Lowering low-density lipoprotein cholesterol: from mechanisms to therapies
Received date: 09 Mar 2022
Revised date: 31 Mar 2022
Accepted date: 13 May 2022
Copyright
Low-density lipoprotein (LDL) is the main carrier of cholesterol and cholesteryl ester in circulation. High plasma levels of LDL cholesterol (LDL-C) are a major risk factor of atherosclerotic cardiovascular disease (ASCVD). LDL-C lowering is recommended by many guidelines for the prevention and treatment of ASCVD. Statins, ezetimibe, and proprotein convertase subtilisin/kexin type 9 inhibitors are the mainstay of LDL-C-lowering therapy. Novel therapies are also emerging for patients who are intolerant to statins or respond poorly to standard treatments. Here, we review the most recent advances on LDL-C-lowering drugs, focusing on the mechanisms by which they act to reduce LDL-C levels. The article starts with the cornerstone therapies applicable to most patients at risk for ASCVD. Special treatments for those with little or no LDL receptor function then follow. The inhibitors of ATP-citrate lyase and cholesteryl ester transfer protein, which are recently approved and still under investigation for LDL-C lowering, respectively, are also included. Strategies targeting the stability of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and cholesterol catabolism can be novel regimens to reduce LDL-C levels and cardiovascular risk.
Jie Luo , Jin-Kai Wang , Bao-Liang Song . Lowering low-density lipoprotein cholesterol: from mechanisms to therapies[J]. Life Metabolism, 2022 , 1(1) : 25 -38 . DOI: 10.1093/lifemeta/loac004
1 |
Luo J , Yang H , Song BL . Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol 2020; 21: 225- 45.
|
2 |
Authors/Task Force Members, ESC Committee for Practice Guidelines, and ESC National Cardiac Societies. 2019 ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Atherosclerosis 2019; 290: 140- 205.
|
3 |
Najam O , Ray KK . Familial hypercholesterolemia: a review of the natural history, diagnosis, and management. Cardiol Ther 2015; 4: 25- 38.
|
4 |
Ference BA , Ginsberg HN , Graham I et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 2017; 38: 2459- 72.
|
5 |
Roth GA , Mensah GA , Johnson CO et al. Global burden of cardiovascular diseases and risk factors, 1990-2019: update from the GBD 2019 study. J Am Coll Cardiol 2020; 76: 2982- 3021.
|
6 |
Khera R , Valero-Elizondo J , Nasir K . Financial toxicity in atherosclerotic cardiovascular disease in the United States: current state and future directions. J Am Heart Assoc 2020; 9: e017793.
|
7 |
Grundy SM , Stone NJ , Bailey AL et al. 2018 AHA/ACC/AACVPR/ AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Circulation 2018; 139: E1082- 143.
|
8 |
Silverman MG , Ference BA , Im K et al. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis. JAMA 2016; 316: 1289- 97.
|
9 |
Abul-Husn NS , Manickam K , Jones LK et al. Genetic identification of familial hypercholesterolemia within a single US health care system. Science 2016; 354: aaf7000.
|
10 |
Michos ED , McEvoy JW , Blumenthal RS . Lipid management for the prevention of atherosclerotic cardiovascular disease. N Engl J Med 2019; 381: 1557- 67.
|
11 |
Rossi M , Fabris E , Barbisan D et al. Lipid-lowering drug therapy: critical approach for implementation in clinical practice. Am J Cardiovasc Drugs 2022; 22: 141- 55.
|
12 |
Chen L , Chen XW , Huang X et al. Regulation of glucose and lipid metabolism in health and disease.Sci China Life Sci 2019; 62: 1420- 58.
|
13 |
Mitsche MA , McDonald JG , Hobbs HH et al. Flux analysis of cholesterol biosynthesis in vivo reveals multiple tissue and celltype specific pathways. eLife 2015; 4: e07999.
|
14 |
Istvan ES , Deisenhofer J . Structural mechanism for statin inhibition of HMG-CoA reductase. Science 2001; 292: 1160- 4.
|
15 |
Ward NC , Watts GF , Eckel RH . Statin toxicity. Circ Res 2019; 124: 328- 50.
