete or continuous temporal processing underlying reaction time distributions? PsyCh Journal, 5(3), 177–179.
CrossRef
Google scholar
|
[4] |
Barbey, A. K., Koenigs, M., & Grafman, J. (2013). Dorsolateral prefrontal contributions to human working memory. Cortex, 49(5), 1195–1205.
CrossRef
Google scholar
|
[5] |
Brainard, D. H., & Vision, S. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436.
CrossRef
Google scholar
|
[6] |
Brett, M., Anton, J.-L., Valabregue, R., & Poline, J.-B. (2002). Region of interest analysis using an SPM toolbox. In 8th international conference on functional mapping of the human brain, June 2–6, 2002. Japan.
|
[7] |
Bruce, R. A., Weber, M. A., Volkman, R. A., Oya, M., Emmons, E. B., Kim, Y., & Narayanan, N. S. (2021). Experience-related enhancements in striatal temporal encoding. European Journal of Neuroscience, 54(3), 5063–5074.
CrossRef
Google scholar
|
[8] |
Bueti, D., & Walsh, V. (2009). The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1525), 1831–1840.
CrossRef
Google scholar
|
[9] |
Cappelletti, M., Gessaroli, E., Hithersay, R., Mitolo, M., Didino, D., Kanai, R., Cohen Kadosh, R., & Walsh, V. (2013). Transfer of cognitive training across magnitude dimensions achieved with concurrent brain stimulation of the parietal lobe. Journal of Neuroscience, 33(37), 14899–14907.
CrossRef
Google scholar
|
[10] |
Casini, L., & Vidal, F. (2011). The SMAs: Neural substrate of the temporal accumulator? Frontiers in Integrative Neuroscience, 5, 35.
CrossRef
Google scholar
|
[11] |
Chen, S., Cai, M., & Bao, Y. (2020). The two- to three-second time window of shot durations in movies. PsyCh Journal, 9(4), 516–518.
CrossRef
Google scholar
|
[12] |
Cheng, R.-K., Tipples, J., Narayanan, N. S., & Meck, W. H. (2016). Clock speed as a window into dopaminergic control of emotion and time perception. Timing & Time Perception, 4(1), 99–122.
CrossRef
Google scholar
|
[13] |
Coull, J. T., & Nobre, A. (2008). Dissociating explicit timing from temporal expectation with fMRI. Current Opinion in Neurobiology, 18(2), 137–144.
CrossRef
Google scholar
|
[14] |
Cueva, C. J., Saez, A., Marcos, E., Genovesio, A., Jazayeri, M., Romo, R., Salzman, C. D., Shadlen, M. N., & Fusi, S. (2020). Low-dimensional dynamics for working memory and time encoding. Proceedings of the National Academy of Sciences, 117(37), 23021–23032.
CrossRef
Google scholar
|
[15] |
De Corte, B. J., Wagner, L. M., Matell, M. S., & Narayanan, N. S. (2019). Striatal dopamine and the temporal control of behavior. Behavioural Brain Research, 356, 375–379.
CrossRef
Google scholar
|
[16] |
Donders, F. C. (1969). On the speed of mental processes. Acta Psychologica, 30, 412–431.
CrossRef
Google scholar
|
[17] |
Dušek, P., Jech, R., Sieger, T., Vymazal, J., Růžička, E., Wackermann, J., & Mueller, K. (2012). Abnormal activity in the Precuneus during time perception in Parkinson's disease: An fMRI study. PLoS One, 7(1), e29635.
CrossRef
Google scholar
|
[18] |
Ferrandez, A. M., Hugueville, L., Lehricy, S., Poline, J. B., Marsault, C., & Pouthas, V. (2003). Basal ganglia and supplementary motor area subtend duration perception: An fMRI study. NeuroImage, 19(4), 1532–1544.
CrossRef
Google scholar
|
[19] |
Fung, B. J., Sutlief, E., & Hussain Shuler, M. G. (2021). Dopamine and the interdependency of time perception and reward. Neuroscience & Biobehavioral Reviews, 125, 380–391.
CrossRef
Google scholar
|
[20] |
Haber, S. N. (2003). The primate basal ganglia: Parallel and integrative networks. Journal of Chemical Neuroanatomy, 26(4), 317–330.
CrossRef
Google scholar
|
[21] |
Harrington, D., Castillo, G., Fong, C., & Reed, J. (2011). Neural underpinnings of distortions in the experience of time across senses. Frontiers in Integrative Neuroscience, 5, 32.
