Immuno-electron microscopy localizes Caenorhabditis elegans vitellogenins along the classic exocytosis route

Chao Zhai , Nan Zhang , Xi-Xia Li , Xue-Ke Tan , Fei Sun , Meng-Qiu Dong

Life Metabolism ›› 2024, Vol. 3 ›› Issue (6) : loae025

PDF (9568KB)
Life Metabolism ›› 2024, Vol. 3 ›› Issue (6) : loae025 DOI: 10.1093/lifemeta/loae025
Original Article

Immuno-electron microscopy localizes Caenorhabditis elegans vitellogenins along the classic exocytosis route

Author information +
History +
PDF (9568KB)

Abstract

Vitellogenins (VITs) are the most abundant proteins in adult hermaphrodite Caenorhabditis elegans. VITs are synthesized in the intestine, secreted to the pseudocoelom, matured into yolk proteins, and finally deposited in oocytes as nutrients for progeny development. How VITs are secreted out of the intestine remains unclear. Using immuno-electron microscopy (immuno-EM), we localize intestinal VITs along an exocytic pathway consisting of the rough endoplasmic reticulum (ER), the Golgi, and the lipid bilayer-bounded VIT vesicles (VVs). This suggests that the classic exocytotic pathway mediates the secretion of VITs from the intestine to the pseudocoelom. We also show that pseudocoelomic yolk patches (PYPs) are membrane-less and amorphous. The different VITs/yolk proteins are packed as a mixture into the above structures. The size of VVs can vary with the VIT levels and the age of the worm. On adult Day 2 (AD 2), intestinal VVs (~200 nm in diameter) are smaller than gonadal yolk organelles (YOs, ~500 nm in diameter). VVs, PYPs, and YOs share a uniform medium electron density by conventional EM. The morphological profiles documented in this study serve as a reference for future studies of VITs/yolk proteins.

Keywords

vitellogenin / yolk / immuno-EM / exocytosis / Caenorhabditis elegans

Cite this article

Download citation ▾
Chao Zhai, Nan Zhang, Xi-Xia Li, Xue-Ke Tan, Fei Sun, Meng-Qiu Dong. Immuno-electron microscopy localizes Caenorhabditis elegans vitellogenins along the classic exocytosis route. Life Metabolism, 2024, 3(6): loae025 DOI:10.1093/lifemeta/loae025

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wu LT, Hui JHL, Chu KH. Origin and evolution of yolk proteins: expansion and functional diversification of large lipid transfer protein superfamily. Biol Reprod 2013; 88: 102.

[2]

Smolenaars MM, Madsen O, Rodenburg KW et al. Molecular diversity and evolution of the large lipid transfer protein superfamily. J Lipid Res 2007; 48: 489- 502.

[3]

Anderson TA, Levitt DG, Banaszak LJ. The structural basis of lipid interactions in lipovitellin, a soluble lipoprotein. Structure 1998; 6: 895- 909.

[4]

Du X, Wang X, Wang S et al. Functional characterization of vitellogenin_N domain, domain of unknown function 1943, and von Willebrand factor type D domain in vitellogenin of the non-bilaterian coral Euphyllia ancora: implications for emergence of immune activity of vitellogenin in basal metazoan. Dev Comp Immunol 2017; 67: 485- 94.

[5]

Li H, Zhang S. Functions of vitellogenin in eggs. Results Probl Cell Differ 2017; 63: 389- 401.

[6]

Grant B, Hirsh D. Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol Biol Cell 1999; 10: 4311- 26.

[7]

Perez MF, Lehner B. Vitellogenins-yolk gene function and regulation in Caenorhabditis elegans. Front Physiol 2019; 10: 1067.

[8]

Sharrock WJ. Cleavage of two yolk proteins from a precursor in Caenorhabditis elegans. J Mol Biol 1984; 174: 419- 31.

[9]

Sharrock W, Sutherlin ME, Leske K et al. Two distinct yolk lipoprotein complexes from Caenorhabditis elegans. J Biol Chem 1990; 265: 14422- 31.

[10]

Sharrock WJ. Yolk proteins of Caenorhabditis elegans. Dev Biol 1983; 96: 182- 8.

[11]

Ezcurra M, Benedetto A, Sornda T et al. C. elegans eats its own intestine to make yolk leading to multiple senescent pathologies. Curr Biol 2018; 28: 2544- 56.e5.

[12]

Kimble J, Sharrock WJ. Tissue-specific synthesis of yolk proteins in Caenorhabditis elegans. Dev Biol 1983; 96: 189- 96.

[13]

Dowen RH. CEH-60/PBX and UNC-62/MEIS coordinate a metabolic switch that supports reproduction in C. elegans. Dev Cell 2019; 49: 235- 50.e7.

[14]

Van de Walle P, Geens E, Baggerman G et al. CEH-60/PBX regulates vitellogenesis and cuticle permeability through intestinal interaction with UNC-62/MEIS in Caenorhabditis elegans. PLoS Biol 2019; 17: e3000499.

[15]

Van Rompay L, Borghgraef C, Beets I et al. New genetic regulators question relevance of abundant yolk protein production in C. elegans. Sci Rep 2015; 5: 16381.

[16]

Hall DH, Winfrey VP, Blaeuer G et al. Ultrastructural features of the adult hermaphrodite gonad of Caenorhabditis elegans: relations between the germ line and soma. Dev Biol 1999; 212: 101- 23.