|
16 |
Climent E , Benaiges D , Pedro-Botet J . Hydrophilic or lipophilic statins? Front Cardiovasc Med 2021; 8: 687585.
|
17 |
Mach F , Baigent C , Catapano AL et al. ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 2019; 2020: 111- 88.
|
18 |
Bytyci I , Penson PE , Mikhailidis DP et al. Prevalence of statin intolerance: a meta-analysis. Eur Heart J 2022.
|
19 |
Wang DQ . Regulation of intestinal cholesterol absorption. Annu Rev Physiol 2007; 69: 221- 48.
|
20 |
Altmann SW , Davis HR , Zhu LJ et al. Niemann-Pick C1 like 1 protein is critical for intestinal cholesterol absorption. Science 2004; 303: 1201- 4.
|
21 |
Davies JP , Levy B , Ioannou YA . Evidence for a Niemann-Pick C (NPC) gene family: identification and characterization of NPC1L1. Genomics 2000; 65: 137- 45.
|
22 |
Wang LJ , Song BL . Niemann-Pick C1-like 1 and cholesterol uptake. Biochim Biophys Acta 2012; 1821: 964- 72.
|
23 |
Ge L , Qi W , Wang LJ et al. Flotillins play an essential role in Niemann-Pick C1-like 1-mediated cholesterol uptake. Proc Natl Acad Sci USA 2011; 108: 551- 6.
|
24 |
Li PS , Fu ZY , Zhang YY et al. The clathrin adaptor Numb regulates intestinal cholesterol absorption through dynamic interaction with NPC1L1. Nat Med 2014; 20: 80- 6.
|
25 |
Hao M , Lin SX , Karylowski OJ et al. Vesicular and non-vesicular sterol transport in living cells. The endocytic recycling compartment is a major sterol storage organelle. J Biol Chem 2002; 277: 609- 17.
|
26 |
Xie S , Bahl K , Reinecke JB et al. The endocytic recycling compartment maintains cargo segregation acquired upon exit from the sorting endosome. Mol Biol Cell 2016; 27: 108- 26.
|
27 |
Temel RE , Lee RG , Kelley KL et al. Intestinal cholesterol absorption is substantially reduced in mice deficient in both ABCA1 and ACAT2. J Lipid Res 2005; 46: 2423- 31.
|
28 |
Zhang YY , Fu ZY , Wei J et al. A LIMA1 variant promotes low plasma LDL cholesterol and decreases intestinal cholesterol absorption. Science 2018; 360: 1087- 92.
|
29 |
Xie C , Li N , Chen ZJ et al. The small GTPase Cdc42 interacts with Niemann-Pick C1-like 1 (NPC1L1) and controls its movement from endocytic recycling compartment to plasma membrane in a cholesterol-dependent manner. J Biol Chem 2011; 286: 35933- 42.
|
30 |
Chu BB , Ge L , Xie C et al. Requirement of myosin Vb.Rab11a.Rab11-FIP2 complex in cholesterol-regulated translocation of NPC1L1 to the cell surface. J Biol Chem 2009; 284: 22481- 90.
|
31 |
Cohen DE . Balancing cholesterol synthesis and absorption in the gastrointestinal tract. J Clin Lipidol 2008; 2: S1- 3.
|
32 |
Garcia-Calvo M , Lisnock JM , Bull HG et al. The target of ezetimibe is Niemann-Pick Cl-like 1 (NPC1L1). Proc Natl Acad Sci USA 2005; 102: 8132- 7.
|
33 |
Temel RE , Tang W , Ma Y et al. Hepatic Niemann-Pick C1-like 1 regulates biliary cholesterol concentration and is a target of ezetimibe. J Clin Invest 2007; 117: 1968- 78.
|
34 |
Hu MQ , Yang F , Huang YW et al. Structural insights into the mechanism of human NPC1L1-mediated cholesterol uptake. Sci Adv 2021; 7: eabg3188.
|
35 |
Huang CS , Yu XC , Fordstrom P et al. Cryo-EM structures of NPC1L1 reveal mechanisms of cholesterol transport and ezetimibe inhibition. Sci Adv 2020; 6: eabb1989.
|
36 |
Long T , Liu Y , Qin Y et al. Structures of dimeric human NPC1L1 provide insight into mechanisms for cholesterol absorption. Sci Adv 2021; 7: eabh3997.
|
37 |
Kosoglou T , Statkevich P , Johnson-Levonas AO et al. Ezetimibe: a review of its metabolism, pharmacokinetics and drug interactions. Clin Pharmacokinet 2005; 44: 467- 94.
|
38 |
Wan S , Ding Y , Ji X et al. The safety and efficacy of ezetimibe plus statins on asvd and related diseases. Aging Dis 2021; 12: 1857- 71.
|
39 |
Dietschy JM , Turley SD , Spady DK . Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. J Lipid Res 1993; 34: 1637- 59.
|
40 |
Garcia CK , Wilund K , Arca M et al. Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science 2001; 292: 1394- 8.
|
41 |
Morris SM , Cooper JA . Disabled-2 colocalizes with the LDLR in clathrin-coated pits and interacts with AP-2. Traffic 2001; 2: 111- 23.
|
42 |
Brown MS , Herz J , Goldstein JL . LDL-receptor structure. Calcium cages, acid baths and recycling receptors. Nature 1997; 388: 629- 30.
|
43 |
Brown MS , Anderson RG , Goldstein JL . Recycling receptors: the round-trip itinerary of migrant membrane proteins. Cell 1983; 32: 663- 7.
|
44 |
Kwon HJ , Abi-Mosleh L , Wang ML et al. Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell 2009; 137: 1213- 24.
|
45 |
Qian H , Wu X , Du X et al. Structural basis of low-pH-dependent lysosomal cholesterol egress by NPC1 and NPC2. Cell 2020; 182: 98- 111.e18.
|
46 |
Luo J , Jiang L , Yang H et al. Routes and mechanisms of post-endosomal cholesterol trafficking: a story that never ends. Traffic 2017; 18: 209- 17.
|
47 |
Luo J , Jiang LY , Yang HY et al. Intracellular cholesterol transport by sterol transfer proteins at membrane contact sites. Trends Biochem Sci 2019; 44: 273- 92.
|
48 |
Zhang DW , Lagace TA , Garuti R et al. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat a of low density lipoprotein receptor decreases receptor recycling and increases degradation. J Biol Chem 2007; 282: 18602- 12.
|
49 |
Yamamoto T , Lu C , Ryan RO . A two-step binding model of PCSK9 interaction with the low density lipoprotein receptor. J Biol Chem 2011; 286: 5464- 70.
|
50 |
Tveten K , Holla OL , Cameron J et al. Interaction between the ligand-binding domain of the LDL receptor and the C-terminal domain of PCSK9 is required for PCSK9 to remain bound to the LDL receptor during endosomal acidification. Hum Mol Genet 2012; 21: 1402- 9.
|
51 |
Zhang DW , Garuti R , Tang WJ et al. Structural requirements for PCSK9-mediated degradation of the low-density lipoprotein receptor. Proc Natl Acad Sci USA 2008; 105: 13045- 50.
|
52 |
Lagace TA . PCSK9 and LDLR degradation: regulatory mechanisms in circulation and in cells. Curr Opin Lipidol 2014; 25: 387- 93.
|
53 |
Wang Y , Huang Y , Hobbs HH et al. Molecular characterization of proprotein convertase subtilisin/kexin type 9-mediated degradation of the LDLR. J Lipid Res 2012; 53: 1932- 43.
|
54 |
Poirier S , Mayer G , Poupon V et al. Dissection of the endogenous cellular pathways of PCSK9-induced low density lipoprotein receptor degradation: evidence for an intracellular route. J Biol Chem 2009; 284: 28856- 64.
|
55 |
Cunningham D , Danley DE , Geoghegan KF et al. Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nat Struct Mol Biol 2007; 14: 413- 9.
|
56 |
Cameron J , Holla OL , Laerdahl JK et al. Characterization of novel mutations in the catalytic domain of the PCSK9 gene. J Intern Med 2008; 263: 420- 31.
|
57 |
Cameron J , Holla OL , Laerdahl JK et al. Mutation S462P in the PCSK9 gene reduces secretion of mutant PCSK9 without affecting the autocatalytic cleavage. Atherosclerosis 2009; 203: 161- 5.
|
58 |
Dubuc G , Chamberland A , Wassef H et al. Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler Thromb Vasc Biol 2004; 24: 1454- 9.
|
59 |
Careskey HE , Davis RA , Alborn WE et al. Atorvastatin increases human serum levels of proprotein convertase subtilisin/kexin type 9. J Lipid Res 2008; 49: 394- 8.
|
60 |
Davignon J , Dubuc G . Statins and ezetimibe modulate plasma proprotein convertase subtilisin kexin-9 (PCSK9) levels. Trans Am Clin Climatol Assoc 2009; 120: 163- 73.
|
61 |
Sahebkar A , Simental-Mendia LE , Guerrero-Romero F et al. Effect of statin therapy on plasma proprotein convertase subtilisin kexin 9 (PCSK9) concentrations: a systematic review and meta-analysis of clinical trials. Diabetes Obes Metab 2015; 17: 1042- 55.
|
62 |
Seidah NG . The PCSK9 revolution and the potential of PCSK9-based therapies to reduce LDL-cholesterol. Glob Cardiol Sci Pract 2017; 2017: e201702.
|
63 |
Sabatine MS , Giugliano RP , Keech AC et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med 2017; 376: 1713- 22.
|
64 |
Schwartz GG , Steg PG , Szarek M et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med 2018; 379: 2097- 107.
|
65 |
Nair JK , Willoughby JL , Chan A et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc 2014; 136: 16958- 61.
|
66 |
Subhan MA , Torchilin VP . siRNA based drug design, quality, delivery and clinical translation. Nanomedicine 2020; 29: 102239.
|
67 |
Da Dalt L , Castiglioni L , Baragetti A et al. PCSK9 deficiency rewires heart metabolism and drives heart failure with preserved ejection fraction. Eur Heart J 2021; 42: 3078- 90.
|
68 |
Foody JM , Vishwanath R . Familial hypercholesterolemia/autosomal dominant hypercholesterolemia: molecular defects, the LDL-C continuum, and gradients of phenotypic severity. J Clin Lipidol 2016; 10: 970- 86.
|
69 |
Shelness GS , Ingram MF , Huang XF et al. Apolipoprotein B in the rough endoplasmic reticulum: translation, translocation and the initiation of lipoprotein assembly. J Nutr 1999; 129: 456S- 62S.
|
70 |
Huang D , Xu BL , Liu L et al. TMEM41B acts as an ER scramblase required for lipoprotein biogenesis and lipid homeostasis. Cell Metab 2021; 33: 1655- 70.
|
71 |
Li YE , Wang Y , Du X et al. TMEM41B and VMP1 are scramblases and regulate the distribution of cholesterol and phosphatidylserine. J Cell Biol 2021; 220: e202103105.
|
72 |
Ye J , Li JZ , Liu Y et al. Cideb, an ER- and lipid droplet-associated protein, mediates VLDL lipidation and maturation by interacting with apolipoprotein B. Cell Metab 2009; 9: 177- 90.
|
73 |
Smagris E , Gilyard S , BasuRay S et al. Inactivation of tm6sf2, a gene defective in fatty liver disease, impairs lipidation but not secretion of very low density lipoproteins. J Biol Chem 2016; 291: 10659- 76.
|
74 |
Luo F , Smagris E , Martin S et al. Hepatic TM6SF2 is required for lipidation of VLDL in a pre-Golgi compartment in mice and rats. Cell Mol Gastroenterol Hepatol 2021; 13: 879- 99.
|
75 |
Li BT , Sun M , Li YF et al. Disruption of the ERLIN-TM6SF2-APOB complex destabilizes APOB and contributes to non-alcoholic fatty liver disease. PLoS Genet 2020; 16: e1008955.
|
76 |
Tiwari S , Siddiqi SA . Intracellular trafficking and secretion of VLDL. Arterioscler Thromb Vasc Biol 2012; 32: 1079- 86.
|
77 |
Dash S , Xiao CT , Morgantini C et al. New insights into the regulation of chylomicron production. Annu Rev Nutr 2015; 35: 265- 94.
|
78 |
Chen SH , Habib G , Yang CY et al. Apolipoprotein B-48 is the product of a messenger-RNA with an organ-specific in-frame stop codon. Science 1987; 238: 363- 6.
|
79 |
Crooke ST , Geary RS . Clinical pharmacological properties of mipomersen (Kynamro), a second generation antisense inhibitor of apolipoprotein B. Br J Clin Pharmacol 2013; 76: 269- 76.
|
80 |
Yu RZ , Lemonidis KM , Graham MJ et al. Cross-species comparison of in vivo PK/PD relationships for second-generation antisense oligonucleotides targeting apolipoprotein B-100. Biochem Pharmacol 2009; 77: 910- 9.
|
81 |
Raal FJ , Santos RD , Blom DJ et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double-blind, placebo-controlled trial. Lancet 2010; 375: 998- 1006.
|
82 |
Thomas GS , Cromwell WC , Ali S et al. Mipomersen, an apolipoprotein B synthesis inhibitor, reduces atherogenic lipoproteins in patients with severe hypercholesterolemia at high cardiovascular risk: a randomized, double-blind, placebo-controlled trial. J Am Coll Cardiol 2013; 62: 2178- 84.
|
83 |
Cuchel M , Bloedon LT , Szapary PO et al. Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. N Engl J Med 2007; 356: 148- 56.
|
84 |
Cuchel M , Meagher EA , du Toit Theron H et al. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single-arm, open-label, phase 3 study. Lancet 2013; 381: 40- 6.
|
85 |
Khoury E , Brisson D , Roy N et al. Review of the long-term safety of lomitapide: a microsomal triglycerides transfer protein inhibitor for treating homozygous familial hypercholesterolemia. Expert Opin Drug Saf 2019; 18: 403- 14.
|
86 |
Young SG , Fong LG , Beigneux AP et al. GPIHBP1 and lipoprotein lipase, partners in plasma triglyceride metabolism. Cell Metab 2019; 30: 51- 65.
|
87 |
Santamarina-Fojo S , Gonzalez-Navarro H , Freeman L et al. Hepatic lipase, lipoprotein metabolism, and atherogenesis. Arterioscler Thromb Vasc Biol 2004; 24: 1750- 4.
|
88 |
Khetarpal SA , Vitali C , Levin MG et al. Endothelial lipase mediates efficient lipolysis of triglyceride-rich lipoproteins. PLoS Genet 2021; 17: e1009802.
|
89 |
Tosheska Trajkovska K , Topuzovska S . High-density lipoprotein metabolism and reverse cholesterol transport: strategies for raising HDL cholesterol. Anatol J Cardiol 2017; 18: 149- 54.
|
90 |
Eisenberg S , Sehayek E , Olivecrona T et al. Lipoproteinlipase enhances binding of lipoproteins to heparan-sulfate on cell-surfaces and extracellular-matrix. J Clin Invest 1992; 90: 2013- 21.
|
91 |
Strauss JG , Zimmermann R , Hrzenjak A et al. Endothelial cell-derived lipase mediates uptake and binding of high-density lipoprotein (HDL) particles and the selective uptake of HDL-associated cholesterol esters independent of its enzymic activity. Biochem J 2002; 368: 69- 79.
|
92 |
Barter PJ , Brewer HB Jr, Chapman MJ et al. Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis. Arterioscler Thromb Vasc Biol 2003; 23: 160- 7.
|
93 |
Quagliarini F , Wang Y , Kozlitina J et al. Atypical angiopoietin-like protein that regulates ANGPTL3. Proc Natl Acad Sci USA 2012; 109: 19751- 6.
|
94 |
Chen YQ , Pottanat TG , Siegel RW et al. Angiopoietin-like protein 8 differentially regulates ANGPTL3 and ANGPTL4 during postprandial partitioning of fatty acids. J Lipid Res 2020; 61: 1203- 20.
|
95 |
Shimamura M , Matsuda M , Yasumo H et al. Angiopoietin-like protein3 regulates plasma HDL cholesterol through suppression of endothelial lipase. Arterioscler Thromb Vasc Biol 2007; 27: 366- 72.