CrossRef
Google scholar
|
[22] |
Högl, B., Agostino, P. V., Peralta, M. C., Gershanik, O., & Golombek, D. A. (2014). Alterations in time estimation in multiple system atrophy. Basal Ganglia, 4(3), 95–99.
CrossRef
Google scholar
|
[23] |
Jacob, S. N., Vallentin, D., & Nieder, A. (2012). Relating magnitudes: The brain's code for proportions. Trends in Cognitive Sciences, 16(3), 157–166.
CrossRef
Google scholar
|
[24] |
Jones, C. R., Malone, T. J., Dirnberger, G., Edwards, M., & Jahanshahi, M. (2008). Basal ganglia, dopamine and temporal processing: Performance on three timing tasks on and off medication in Parkinson's disease. Brain and Cognition, 68(1), 30–41.
CrossRef
Google scholar
|
[25] |
Kononowicz, T., & van Rijn, H. (2014). Tonic and phasic dopamine fluctuations as reflected in Beta-power predict interval timing behavior. Procedia – Social and Behavioral Sciences, 126, 47.
CrossRef
Google scholar
|
[26] |
Korb, F. M., Jiang, J., King, J. A., & Egner, T. (2017). Hierarchically organized medial frontal cortex-basal ganglia loops selectively control task- and response-selection. Journal of Neuroscience, 37(33), 7893–7905.
CrossRef
Google scholar
|
[27] |
Kosillo, P., & Smith, A. T. (2010). The role of the human anterior insular cortex in time processing. Brain Structure and Function., 214, 623–628.
CrossRef
Google scholar
|
[28] |
Kotz, S. A., Brown, R. M., & Schwartze, M. (2016). Cortico-striatal circuits and the timing of action and perception. Current Opinion in Behavioral Sciences, 8, 42–45.
CrossRef
Google scholar
|
[29] |
Lourenco, S. F., Ayzenberg, V., & Lyu, J. (2016). A general magnitude system in human adults: Evidence from a subliminal priming paradigm. Cortex, 81, 93–103.
CrossRef
Google scholar
|
[30] |
Maaß, S. C., Schlichting, N., & van Rijn, H. (2019). Eliciting contextual temporal calibration: The effect of bottom-up and top-down information in reproduction tasks. Acta Psychologica, 199, 102898.
CrossRef
Google scholar
|
[31] |
Meck, W. H. (2005). Neuropsychology of timing and time perception. Brain and Cognition, 58(1), 1–8.
CrossRef
Google scholar
|
[32] |
Mello, G. B. M., Soares, S., & Paton, J. J. (2015). A scalable population code for time in the striatum. Current Biology, 25(9), 1113–1122.
CrossRef
Google scholar
|
[33] |
Mioni, G., Stablum, F., McClintock, S. M., & Grondin, S. (2014). Different methods for reproducing time, different results. Attention, Perception, & Psychophysics, 76(3), 675–681.
CrossRef
Google scholar
|
[34] |
Morillon, B., Kell, C.a., & Giraud, A. L. (2009). Three stages and four neural Systems in Time Estimation. Journal of Neuroscience, 29, 14803–14811.
CrossRef
Google scholar
|
[35] |
Nieder, A. (2016). The neuronal code for number. Nature Reviews Neuroscience, 17(6), 366–382.
CrossRef
Google scholar
|
[36] |
Nieder, A., Diester, I., & Tudusciuc, O. (2006). Temporal and spatial enumeration processes in the primate parietal cortex. Science, 313(5792), 1431–1435.
CrossRef
Google scholar
|
[37] |
Olesen, P. J., Westerberg, H., & Klingberg, T. (2004). Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7(1), 75–79.
CrossRef
Google scholar
|
[38] |
Parker, K. L., Ruggiero, R. N., & Narayanan, N. S. (2015). Infusion of D1 dopamine receptor agonist into medial frontal cortex disrupts neural correlates of interval timing. Frontiers in Behavioral Neuroscience, 9, 294.
CrossRef
Google scholar
|
[39] |
Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J., & Nichols, T. E. (2011). Statistical parametric mapping: The analysis of functional brain images. Elsevier.
|
[40] |
Pfeuty, M., Dilharreguy, B., Gerlier, L., & Allard, M. (2015). FMRI identifies the right inferior frontal cortex as the brain region where time interval processing is altered by negative emotional arousal. Human Brain Mapping, 36(3), 981–995.
CrossRef
Google scholar
|
[41] |
Pöppel, E. (1972). Oscillations as possible basis for time perception. In J. T. Fraser, F. C. Haber, & G. H. Müller (Eds.), The study of time: Proceedings of the first conference of the International Society for the Study of time Oberwolfach (Black Forest) — West Germany (pp. 219–241). Springer.