[17]

Borgonie G, van Driessche E, Link CD et al. Internal lectin binding patterns in the nematodes Caenorhabditis elegans, Panagrolaimus superbus and Acrobeloides maximus. Fundam Appl Nematol 1997; 20: 173- 86.

[18]

Britton C, Murray L. Cathepsin L protease (CPL-1) is essential for yolk processing during embryogenesis in Caenorhabditis elegans. J Cell Sci 2004; 117: 5133- 43.

[19]

Paupard MC, Miller A, Grant B et al. Immuno-EM localization of GFP-tagged yolk proteins in C. elegans using microwave fixation. J Histochem Cytochem 2001; 49: 949- 56.

[20]

Kern CC, Townsend S, Salzmann A et al. C. elegans feed yolk to their young in a form of primitive lactation. Nat Commun 2021; 12: 5801.

[21]

Murphy CT, McCarroll SA, Bargmann CI et al. Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 2003; 424: 277- 83.

[22]

Seah NE, de Magalhaes Filho CD, Petrashen AP et al. Autophagy-mediated longevity is modulated by lipoprotein biogenesis. Autophagy 2016; 12: 261- 72.

[23]

Sornda T, Ezcurra M, Kern C et al. Production of YP170 vitellogenins promotes intestinal senescence in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 2019; 74: 1180- 8.

[24]

Wang H, Zhao Y, Ezcurra M et al. A parthenogenetic quasiprogram causes teratoma-like tumors during aging in wild-type C. elegans. NPJ Aging Mech Dis 2018; 4: 6.

[25]

Lemieux G, Ashrafi K. Insights and challenges in using C. elegans for investigation of fat metabolism. Crit Rev Biochem Mol Biol 2014; 50: 69- 84.

[26]

Wolkow CA, Hall DH. The dauer intestine. In WormAtlas; Cold Spring Harbor: New York, 2013.

[27]

Herndon LA, Schmeissner PJ, Dudaronek JM et al. Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 2002; 419: 808- 14.

[28]

Liu B, Du H, Rutkowski R et al. LAAT-1 is the lysosomal lysine/arginine transporter that maintains amino acid homeostasis. Science 2012; 337: 351- 4.

[29]

Dickinson DJ, Ward JD, Reiner DJ et al. Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods 2013; 10: 1028- 34.

[30]

Clokey GV, Jacobson LA. The autofluorescent “lipofuscin granules” in the intestinal cells of Caenorhabditis elegans are secondary lysosomes. Mech Ageing Dev 1986; 35: 79- 94.

[31]

Coburn C, Gems D. The mysterious case of the C. elegans gut granule: death fluorescence, anthranilic acid and the kynurenine pathway. Front Genet 2013; 4: 151.

[32]

Coburn C, Allman E, Mahanti P et al. Anthranilate fluorescence marks a calcium-propagated necrotic wave that promotes organismal death in C. elegans. PLoS Biol 2013; 11: e1001613.

[33]

Hermann GJ, Schroeder LK, Hieb CA et al. Genetic analysis of lysosomal trafficking in Caenorhabditis elegans. Mol Biol Cell 2005; 16: 3273- 88.

[34]

Teufel F, Almagro Armenteros JJ, Johansen AR et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat Biotechnol 2022; 40: 1023- 5.

[35]

Balklava Z, Pant S, Fares H et al. Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic. Nat Cell Biol 2007; 9: 1066- 73.

[36]

Saegusa K, Sato M, Morooka N et al. SFT-4/Surf4 control ER export of soluble cargo proteins and participate in ER exit site organization. J Cell Biol 2018; 217: 2073- 85.

[37]

Bruce A, Alexander J, Julian L et al. , Transport from the ER through the Golgi apparatus. In Molecular Biology of the Cell; Garland Science: New York, 2002.

[38]

Herbener GH, Bendayan M, Feldhoff RC. The intracellular pathway of vitellogenin secretion in the frog hepatocyte as revealed by protein A-gold immunocytochemistry. J Histochem Cytochem 1984; 32: 697- 704.

[39]

Reading BJ, Sullivan CV, Schilling J, Vitellogenesis in fishes. In: Reference Module in Life Sciences; Elsevier, 2017.

[40]

Gomez-Navarro N, Miller E. Protein sorting at the ER-Golgi interface. J Cell Biol 2016; 215: 769- 78.

[41]

Li X, Ji G, Chen X et al. Large scale three-dimensional reconstruction of an entire Caenorhabditis elegans larva using AutoCUTSSEM. J Struct Biol 2017; 200: 87- 96.

[42]

Zhai C, Zhang N, Li XX et al. Fusion and expansion of vitellogenin vesicles during Caenorhabditis elegans intestinal senescence. Aging Cell 2022; 21: e13719.

[43]

Tan D, Li Q, Zhang MJ et al. Trifunctional cross-linker for mapping protein-protein interaction networks and comparing protein conformational states. eLife 2016; 5: e12509.

[44]

Fagotto F. Regulation of yolk degradation, or how to make sleepy lysosomes. J Cell Sci 1995; 108: 3645- 7.

[45]

Chen Y, Scarcelli V, Legouis R. Approaches for studying autophagy in Caenorhabditis elegans. Cells 2017; 6: 27.

[46]

Costantini LM, Baloban M, Markwardt ML et al. A palette of fluorescent proteins optimized for diverse cellular environments. Nat Commun 2015; 6: 7670.

[47]

Costantini LM, Snapp EL. Fluorescent proteins in cellular organelles: serious pitfalls and some solutions. DNA Cell Biol 2013; 32: 622- 7.

[48]

Doherty GP, Bailey K, Lewis PJ. