Potential therapeutic strategies for MASH: from preclinical to clinical development

Zhifu Xie, Yufeng Li, Long Cheng, Yidan Huang, Wanglin Rao, Honglu Shi, Jingya Li

PDF(589 KB)
PDF(589 KB)
Life Metabolism ›› 2024, Vol. 3 ›› Issue (5) : loae029. DOI: 10.1093/lifemeta/loae029
Review Article

Potential therapeutic strategies for MASH: from preclinical to clinical development

Author information +
History +

Abstract

Current treatment paradigms for metabolic dysfunction-associated steatohepatitis (MASH) are based primarily on dietary restrictions and the use of existing drugs, including anti-diabetic and anti-obesity medications. Given the limited number of approved drugs specifically for MASH, recent efforts have focused on promising strategies that specifically target hepatic lipid metabolism, inflammation, fibrosis, or a combination of these processes. In this review, we examined the pathophysiology underlying the development of MASH in relation to recent advances in effective MASH therapy. Particularly, we analyzed the effects of lipogenesis inhibitors, nuclear receptor agonists, glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists, fibroblast growth factor mimetics, and combinatorial therapeutic approaches. We summarize these targets along with their preclinical and clinical candidates with the ultimate goal of optimizing the therapeutic prospects for MASH.

Keywords

steatosis / inflammation / fibrosis / metabolic dysfunction-associated steatohepatitis / pharmacotherapy

Cite this article

Download citation ▾
Zhifu Xie, Yufeng Li, Long Cheng, Yidan Huang, Wanglin Rao, Honglu Shi, Jingya Li. Potential therapeutic strategies for MASH: from preclinical to clinical development. Life Metabolism, 2024, 3(5): loae029 https://doi.org/10.1093/lifemeta/loae029

References

[1]
Loomba R , Friedman SL , Shulman GI . Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 2021; 184: 2537- 64.
[2]
Diehl AM , Day C . Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. N Engl J Med 2017; 377: 2063- 72.
[3]
Powell EE , Wong VW , Rinella M . Non-alcoholic fatty liver disease. Lancet 2021; 397: 2212- 24.
[4]
Riazi K , Azhari H , Charette JH et al. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol 2022; 7: 851- 61.
[5]
Estes C , Anstee QM , Arias-Loste MT et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016−2030. J Hepatol 2018; 69: 896- 904.
[6]
Mitra S , De A , Chowdhury A . Epidemiology of non-alcoholic and alcoholic fatty liver diseases. Transl Gastroenterol Hepatol 2020; 5: 16.
[7]
Harrison SA , Gawrieh S , Roberts K et al. Prospective evaluation of the prevalence of non-alcoholic fatty liver disease and steatohepatitis in a large middle-aged US cohort. J Hepatol 2021; 75: 284- 91.
[8]
Huang DQ , Singal AG , Kono Y et al. Changing global epidemiology of liver cancer from 2010 to 2019: NASH is the fastest growing cause of liver cancer. Cell Metab 2022; 34: 969- 77.e2.
[9]
Zhou F , Zhou J , Wang W et al. Unexpected rapid increase in the burden of NAFLD in China from 2008 to 2018: a systematic review and meta-analysis. Hepatology 2019; 70: 1119- 33.
[10]
Eslam M , Sanyal AJ , George J . MAFLD: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology 2020; 158: 1999- 2014.e1.
[11]
Buzzetti E , Pinzani M , Tsochatzis EA . The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 2016; 65: 1038- 48.
[12]
Schwabe RF , Tabas I , Pajvani UB . Mechanisms of fibrosis development in nonalcoholic steatohepatitis. Gastroenterology 2020; 158: 1913- 28.
[13]
Vuppalanchi R , Noureddin M , Alkhouri N et al. Therapeutic pipeline in nonalcoholic steatohepatitis. Nature Rev Gastroenterol Hepatol 2021; 18: 373- 92.
[14]
Vilar-Gomez E , Martinez-Perez Y , Calzadilla-Bertot L et al. Weight loss through lifestyle modification significantly reduces features of nonalcoholic steatohepatitis. Gastroenterology 2015; 149: 367- 78.e5.
[15]
Xu X , Poulsen KL , Wu L et al. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Signal Transduct Target Ther 2022; 7: 287.
[16]
Friedman SL , Neuschwander-Tetri BA , Rinella M et al. Mechanisms of NAFLD development and therapeutic strategies. Nat Med 2018; 24: 908- 22.
[17]
Yang YY , Xie L , Zhang NP et al. Updates on novel pharmacotherapeutics for the treatment of nonalcoholic steatohepatitis. Acta Pharmacol Sin 2022; 43: 1180- 90.
[18]
Vuppalanchi R , Noureddin M , Alkhouri N et al. Therapeutic pipeline in nonalcoholic steatohepatitis. Nat Rev Gastroenterol Hepatol 2021; 18: 373- 92.
[19]
Rui L . Energy metabolism in the liver.Compr Physiol 2014; 4: 177- 97.
[20]
Hodson L , Gunn PJ . The regulation of hepatic fatty acid synthesis and partitioning: the effect of nutritional state. Nat Rev Endocrinol 2019; 15: 689- 700.
[21]
Korenblat KM , Fabbrini E , Mohammed BS et al. Liver, muscle, and adipose tissue insulin action is directly related to intrahepatic triglyceride content in obese subjects. Gastroenterology 2008; 134: 1369- 75.
[22]
Marques-Lopes I , Ansorena D , Astiasaran I et al. Postprandial de novo lipogenesis and metabolic changes induced by a high-carbohydrate, low-fat meal in lean and overweight men. Am J Clin Nutr 2001; 73: 253- 61.
[23]
Todoric J , Di Caro G , Reibe S et al. Fructose stimulated de novo lipogenesis is promoted by inflammation. Nat Metab 2020; 2: 1034- 45.
[24]
Zhao S , Jang C , Liu J et al. Dietary fructose feeds hepatic lipogenesis via microbiota-derived acetate. Nature 2020; 579: 586- 91.
[25]
Smith GI , Shankaran M , Yoshino M et al. Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease. J Clin Invest 2020; 130: 1453- 60.
[26]
Lambert JE , Ramos-Roman MA , Browning JD et al. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 2014; 146: 726- 35.
[27]
Moore MP , Cunningham RP , Meers GM et al. Compromised hepatic mitochondrial fatty acid oxidation and reduced markers of mitochondrial turnover in human NAFLD. Hepatology 2022; 76: 1452- 65.
[28]
Li Y , Xu J , Lu Y et al. DRAK2 aggravates nonalcoholic fatty liver disease progression through SRSF6-associated RNA alternative splicing. Cell Metab 2021; 33: 2004- 20.e9.
[29]
Horn CL , Morales AL , Savard C et al. Role of cholesterol-associated steatohepatitis in the development of NASH. Hepatology Commun 2022; 6: 12- 35.
[30]
Ioannou GN . The role of cholesterol in the pathogenesis of NASH. Trends Endocrinol Metabol: TEM 2016; 27: 84- 95.
[31]
Wang XB , Cai BS , Yang XM et al. Cholesterol stabilizes TAZ in hepatocytes to promote experimental non-alcoholic steatohepatitis. Cell Metab 2020; 31: 969- 86.
[32]
Jiang SY , Yang XL , Yang ZM et al. Discovery of an insulin-induced gene binding compound that ameliorates nonalcoholic steatohepatitis by inhibiting sterol regulatory element-binding protein-mediated lipogenesis. Hepatology 2022; 76: 1466- 81.
[33]
Van Rooyen DM , Gan LT , Yeh MM et al. Pharmacological cholesterol lowering reverses fibrotic NASH in obese, diabetic mice with metabolic syndrome. J Hepatol 2013; 59: 144- 52.
[34]
Taub R , Chiang E , Chabot-Blanchet M et al. Lipid lowering in healthy volunteers treated with multiple doses of MGL-3196, a liver-targeted thyroid hormone receptor-β agonist. Atherosclerosis 2013; 230: 373- 80.
[35]
Harrison SA , Taub R , Neff GW et al. Resmetirom for nonalcoholic fatty liver disease: a randomized, double-blind, placebocontrolled phase 3 trial. Nat Med 2023; 29: 2919- 28.
[36]
Turpin SM , Nicholls HT , Willmes DM et al. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab 2014; 20: 678- 86.
[37]
Hajduch E , Lachkar F , Ferré P et al. Roles of ceramides in nonalcoholic fatty liver disease. J Clin Med 2021; 10: 792.
[38]
Raichur S , Wang ST , Chan PW et al. CerS2 haploinsufficiency inhibits β-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab 2014; 20: 687- 95.
[39]
Tamimi TI , Elgouhari HM , Alkhouri N et al. An apoptosis panel for nonalcoholic steatohepatitis diagnosis. J Hepatol 2011; 54: 1224- 9.
[40]
Hatting M , Zhao G , Schumacher F et al. Hepatocyte caspase-8 is an essential modulator of steatohepatitis in rodents. Hepatology 2013; 57: 2189- 201.
[41]
Thapaliya S , Wree A , Povero D et al. Caspase 3 inactivation protects against hepatic cell death and ameliorates fibrogenesis in a diet-induced NASH Model. Dig Dis Sci 2014; 59: 1197- 206.
[42]
Peiseler M , Schwabe R , Hampe J et al. Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease — novel insights into cellular communication circuits. J Hepatol 2022; 77: 1136- 60.
[43]
Albhaisi S , Noureddin M . Current and potential therapies targeting inflammation in NASH. Front Endocrinol (Lausanne) 2021; 12: 767314.
[44]
Roh YS , Seki E . Toll-like receptors in alcoholic liver disease, non-alcoholic steatohepatitis and carcinogenesis. J Gastroenterol Hepatol 2013; 28: 38- 42.
[45]
Wen Y , Lambrecht J , Ju C et al. Hepatic macrophages in liver homeostasis and diseases-diversity, plasticity and therapeutic opportunities. Cell Mol Immunol 2021; 18: 45- 56.
[46]
Gomes AL , Teijeiro A , Buren S et al. Metabolic inflammation-associated IL-17A causes non-alcoholic steatohepatitis and hepatocellular carcinoma. Cancer Cell 2016; 30: 161- 75.
[47]
Rau M , Schilling AK , Meertens J et al. Progression from nonalcoholic fatty liver to nonalcoholic steatohepatitis is marked by a higher frequency of Th17 cells in the liver and an increased Th17/resting regulatory T cell ratio in peripheral blood and in the liver. J Immunol 2016; 196: 97- 105.
[48]
Dibra D , Xia X , Mitra A et al. Mutant p53 in concert with an IL27 receptor α deficiency causes spontaneous liver inflammation, fibrosis, and steatosis in mice. Hepatology 2016; 63: 1000- 12.
[49]
Dudek M , Pfister D , Donakonda S et al. Auto-aggressive CXCR6+ CD8 T cells cause liver immune pathology in NASH. Nature 2021; 592: 444- 9.
[50]
Mederacke I , Hsu CC , Troeger JS et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nat Commun 2013; 4: 2823.
[51]
Feng G , Valenti L , Wong VW et al. Recompensation in cirrhosis: unravelling the evolving natural history of nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 2024; 21: 46- 56.
[52]
Hammerich L , Tacke F . Hepatic inflammatory responses in liver fibrosis. Nat Rev Gastroenterol Hepatol 2023; 20: 633- 46.
[53]
Henderson NC , Arnold TD , Katamura Y et al. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat Med 2013; 19: 1617- 24.
[54]
Henderson NC , Rieder F , Wynn TA . Fibrosis: from mechanisms to medicines. Nature 2020; 587: 555- 66.
[55]
Borkham-Kamphorst E , Weiskirchen R . The PDGF system and its antagonists in liver fibrosis. Cytokine Growth Factor Rev 2016; 28: 53- 61.
[56]
Ying HZ , Chen Q , Zhang WY et al. PDGF signaling pathway in hepatic fibrosis pathogenesis and therapeutics (Review). Mol Med Rep 2017; 16: 7879- 89.
[57]
Heymann F , Tacke F . Immunology in the liver — from homeostasis to disease. Nat Rev Gastroenterol Hepatol 2016; 13: 88- 110.
[58]
Shen H , Sheng L , Chen Z et al. Mouse hepatocyte over-expression of NF-κB-inducing kinase (NIK) triggers fatal macrophage-dependent liver injury and fibrosis. Hepatology 2014; 60: 2065- 76.
[59]
Harrison SA , Bedossa P , Guy CD et al. A phase 3, randomized, controlled trial of resmetirom in NASH with liver fibrosis. N Engl J Med 2024; 390: 497- 509.
[60]
Erion MD , Cable EE , Ito BR et al. Targeting thyroid hormone receptor-β agonists to the liver reduces cholesterol and triglycerides and improves the therapeutic index. Proc Natl Acad Sci U S A 2007; 104: 15490- 5.
[61]
Francque SM , Bedossa P , Ratziu V et al. A randomized, controlled trial of the pan-PPAR agonist lanifibranor in NASH. N Engl J Med 2021; 385: 1547- 58.
[62]
Ratziu V , Harrison SA , Francque S et al. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-α and -δ, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology 2016; 150: 1147- 59.e5.
[63]
Gawrieh S , Noureddin M , Loo N et al. Saroglitazar, a PPAR-α/γ agonist, for treatment of NAFLD: a randomized controlled double-blind phase 2 trial. Hepatology 2021; 74: 1809- 24.
[64]
Sanyal AJ , Chalasani N , Kowdley KV et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 2010; 362: 1675- 85.
[65]
Armstrong MJ , Houlihan DD , Rowe IA . Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 2010; 363: 1185- 6.
[66]
Das Pradhan A , Glynn RJ , Fruchart JC et al. Triglyceride lowering with pemafibrate to reduce cardiovascular risk. N Engl J Med 2022; 387: 1923- 34.
[67]
Shinozaki S , Tahara T , Miura K et al. Pemafibrate therapy for non-alcoholic fatty liver disease is more effective in lean patients than obese patients. Clin Exp Hepatol 2022; 8: 278- 83.
[68]
Younossi ZM , Ratziu V , Loomba R et al. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 2019; 394: 2184- 96.
[69]
Rinella ME , Dufour JF , Anstee QM et al. Non-invasive evaluation of response to obeticholic acid in patients with NASH: results from the REGENERATE study. J Hepatol 2022; 76: 536- 48.
[70]
Loomba R , Noureddin M , Kowdley KV et al. Combination therapies including cilofexor and firsocostat for bridging fibrosis and cirrhosis attributable to NASH. Hepatology 2021; 73: 625- 43.
[71]
Alkhouri N , Herring R , Kabler H et al. Safety and efficacy of combination therapy with semaglutide, cilofexor and firsocostat in patients with non-alcoholic steatohepatitis: a randomised, open-label phase II trial. J Hepatol 2022; 77: 607- 18.
[72]
Sanyal AJ , Lopez P , Lawitz EJ et al. Tropifexor for nonalcoholic steatohepatitis: an adaptive, randomized, placebo-controlled phase 2a/b trial. Nat Med 2023; 29: 392- 400.
[73]
Newsome PN , Buchholtz K , Cusi K et al. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N Engl J Med 2021; 384: 1113- 24.
[74]
Kuchay MS , Krishan S , Mishra SK et al. Effect of dulaglutide on liver fat in patients with type 2 diabetes and NAFLD: randomised controlled trial (D-LIFT trial). Diabetologia 2020; 63: 2434- 45.
[75]
Armstrong MJ , Gaunt P , Aithal GP et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): a multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 2016; 387: 679- 90.
[76]
Eguchi Y , Kitajima Y , Hyogo H et al. Pilot study of liraglutide effects in non-alcoholic steatohepatitis and non-alcoholic fatty liver disease with glucose intolerance in Japanese patients (LEAN-J). Hepatol Res 2015; 45: 269- 78.
[77]
Khoo J , Hsiang JC , Taneja R et al. Randomized trial comparing effects of weight loss by liraglutide with lifestyle modification in non-alcoholic fatty liver disease. Liver Int 2019; 39: 941- 9.
[78]
Loomba R , Kayali Z , Noureddin M et al. GS-0976 reduces hepatic steatosis and fibrosis markers in patients with nonalcoholic fatty liver disease. Gastroenterology 2018; 155: 1463- 73.e6.
[79]
Kim CW , Addy C , Kusunoki J et al. Acetyl CoA carboxylase inhibition reduces hepatic steatosis but elevates plasma triglycerides in mice and humans: a bedside to bench investigation. Cell Metab 2017; 26: 576.
[80]
Loomba R , Mohseni R , Lucas KJ et al. TVB-2640 (FASN Inhibitor) for the treatment of nonalcoholic steatohepatitis: FASCINATE-1, a randomized, placebo-controlled Phase 2a Trial.Gastroenterology 2021; 161: 1475- 86.
[81]
Ratziu V , de Guevara L , Safadi R et al. Aramchol in patients with nonalcoholic steatohepatitis: a randomized, double-blind, placebo-controlled phase 2b trial. Nat Med 2021; 27: 1825- 35.
[82]
Morrow MR , Batchuluun B , Wu JH et al. Inhibition of ATP-citrate lyase improves NASH, liver fibrosis, and dyslipidemia. Cell Metab 2022; 34: 919- 36.e8.
[83]
Harrison SA , Ruane PJ , Freilich B et al. A randomized, double-blind, placebo-controlled phase IIa trial of efruxifermin for patients with compensated NASH cirrhosis. JHEP Rep 2023; 5: 100563.
[84]
Harrison SA , Ruane PJ , Freilich BL et al. Efruxifermin in nonalcoholic steatohepatitis: a randomized, double-blind, placebo-controlled, phase 2a trial. Nat Med 2021; 27: 1262- 71.
[85]
Harrison SA , Frias JP , Neff G et al. Safety and efficacy of onceweekly efruxifermin versus placebo in non-alcoholic steatohepatitis (HARMONY): a multicentre, randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Gastroenterol Hepatol 2023; 8: 1080- 93.
[86]
Loomba R , Lawitz EJ , Frias JP et al. Safety, pharmacokinetics, and pharmacodynamics of pegozafermin in patients with nonalcoholic steatohepatitis: a randomised, double-blind, placebocontrolled, phase 1b/2a multiple-ascending-dose study. Lancet Gastroenterol Hepatol 2023; 8: 120- 32.
[87]
Loomba R , Sanyal AJ , Kowdley KV et al. Randomized, controlled trial of the FGF21 analogue pegozafermin in NASH. N Engl J Med 2023; 389: 998- 1008.
[88]
Harrison SA , Alkhouri N , Davison BA et al. Insulin sensitizer MSDC-0602K in non-alcoholic steatohepatitis: a randomized, double-blind, placebo-controlled phase IIb study. J Hepatol 2020; 72: 613- 26.
[89]
Friedman S , Sanyal A , Goodman Z et al. Efficacy and safety study of cenicriviroc for the treatment of non-alcoholic steatohepatitis in adult subjects with liver fibrosis: CENTAUR phase 2b study design. Contemp Clin Trials 2016; 47: 356- 65.
[90]
Anstee QM , Neuschwander-Tetri BA , Wai-Sun Wong V et al. Cenicriviroc lacked efficacy to treat liver fibrosis in nonalcoholic steatohepatitis: AURORA phase III randomized study. Clin Gastroenterol Hepatol 2024; 22: 124- 34.e1.
[91]
Loomba R , Lawitz E , Mantry PS et al. The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: a randomized, phase 2 trial. Hepatology 2018; 67: 549- 59.
[92]
Harrison SA , Wong VW , Okanoue T et al. Selonsertib for patients with bridging fibrosis or compensated cirrhosis due to NASH: results from randomized phase III STELLAR trials. J Hepatol 2020; 73: 26- 39.
[93]
Calle RA , Amin NB , Carvajal-Gonzalez S et al. ACC inhibitor alone or co-administered with a DGAT2 inhibitor in patients with non-alcoholic fatty liver disease: two parallel, placebo-controlled, randomized phase 2a trials. Nat Med 2021; 27: 1836- 48.
[94]
Pockros PJ , Fuchs M , Freilich B et al. CONTROL: a randomized phase 2 study of obeticholic acid and atorvastatin on lipoproteins in nonalcoholic steatohepatitis patients. Liver Int 2019; 39: 2082- 93.
[95]
Zucchi R . Thyroid hormone analogues: an update. Thyroid 2020; 30: 1099- 105.
[96]
Jakobsson T , Vedin LL , Parini P . Potential role of thyroid receptor β agonists in the treatment of hyperlipidemia. Drugs 2017; 77: 1613- 21.
[97]
Vidal-Cevallos P , Murua-Beltran Gall S , Uribe M et al. Understanding the relationship between nonalcoholic fatty liver disease and thyroid disease. Int J Mol Sci 2023; 24: 14605.
[98]
Ritter MJ , Amano I , Hollenberg AN . Thyroid hormone signaling and the liver. Hepatology 2020; 72: 742- 52.
[99]
Bruinstroop E , Dalan R , Cao Y et al. Low-dose levothyroxine reduces intrahepatic lipid content in patients with type 2 diabetes mellitus and NAFLD. J Clin Endocrinol Metab 2018; 103: 2698- 706.
[100]
Trost SU , Swanson E , Gloss B et al. The thyroid hormone receptor-β-selective agonist GC-1 differentially affects plasma lipids and cardiac activity. Endocrinology 2000; 141: 3057- 64.
[101]
Villicev CM , Freitas FRS , Aoki MS et al. Thyroid hormone receptor β-specific agonist GC-1 increases energy expenditure and prevents fat-mass accumulation in rats. J Endocrinol 2007; 193: 21- 9.
[102]
Saponaro F , Sestito S , Runfola M et al. Selective thyroid hormone receptor-beta (TRβ) agonists: new perspectives for the treatment of metabolic and neurodegenerative disorders. Front Med (Lausanne) 2020; 7: 331.
[103]
Berkenstam A , Kristensen J , Mellstrom K et al. The thyroid hormone mimetic compound KB2115 lowers plasma LDL cholesterol and stimulates bile acid synthesis without cardiac effects in humans. Proc Natl Acad Sci U S A 2008; 105: 663- 7.
[104]
Baxter JD , Webb P . Thyroid hormone mimetics: potential applications in atherosclerosis, obesity and type 2 diabetes. Nat Rev Drug Discov 2009; 8: 308- 20.
[105]
Sjouke B , Langslet G , Ceska R et al. Eprotirome in patients with familial hypercholesterolaemia (the AKKA trial): a randomised, double-blind, placebo-controlled phase 3 study. Lancet Diabetes Endocrinol 2014; 2: 455- 63.
[106]
Hones GS , Sivakumar RG , Hoppe C et al. Cell-specific transport and thyroid hormone receptor isoform selectivity account for hepatocyte-targeted thyromimetic action of MGL-3196. Int J Mol Sci 2022; 23: 13714.
[107]
Karim G , Bansal MB . Resmetirom: an orally administered, small-molecule, liver-directed, β-selective THR agonist for the treatment of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. touchREV Endocrinol 2023; 19: 60- 70.
[108]
Tanaka N , Aoyama T , Kimura S et al. Targeting nuclear receptors for the treatment of fatty liver disease. Pharmacol Ther 2017; 179: 142- 57.
[109]
Poulsen L , Siersbaek M , Mandrup S . PPARs: fatty acid sensors controlling metabolism. Semin Cell Dev Biol 2012; 23: 631- 9.
[110]
Tong L , Wang L , Yao S et al. PPARδ attenuates hepatic steatosis through autophagy-mediated fatty acid oxidation. Cell Death Dis 2019; 10: 197.
[111]
Tao L , Wu L , Zhang W et al. Peroxisome proliferator-activated receptor γ inhibits hepatic stellate cell activation regulated by miR-942 in chronic hepatitis B liver fibrosis. Life Sci 2020; 253: 117572.
[112]
Lefere S , Puengel T , Hundertmark J et al. Differential effects of selective- and pan-PPAR agonists on experimental steatohepatitis and hepatic macrophages. J Hepatol 2020; 73: 757- 70.
[113]
Ratziu V , Giral P , Jacqueminet S et al. Rosiglitazone for nonalcoholic steatohepatitis: one-year results of the randomized placebo-controlled Fatty Liver Improvement with Rosiglitazone Therapy (FLIRT) Trial. Gastroenterology 2008; 135: 100- 10.
[114]
Gross B , Pawlak M , Lefebvre P et al. PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat Rev Endocrinol 2017; 13: 36- 49.
[115]
Francque S , Szabo G , Abdelmalek MF et al. Nonalcoholic steatohepatitis: the role of peroxisome proliferator-activated receptors. Nat Rev Gastroenterol Hepatol 2021; 18: 24- 39.
[116]
Gong L , Wei F , Gonzalez FJ et al. Hepatic fibrosis: targeting peroxisome proliferator-activated receptor alpha from mechanism to medicines. Hepatology 2023; 78: 1625- 53.
[117]
Murakami K , Sasaki Y , Asahiyama M et al. Selective PPARα modulator pemafibrate and sodium-glucose cotransporter 2 inhibitor tofogliflozin combination treatment improved histopathology in experimental mice model of non-alcoholic steatohepatitis. Cells 2022; 11: 720.
[118]
Cariou B , Zair Y , Staels B et al. Effects of the new dual PPAR α/δ agonist GFT505 on lipid and glucose homeostasis in abdominally obese patients with combined dyslipidemia or impaired glucose metabolism. Diabetes Care 2011; 34: 2008- 14.
[119]
Wettstein G , Luccarini JM , Poekes L et al. The new-generation pan-peroxisome proliferator-activated receptor agonist IVA337 protects the liver from metabolic disorders and fibrosis. Hepatol Commun 2017; 1: 524- 37.
[120]
Feng Z , Xiang J , Liu H et al. Design, synthesis, and biological evaluation of triazolone derivatives as potent PPARα/δ dual agonists for the treatment of nonalcoholic steatohepatitis. J Med Chem 2022; 65: 2571- 92.
[121]
Xiang C , Chen X , Yao J et al. Design, synthesis and anti-NASH effect evaluation of novel GFT505 derivatives in vitro and in vivo. Eur J Med Chem 2023; 257: 115510.
[122]
Forman BM , Goode E , Chen J et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 1995; 81: 687- 93.
[123]
Makishima M , Okamoto AY , Repa JJ et al. Identification of a nuclear receptor for bile acids. Science 1999; 284: 1362- 5.
[124]
Parks DJ , Blanchard SG , Bledsoe RK et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 1999; 284: 1365- 8.
[125]
Calkin AC , Tontonoz P . Transcriptional integration of metabolism by the nuclear sterol-activated receptors LXR and FXR. Nat Rev Mol Cell Biol 2012; 13: 213- 24.
[126]
Puri P , Daita K , Joyce A et al. The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids. Hepatology 2018; 67: 534- 48.
[127]
Ma K , Saha PK , Chan L et al. Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest 2006; 116: 1102- 9.
[128]
Sinal CJ , Tohkin M , Miyata M et al. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 2000; 102: 731- 44.
[129]
Watanabe M , Houten SM , Wang L et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J Clin Invest 2004; 113: 1408- 18.
[130]
Sirvent A , Claudel T , Martin G et al. The farnesoid X receptor induces very low density lipoprotein receptor gene expression. FEBS Lett 2004; 566: 173- 7.
[131]
Pineda Torra I , Claudel T , Duval C et al. Bile acids induce the expression of the human peroxisome proliferator-activated receptor α gene via activation of the farnesoid X receptor. Mol Endocrinol 2003; 17: 259- 72.
[132]
Cyphert HA , Ge X , Kohan AB et al. Activation of the farnesoid X receptor induces hepatic expression and secretion of fibroblast growth factor 21. J Biol Chem 2012; 287: 25123- 38.
[133]
Schumacher JD , Guo GL . Pharmacologic modulation of bile acid-FXR-FGF15/FGF19 pathway for the treatment of nonalcoholic steatohepatitis. Handb Exp Pharmacol 2019; 256: 325- 57.
[134]
Mencarelli A , Renga B , Migliorati M et al. The bile acid sensor farnesoid X receptor is a modulator of liver immunity in a rodent model of acute hepatitis. J Immunol 2009; 183: 6657- 66.
[135]
Fiorucci S , Antonelli E , Rizzo G et al. The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis. Gastroenterology 2004; 127: 1497- 512.
[136]
Yamagata K , Daitoku H , Shimamoto Y et al. Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1. J Biol Chem 2004; 279: 23158- 65.
[137]
Caron S , Huaman Samanez C , Dehondt H et al. Farnesoid X receptor inhibits the transcriptional activity of carbohydrate response element binding protein in human hepatocytes. Mol Cell Biol 2013; 33: 2202- 11.
[138]
Cariou B , van Harmelen K , Duran-Sandoval D et al. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J Biol Chem 2006; 281: 11039- 49.
[139]
Pellicciari R , Fiorucci S , Camaioni E et al. 6α-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J Med Chem 2002; 45: 3569- 72.
[140]
Maloney PR , Parks DJ , Haffner CD et al. Identification of a chemical tool for the orphan nuclear receptor FXR. J Med Chem 2000; 43: 2971- 4.
[141]
Li J , Liu M , Li Y et al. Discovery and optimization of non-bile acid FXR agonists as preclinical candidates for the treatment of nonalcoholic steatohepatitis. J Med Chem 2020; 63: 12748- 72.
[142]
Fang Y , Hegazy L , Finck BN et al. Recent advances in the medicinal chemistry of farnesoid X receptor. J Med Chem 2021; 64: 17545- 71.
[143]
Jinnouchi H , Sugiyama S , Yoshida A et al. Liraglutide, a glucagonlike peptide-1 analog, increased insulin sensitivity assessed by hyperinsulinemic-euglycemic clamp examination in patients with uncontrolled type 2 diabetes mellitus. J Diabetes Res 2015; 2015: 706416.
[144]
Frias JP , Nauck MA , Van J et al. Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial. Lancet 2018; 392: 2180- 93.
[145]
Mahapatra MK , Karuppasamy M , Sahoo BM . Therapeutic potential of semaglutide, a newer GLP-1 receptor agonist, in abating obesity, non-alcoholic steatohepatitis and neurodegenerative diseases: a narrative review. Pharm Res 2022; 39: 1233- 48.
[146]
Wang Z , Ye M , Zhang XJ et al. Impact of NAFLD and its pharmacotherapy on lipid profile and CVD. Atherosclerosis 2022; 355: 30- 44.
[147]
Chao AM , Tronieri JS , Amaro A et al. Semaglutide for the treatment of obesity. Trends Cardiovasc Med 2023; 33: 159- 66.
[148]
Targher G , Mantovani A , Byrne CD . Mechanisms and possible hepatoprotective effects of glucagon-like peptide-1 receptor agonists and other incretin receptor agonists in non-alcoholic fatty liver disease. Lancet Gastroenterol Hepatol 2023; 8: 179- 91.
[149]
Hartman ML , Sanyal AJ , Loomba R et al. Effects of novel dual GIP and GLP-1 receptor agonist tirzepatide on biomarkers of nonalcoholic steatohepatitis in patients with type 2 diabetes. Diabetes Care 2020; 43: 1352- 5.
[150]
Jeon YG , Kim YY , Lee G et al. Physiological and pathological roles of lipogenesis. Nat Metab 2023; 5: 735- 59.
[151]
Tong L . Acetyl-coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery. Cell Mol Life Sci 2005; 62: 1784- 803.
[152]
Bian H , Liu YM , Chen ZN . New avenues for NASH therapy by targeting ACC. Cell Metab 2022; 34: 191- 3.
[153]
Bates J , Vijayakumar A , Ghoshal S et al. Acetyl-CoA carboxylase inhibition disrupts metabolic reprogramming during hepatic stellate cell activation. J Hepatol 2020; 73: 896- 905.
[154]
Harriman G , Greenwood J , Bhat S et al. Acetyl-CoA carboxylase inhibition by ND-630 reduces hepatic steatosis, improves insulin sensitivity, and modulates dyslipidemia in rats. Proc Natl Acad Sci U S A 2016; 113: E1796- 805.
[155]
Zhang J , Muise ES , Han S et al. Molecular profiling reveals a common metabolic signature of tissue fibrosis. Cell Rep Med 2020; 1: 100056.
[156]
Ross TT , Crowley C , Kelly KL et al. Acetyl-CoA carboxylase inhibition improves multiple dimensions of NASH pathogenesis in model systems. Cell Mol Gastroenterol Hepatol 2020; 10: 829- 51.
[157]
Zhang XJ , Ji YX , Cheng X et al. A small molecule targeting ALOX12-ACC1 ameliorates nonalcoholic steatohepatitis in mice and macaques. Sci Transl Med 2021; 13: eabg8116.
[158]
Zhang XJ , She ZG , Wang J et al. Multiple omics study identifies an interspecies conserved driver for nonalcoholic steatohepatitis. Sci Transl Med 2021; 13: eabg8117.
[159]
Ogawa Y , Imajo K , Honda Y et al. Palmitate-induced lipotoxicity is crucial for the pathogenesis of nonalcoholic fatty liver disease in cooperation with gut-derived endotoxin. Sci Rep 2018; 8: 11365.
[160]
Wang H , Zhou Y , Xu H et al. Therapeutic efficacy of FASN inhibition in preclinical models of HCC. Hepatology 2022; 76: 951- 66.
[161]
O’Farrell M , Duke G , Crowley R et al. FASN inhibition targets multiple drivers of NASH by reducing steatosis, inflammation and fibrosis in preclinical models. Sci Rep 2022; 12: 15661.
[162]
Miyazaki M , Sampath H , Liu X et al. Stearoyl-CoA desaturase-1 deficiency attenuates obesity and insulin resistance in leptin-resistant obese mice. Biochem Biophys Res Commun 2009; 380: 818- 22.
[163]
Miyazaki M , Flowers MT , Sampath H et al. Hepatic stearoyl-CoA desaturase-1 deficiency protects mice from carbohydrate-induced adiposity and hepatic steatosis. Cell Metab 2007; 6: 484- 96.
[164]
Issandou M , Bouillot A , Brusq JM et al. Pharmacological inhibition of stearoyl-CoA desaturase 1 improves insulin sensitivity in insulin-resistant rat models. Eur J Pharmacol 2009; 618: 28- 36.
[165]
Iruarrizaga-Lejarreta M , Varela-Rey M , Fernandez-Ramos D et al. Role of aramchol in steatohepatitis and fibrosis in mice. Hepatol Commun 2017; 1: 911- 27.
[166]
Bhattacharya D , Basta B , Mato JM et al. Aramchol downregulates stearoyl CoA-desaturase 1 in hepatic stellate cells to attenuate cellular fibrogenesis. JHEP Rep 2021; 3: 100237.
[167]
Dongiovanni P , Petta S , Mannisto V et al. Statin use and non-alcoholic steatohepatitis in at risk individuals. J Hepatol 2015; 63: 705- 12.
[168]
Fatima K , Moeed A , Waqar E et al. Efficacy of statins in treatment and development of non-alcoholic fatty liver disease and steatohepatitis: a systematic review and meta-analysis. Clin Res Hepatol Gastroenterol 2022; 46: 101816.
[169]
Braun LR , Feldpausch MN , Czerwonka N et al. Effects of pitavastatin on insulin sensitivity and liver fat: a randomized clinical trial. J Clin Endocrinol Metab 2018; 103: 4176- 86.
[170]
Kimura Y , Hyogo H , Yamagishi S et al. Atorvastatin decreases serum levels of advanced glycation endproducts (AGEs) in nonalcoholic steatohepatitis (NASH) patients with dyslipidemia: clinical usefulness of AGEs as a biomarker for the attenuation of NASH. J Gastroenterol 2010; 45: 750- 7.
[171]
Athyros VG , Boutari C , Stavropoulos K et al. Statins: an underappreciated asset for the prevention and the treatment of NAFLD or NASH and the related cardiovascular risk. Curr Vasc Pharmacol 2018; 16: 246- 53.
[172]
Wei J , Leit S , Kuai J et al. An allosteric mechanism for potent inhibition of human ATP-citrate lyase. Nature 2019; 568: 566- 70.
[173]
Xie Z , Zhang M , Song Q et al. Development of the novel ACLY inhibitor 326E as a promising treatment for hypercholester-olemia. Acta Pharm Sin B 2023; 13: 739- 53.
[174]
Wang Q , Jiang L , Wang J et al. Abrogation of hepatic ATP-citrate lyase protects against fatty liver and ameliorates hyperglycemia in leptin receptor-deficient mice. Hepatology 2009; 49: 1166- 75.
[175]
Ray KK , Bays HE , Catapano AL et al. Safety and efficacy of bempedoic acid to reduce LDL cholesterol. N Engl J Med 2019; 380: 1022- 32.
[176]
Pinkosky SL , Newton RS , Day EA et al. Liver-specific ATP-citrate lyase inhibition by bempedoic acid decreases LDL-C and attenuates atherosclerosis. Nat Commun 2016; 7: 13457.
[177]
Nissen SE , Lincoff AM , Brennan D et al. Bempedoic acid and cardiovascular outcomes in statin-intolerant patients. N Engl J Med 2023; 388: 1353- 64.
[178]
Morrow MR , Batchuluun B , Wu J et al. Inhibition of ATP-citrate lyase improves NASH, liver fibrosis, and dyslipidemia. Cell Metab 2022; 34: 919- 36.e8.
[179]
Desjardins EM , Wu J , Lavoie DCT et al. Combination of an ACLY inhibitor with a GLP-1R agonist exerts additive benefits on nonalcoholic steatohepatitis and hepatic fibrosis in mice. Cell Rep Med 2023; 4: 101193.
[180]
Cao J , Lockwood J , Burn P et al. Cloning and functional characterization of a mouse intestinal acyl-CoA:monoacylglycerol acyltransferase, MGAT2. J Biol Chem 2003; 278: 13860- 6.
[181]
Yen CL , Cheong ML , Grueter C et al. Deficiency of the intestinal enzyme acyl CoA:monoacylglycerol acyltransferase-2 protects mice from metabolic disorders induced by high-fat feeding. Nat Med 2009; 15: 442- 6.
[182]
Hall AM , Kou K , Chen Z et al. Evidence for regulated monoacylglycerol acyltransferase expression and activity in human liver. J Lipid Res 2012; 53: 990- 9.
[183]
Cheng D , Zinker BA , Luo Y et al. MGAT2 inhibitor decreases liver fibrosis and inflammation in murine NASH models and reduces body weight in human adults with obesity. Cell Metab 2022; 34: 1732- 48.e5.
[184]
Nishimura T , Nakatake Y , Konishi M et al. Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta 2000; 1492: 203- 6.
[185]
Keuper M , Haring HU , Staiger H . Circulating FGF21 levels in human health and metabolic disease. Exp Clin Endocrinol Diabetes 2020; 128: 752- 70.
[186]
Lewis JE , Ebling FJP , Samms RJ et al. Going back to the biology of FGF21: new insights. Trends Endocrinol Metab 2019; 30: 491- 504.
[187]
Li H , Fang Q , Gao F et al. Fibroblast growth factor 21 levels are increased in nonalcoholic fatty liver disease patients and are correlated with hepatic triglyceride. J Hepatol 2010; 53: 934- 40.
[188]
Dushay J , Chui PC , Gopalakrishnan GS et al. Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology 2010; 139: 456- 63.
[189]
Morris-Stiff G , Feldstein AE . Fibroblast growth factor 21 as a biomarker for NAFLD: integrating pathobiology into clinical practice. J Hepatol 2010; 53: 795- 6.
[190]
Tian H , Zhang S , Liu Y et al. Fibroblast growth factors for nonalcoholic fatty liver disease: opportunities and challenges. Int J Mol Sci 2023; 24: 4583.
[191]
Fisher FM , Chui PC , Nasser IA et al. Fibroblast growth factor 21 limits lipotoxicity by promoting hepatic fatty acid activation in mice on methionine and choline-deficient diets. Gastroenterology 2014; 147: 1073- 83.e6.
[192]
Xu P , Zhang Y , Liu Y et al. Fibroblast growth factor 21 attenuates hepatic fibrogenesis through TGF-β/smad2/3 and NF-κB signaling pathways. Toxicol Appl Pharmacol 2016; 290: 43- 53.
[193]
Feingold KR , Grunfeld C , Heuer JG et al. FGF21 is increased by inflammatory stimuli and protects leptin-deficient ob/ob mice from the toxicity of sepsis. Endocrinology 2012; 153: 2689- 700.
[194]
Puengel T , Tacke F . Efruxifermin, an investigational treatment for fibrotic or cirrhotic nonalcoholic steatohepatitis (NASH). Expert Opin Investig Drugs 2023; 32: 451- 61.
[195]
Degirolamo C , Sabba C , Moschetta A . Therapeutic potential of the endocrine fibroblast growth factors FGF19, FGF21 and FGF23. Nat Rev Drug Discov 2016; 15: 51- 69.
[196]
Nicholes K , Guillet S , Tomlinson E et al. A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice. Am J Pathol 2002; 160: 2295- 307.
[197]
Ursic-Bedoya J , Desandre G , Chavey C et al. FGF19 and its analog aldafermin cooperate with MYC to induce aggressive hepatocarcinogenesis. EMBO Mol Med 2024; 16: 238- 50.
[198]
Zhou M , Learned RM , Rossi SJ et al. Engineered FGF19 eliminates bile acid toxicity and lipotoxicity leading to resolution of steatohepatitis and fibrosis in mice. Hepatol Commun 2017; 1: 1024- 42.
[199]
Harrison SA , Rinella ME , Abdelmalek MF et al. NGM282 for treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 2018; 391: 1174- 85.
[200]
Harrison SA , Neff G , Guy CD et al. Efficacy and safety of aldafermin, an engineered FGF19 analog, in a randomized, doubleblind, placebo-controlled trial of patients with nonalcoholic steatohepatitis. Gastroenterology 2021; 160: 219- 31.e1.
[201]
Harrison SA , Abdelmalek MF , Neff G et al. Aldafermin in patients with non-alcoholic steatohepatitis (ALPINE 2/3): a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Gastroenterol Hepatol 2022; 7: 603- 16.
[202]
Li YF , Xie ZF , Song Q et al. Mitochondria homeostasis: biology and involvement in hepatic steatosis to NASH. Acta Pharmacol Sin 2022; 43: 1141- 55.
[203]
Goedeke L , Shulman GI . Therapeutic potential of mitochondrial uncouplers for the treatment of metabolic associated fatty liver disease and NASH. Mol Metab 2021; 46: 101178.
[204]
Grundlingh J , Dargan PI , El-Zanfaly M et al. 2,4-dinitrophenol (DNP): a weight loss agent with significant acute toxicity and risk of death. J Med Toxicol 2011; 7: 205- 12.
[205]
Wei G , Song X , Fu Y et al. Sustained-release mitochondrial protonophore reverses nonalcoholic fatty liver disease in rats. Int J Pharm 2017; 530: 230- 8.
[206]
Perry RJ , Kim T , Zhang XM et al. Reversal of hypertriglyceridemia, fatty liver disease, and insulin resistance by a liver-targeted mitochondrial uncoupler. Cell Metab 2013; 18: 740- 8.
[207]
Jiang H , Jin J , Duan Y et al. Mitochondrial uncoupling coordinated with PDH activation safely ameliorates hyperglycemia via promoting glucose oxidation. Diabetes 2019; 68: 2197- 209.
[208]
Goedeke L , Peng L , Montalvo-Romeral V et al. Controlled-release mitochondrial protonophore (CRMP) reverses dyslipidemia and hepatic steatosis in dysmetabolic nonhuman primates. Sci Transl Med 2019; 11: eaay0284.
[209]
Tavoulari S , Sichrovsky M , Kunji ERS . Fifty years of the mitochondrial pyruvate carrier: new insights into its structure, function, and inhibition. Acta Physiol (Oxf) 2023; 238: e14016.
[210]
McCommis KS , Hodges WT , Brunt EM et al. Targeting the mitochondrial pyruvate carrier attenuates fibrosis in a mouse model of nonalcoholic steatohepatitis. Hepatology 2017; 65: 1543- 56.
[211]
Kamm DR , Pyles KD , Sharpe MC et al. Novel insulin sensitizer MSDC-0602K improves insulinemia and fatty liver disease in mice, alone and in combination with liraglutide. J Biol Chem 2021; 296: 100807.
[212]
Hodges WT , Jarasvaraparn C , Ferguson D et al. Mitochondrial pyruvate carrier inhibitors improve metabolic parameters in diet-induced obese mice. J Biol Chem 2022; 298: 101554.
[213]
Henderson NC , Mackinnon AC , Farnworth SL et al. Galectin-3 regulates myofibroblast activation and hepatic fibrosis. Proc Natl Acad Sci U S A 2006; 103: 5060- 5.
[214]
Iacobini C , Menini S , Ricci C et al. Galectin-3 ablation protects mice from diet-induced NASH: a major scavenging role for galectin-3 in liver. J Hepatol 2011; 54: 975- 83.
[215]
Traber PG , Zomer E . Therapy of experimental NASH and fibrosis with galectin inhibitors. PLoS One 2013; 8: e83481.
[216]
Traber PG , Chou H , Zomer E et al. Regression of fibrosis and reversal of cirrhosis in rats by galectin inhibitors in thioacetamide-induced liver disease. PLoS One 2013; 8: e75361.
[217]
Harrison SA , Marri SR , Chalasani N et al. Randomised clinical study: GR-MD-02, a galectin-3 inhibitor, vs. placebo in patients having non-alcoholic steatohepatitis with advanced fibrosis. Aliment Pharmacol Ther 2016; 44: 1183- 98.
[218]
Chalasani N , Abdelmalek MF , Garcia-Tsao G et al. Effects of belapectin, an inhibitor of galectin-3, in patients with nonalcoholic steatohepatitis with cirrhosis and portal hypertension. Gastroenterology 2020; 158: 1334- 45.e5.
[219]
Roh YS , Seki E . Chemokines and chemokine receptors in the development of NAFLD. Adv Exp Med Biol 2018; 1061: 45- 53.
[220]
Krenkel O , Puengel T , Govaere O et al. Therapeutic inhibition of inflammatory monocyte recruitment reduces steatohepatitis and liver fibrosis. Hepatology 2018; 67: 1270- 83.
[221]
Kruger AJ , Fuchs BC , Masia R et al. Prolonged cenicriviroc therapy reduces hepatic fibrosis despite steatohepatitis in a diet-induced mouse model of nonalcoholic steatohepatitis. Hepatol Commun 2018; 2: 529- 45.
[222]
Schuster S , Feldstein AE . NASH: novel therapeutic strategies targeting ASK1 in NASH. Nat Rev Gastroenterol Hepatol 2017; 14: 329- 30.
[223]
Dufour JF , Caussy C , Loomba R . Combination therapy for nonalcoholic steatohepatitis: rationale, opportunities and challenges. Gut 2020; 69: 1877- 84.
[224]
Lawitz EJ , Bhandari BR , Ruane PJ et al. Fenofibrate mitigates hypertriglyceridemia in nonalcoholic steatohepatitis patients treated with cilofexor/firsocostat. Clin Gastroenterol Hepatol 2023; 21: 143- 52.e3.
[225]
Kremoser C . FXR agonists for NASH: how are they different and what difference do they make? J Hepatol 2021; 75: 12- 5.
[226]
Targher G , Corey KE , Byrne CD et al. The complex link between NAFLD and type 2 diabetes mellitus — mechanisms and treatments. Nat Rev Gastroenterol Hepatol 2021; 18: 599- 612.
[227]
Leite NC , Salles GF , Araujo AL et al. Prevalence and associated factors of non-alcoholic fatty liver disease in patients with type-2 diabetes mellitus. Liver Int 2009; 29: 113- 9.
[228]
Harrison SA , Manghi FP , Smith WB et al. Licogliflozin for nonalcoholic steatohepatitis: a randomized, double-blind, placebo-controlled, phase 2a study. Nat Med 2022; 28: 1432- 8.
[229]
Ludwig J , Viggiano TR , McGill DB et al. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc 1980; 55: 434- 8.
[230]
Eslam M , Newsome PN , Sarin SK et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol 2020; 73: 202- 9.
[231]
Fan X , Song Y , Zhao J . Evolving liver disease insights from NAFLD to MASLD. Trends Endocrinol Metab 2024.
CrossRef Google scholar
[232]
Fouad Y , Waked I , Bollipo S et al. What’s in a name? Renaming ‘NAFLD’ to ‘MAFLD’. Liver Int 2020; 40: 1254- 61.

RIGHTS & PERMISSIONS

2024 The Author(s). Published by Oxford University Press on behalf of Higher Education Press.
AI Summary AI Mindmap
PDF(589 KB)

Accesses

Citations

Detail

Sections
Recommended

/