CrossRef
Google scholar
|
[42] |
Pöppel, E. (1997). A hierarchical model of temporal perception. Trends in Cognitive Sciences, 1(2), 56–61.
CrossRef
Google scholar
|
[43] |
Pöppel, E. (2004). Lost in time: A historical frame, elementary processing units and the 3-second window. Acta Neurobiologiae Experimentalis, 64(3), 295–301.
|
[44] |
Pöppel, E. (2009). Pre-semantically defined temporal windows for cognitive processing. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1525), 1887–1896.
CrossRef
Google scholar
|
[45] |
Protopapa, F., Hayashi, M. J., Kulashekhar, S., van der Zwaag, W., Battistella, G., Murray, M. M., Kanai, R., & Bueti, D. (2019). Chronotopic maps in human supplementary motor area. PLoS Biology, 17(3), e3000026.
CrossRef
Google scholar
|
[46] |
Rao, S. M., Mayer, A. R., & Harrington, D. L. (2001). The evolution of brain activation during temporal processing. Nature Neuroscience, 4(3), 317–323.
CrossRef
Google scholar
|
[47] |
Shi, Z., Ganzenmüller, S., & Müller, H. J. (2013). Reducing bias in auditory duration reproduction by integrating the reproduced signal. PLoS One, 8(4), e62065.
CrossRef
Google scholar
|
[48] |
Skagerlund, K., & Träff, U. (2014). Development of magnitude processing in children with developmental dyscalculia: Space, time, and number. Frontiers in Psychology, 5, 675.
CrossRef
Google scholar
|
[49] |
Soares, S., Atallah, B. V., & Paton, J. J. (2016). Midbrain dopamine neurons control judgment of time. Science, 354(6317), 1273–1277.
CrossRef
Google scholar
|
[50] |
Sokolowski, H. M., Fias, W., Bosah Ononye, C., & Ansari, D. (2017). Are numbers grounded in a general magnitude processing system? A functional neuroimaging meta-analysis. Neuropsychologia, 105, 50–69.
CrossRef
Google scholar
|
[51] |
Teki, S., Grube, M., Kumar, S., & Griffiths, T. D. (2011). Distinct neural substrates of duration-based and beat-based auditory timing. Journal of Neuroscience, 31(10), 3805–3812.
CrossRef
Google scholar
|
[52] |
Tudusciuc, O., & Nieder, A. (2007). Neuronal population coding of continuous and discrete quantity in the primate posterior parietal cortex. Proceedings of the National Academy of Sciences, 104(36), 14513–14518.
CrossRef
Google scholar
|
[53] |
Turner, R. S., & Desmurget, M. (2010). Basal ganglia contributions to motor control: A vigorous tutor. Current Opinion in Neurobiology, 20(6), 704–716.
CrossRef
Google scholar
|
[54] |
Ulbrich, P., Churan, J., Fink, M., & Wittmann, M. (2007). Temporal reproduction: Further evidence for two processes. Acta Psychologica, 125(1), 51–65.
CrossRef
Google scholar
|
[55] |
Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483–488.
CrossRef
Google scholar
|
[56] |
Wang, L., Lin, X., Zhou, B., Pöppel, E., & Bao, Y. (2016). Rubberband effect in temporal control of mismatch negativity. Frontiers in Psychology, 7, 1299.
CrossRef
Google scholar
|
[57] |
Wittmann, M. (2013). The inner sense of time: How the brain creates a representation of duration. Nature Reviews Neuroscience, 14(3), 217–223.
CrossRef
Google scholar
|
[58] |
Wittmann, M., Simmons, A. N., Aron, J. L., & Paulus, M. P. (2010). Accumulation of neural activity in the posterior insula encodes the passage of time. Neuropsychologia, 48(10), 3110–3120.
CrossRef
Google scholar
|
[59] |
Yu, X., & Bao, Y. (2020). The three second time window in poems and language processing in general: Complementarity of discrete timing and temporal continuity. PsyCh Journal, 9(4), 429–443.
CrossRef
Google scholar
|
[60] |
Zhao, C., Zhang, D., & Bao, Y. (2018). A time window of 3 s in the aesthetic appreciation of poems. PsyCh Journal, 7(1), 51–52.
CrossRef
Google scholar
|
[61] |
Zhou, B., Poppel, E., & Bao, Y. (2014). In the jungle of time: The concept of identity as a way out. Frontiers in Psychology, 5, 844.
CrossRef
Google scholar
|
/
〈 | 〉 |