|
96 |
Sylvers-Davie KL , Segura-Roman A , Salvi AM et al. Angiopoietinlike 3 inhibition of endothelial lipase is not modulated by angiopoietin-like 8. J Lipid Res 2021; 62: 100112.
|
97 |
Musunuru K , Pirruccello JP , Do R et al. Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N Engl J Med 2010; 363: 2220- 7.
|
98 |
Wang Y , Gusarova V , Banfi S et al. Inactivation of ANGPTL3 reduces hepatic VLDL-triglyceride secretion. J Lipid Res 2015; 56: 1296- 307.
|
99 |
Xu YX , Redon V , Yu H et al. Role of angiopoietin-like 3 (ANGPTL3) in regulating plasma level of low-density lipoprotein cholesterol. Atherosclerosis 2018; 268: 196- 206.
|
100 |
Gusarova V , Alexa CA , Wang Y et al. ANGPTL3 blockade with a human monoclonal antibody reduces plasma lipids in dyslipidemic mice and monkeys. J Lipid Res 2015; 56: 1308- 17.
|
101 |
Adam RC , Mintah IJ , Alexa-Braun CA et al. Angiopoietin-like protein 3 governs LDL-cholesterol levels through endothelial lipase-dependent VLDL clearance. J Lipid Res 2020; 61: 1271- 86.
|
102 |
Wu L , Soundarapandian MM , Castoreno AB et al. LDL-cholesterol reduction by ANGPTL3 inhibition in mice is dependent on endothelial lipase. Circ Res 2020; 127: 1112- 4.
|
103 |
Raal FJ , Rosenson RS , Reeskamp LF et al. Evinacumab for homozygous familial hypercholesterolemia. N Engl J Med 2020; 383: 711- 20.
|
104 |
Gaudet D , Gipe DA , Pordy R et al. ANGPTL3 inhibition in homozygous familial hypercholesterolemia. N Engl J Med 2017; 377: 296- 7.
|
105 |
Rosenson RS , Burgess LJ , Ebenbichler CF et al. Evinacumab in patients with refractory hypercholesterolemia. N Engl J Med 2020; 383: 2307- 19.
|
106 |
Watts GF , Schwabe C , Scott R et al. Abstract 15751: pharmacodynamic effect of ARO-ANG3, an investigational RNA interference targeting hepatic angiopoietin-like protein 3, in patients with hypercholesterolemia. Circulation 2020; 142: A15751.
|
107 |
Fukuda H , Katsurada A , Iritani N . Effects of nutrients and hormones on gene expression of ATP citrate-lyase in rat liver. Eur J Biochem 1992; 209: 217- 22.
|
108 |
Pinkosky SL , Newton RS , Day EA et al. Liver-specific ATP-citrate lyase inhibition by bempedoic acid decreases LDL-C and attenuates atherosclerosis. Nat Commun 2016; 7: 13457.
|
109 |
Goldberg AC , Leiter LA , Stroes ESG et al. Effect of bempedoic acid vs placebo added to maximally tolerated statins on low-density lipoprotein cholesterol in patients at high risk for cardiovascular disease: the CLEAR wisdom randomized clinical trial. JAMA 2019; 322: 1780- 8.
|
110 |
Ray KK , Bays HE , Catapano AL et al. Safety and efficacy of bempedoic acid to reduce LDL cholesterol. N Engl J Med 2019; 380: 1022- 32.
|
111 |
Ballantyne CM , Banach M , Mancini GBJ et al. Efficacy and safety of bempedoic acid added to ezetimibe in statin-intolerant patients with hypercholesterolemia: a randomized, placebo-controlled study. Atherosclerosis 2018; 277: 195- 203.
|
112 |
Laufs U , Banach M , Mancini GBJ et al. Efficacy and safety of bempedoic acid in patients with hypercholesterolemia and statin intolerance. J Am Heart Assoc 2019; 8: e011662.
|
113 |
Banach M , Duell PB , Gotto AM Jr. et al. Association of bempedoic acid administration with atherogenic lipid levels in phase 3 randomized clinical trials of patients with hypercholesterolemia. JAMA Cardiol 2020; 5: 1124- 35.
|
114 |
Ballantyne CM , Laufs U , Ray KK et al. Bempedoic acid plus ezetimibe fixed-dose combination in patients with hypercholesterolemia and high CVD risk treated with maximally tolerated statin therapy. Eur J Prev Cardiol 2020; 27: 593- 603.
|
115 |
Tall AR . Plasma cholesteryl ester transfer protein. J Lipid Res 1993; 34: 1255- 74.
|
116 |
Zannis VI , Fotakis P , Koukos G et al. HDL biogenesis, remodeling, and catabolism. Handb Exp Pharmacol 2015; 224: 53- 111.
|
117 |
Tall AR , Rader DJ . Trials and tribulations of CETP inhibitors. Circ Res 2018; 122: 106- 12.
|
118 |
Inazu A , Brown ML , Hesler CB et al. Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N Engl J Med 1990; 323: 1234- 8.
|
119 |
Brown ML , Inazu A , Hesler CB et al. Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins. Nature 1989; 342: 448- 51.
|
120 |
Barter PJ , Caulfield M , Eriksson M et al. Effects of torcetrapib in patients at high risk for coronary events. N Engl J Med 2007; 357: 2109- 22.
|
121 |
Schwartz GG , Olsson AG , Abt M et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med 2012; 367: 2089- 99.
|
122 |
Lincoff AM , Nicholls SJ , Riesmeyer JS et al. Evacetrapib and cardiovascular outcomes in high-risk vascular disease. N Engl J Med 2017; 376: 1933- 42.
|
123 |
Schmidt AF , Hunt NB , Gordillo-Maranon M et al. Cholesteryl ester transfer protein (CETP) as a drug target for cardiovascular disease. Nat Commun 2021; 12: 5640.
|
124 |
Ference BA , Kastelein JJP , Ginsberg HN et al. Association of genetic variants related to CETP inhibitors and statins with lipoprotein levels and cardiovascular risk. JAMA 2017; 318: 947- 56.
|
125 |
Millar JS , Reyes-Soffer G , Jumes P et al. Anacetrapib lowers LDL by increasing ApoB clearance in mildly hypercholesterolemic subjects. J Clin Invest 2015; 125: 2510- 22.
|
126 |
Group HTRC , Bowman L , Hopewell JC et al. Effects of anacetrapib in patients with atherosclerotic vascular disease. N Engl J Med 2017; 377: 1217- 27.
|
127 |
Sammons E , Hopewell JC , Chen F et al; HPS3/TIMI55-REVEAL Collaborative Group Writing Committee. Long-term safety and efficacy of anacetrapib in patients with atherosclerotic vascular disease. Eur Heart J 2022; 43: 1416- 24.
|
128 |
Hovingh GK , Kastelein JJ , van Deventer SJ et al. Cholesterol ester transfer protein inhibition by TA-8995 in patients with mild dyslipidaemia (TULIP): a randomised, double-blind, placebo-controlled phase 2 trial. Lancet 2015; 386: 452- 60.
|
129 |
Liscum L , Finermoore J , Stroud RM et al. Domain structure of 3-hydroxy-3-methylglutaryl coenzyme A reductase, a glycoprotein of the endoplasmic reticulum. J Biol Chem 1985; 260: 522- 30.
|
130 |
Brown MS , Goldstein JL . Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. J Lipid Res 1980; 21: 505- 17.
|
131 |
Song BL , Javitt NB , DeBose-Boyd RA . Insig-mediated degradation of HMG CoA reductase stimulated by lanosterol, an intermediate in the synthesis of cholesterol. Cell Metab 2005; 1: 179- 89.
|
132 |
Chen L , Ma MY , Sun M et al. Endogenous sterol intermediates of the mevalonate pathway regulate HMG-CoA reductase degradation and SREBP-2 processing. J Lipid Res 2019; 60: 1765- 75.
|
133 |
Sever N , Song BL , Yabe D et al. Insig-dependent ubiquitination and degradation of mammalian 3-hydroxy-3-methylglutaryl-CoA reductase stimulated by sterols and geranylgeraniol. J Biol Chem 2003; 278: 52479- 90.
|
134 |
Jiang SY , Tang JJ , Xiao X et al. Schnyder corneal dystrophy-associated UBIAD1 mutations cause corneal cholesterol accumulation by stabilizing HMG-CoA reductase. PLoS Genet 2019; 15: e1008289.
|
135 |
Kita T , Brown MS , Goldstein JL . Feedback regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in livers of mice treated with mevinolin, a competitive inhibitor of the reductase. J Clin Invest 1980; 66: 1094- 100.
|
136 |
Hwang S , Hartman IZ , Calhoun LN et al. Contribution of accelerated degradation to feedback regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase and cholesterol metabolism in the liver. J Biol Chem 2016; 291: 13479- 94.
|
137 |
Ness GC , Chambers CM , Lopez D . Atorvastatin action involves diminished recovery of hepatic HMG-CoA reductase activity. J Lipid Res 1998; 39: 75- 84.
|
138 |
Reihner E , Rudling M , Stahlberg D et al. Influence of pravastatin, a specific inhibitor of HMG-CoA reductase, on hepatic-metabolism of cholesterol. N Engl J Med 1990; 323: 224- 8.
|
139 |
Jiang SY , Li H , Tang JJ et al. Discovery of a potent HMG-CoA reductase degrader that eliminates statin-induced reductase accumulation and lowers cholesterol. Nat Commun 2018; 9: 5138.
|
140 |
Li MX , Yang Y , Zhao Q et al. Degradation versus inhibition: development of proteolysis-targeting chimeras for overcoming statin-induced compensatory upregulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase. J Med Chem 2020; 63: 4908- 28.
|
141 |
Luo GS , Li ZB , Lin X et al. Discovery of an orally active VHLrecruiting PROTAC that achieves robust HMGCR degradation and potent hypolipidemic activity in vivo. Acta Pharm Sin B 2021; 11: 1300- 14.
|
142 |
Mullard A . Targeted protein degraders crowd into the clinic. Nat Rev Drug Discov 2021; 20: 247- 50.
|
143 |
Lu XY , Shi XJ , Hu A et al. Feeding induces cholesterol biosynthesis via the mTORC1-USP20-HMGCR axis. Nature 2020; 588: 479- 84.
|
144 |
Staels B , Fonseca VA . Bile acids and metabolic regulation: mechanisms and clinical responses to bile acid sequestration. Diabetes Care 2009; 32: S237- 45.
|
145 |
Chiang JY . Bile acid metabolism and signaling. Compr Physiol 2013; 3: 1191- 212.
|
146 |
Russell DW . The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem 2003; 72: 137- 74.
|
147 |
Gerard P . Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens 2013; 3: 14- 24.
|
148 |
Kriaa A , Bourgin M , Potiron A et al. Microbial impact on cholesterol and bile acid metabolism: current status and future prospects. J Lipid Res 2019; 60: 323- 32.
|
149 |
Juste C , Gerard P . Cholesterol-to-coprostanol conversion by the gut microbiota: what we know, suspect, and ignore. Microorganisms 2021; 9: 1881.
|
150 |
Kenny DJ , Plichta DR , Shungin D et al. Cholesterol metabolism by uncultured human gut bacteria influences host cholesterol level. Cell Host Microbe 2020; 28: 245- 57.
|
151 |
Katzmann JL , Gouni-Berthold I , Laufs U . PCSK9 inhibition: insights from clinical trials and future prospects. Front Physiol 2020; 11: 595819.
|
152 |
Kersten S . ANGPTL3 as therapeutic target. Curr Opin Lipidol 2021; 32: 335- 41.
|
153 |
Wang JK , Li Y , Zhao XL et al. Ablation of plasma prekallikrein decreases low-density lipoprotein cholesterol by stabilizing low-density lipoprotein receptor and protects against atherosclerosis. Circulation 2022; 145: 675- 87.
|
154 |
van Capelleveen JC , van der Valk FM , Stroes ES . Current therapies for lowering lipoprotein (a). J Lipid Res 2016; 57: 1612- 8.
|
155 |
Rosenson RS , Shaik A , Song W . New therapies for lowering triglyceride-rich lipoproteins: JACC focus seminar 3/4. J Am Coll Cardiol 2021; 78: 1817- 30.
|
/
〈 | 〉 |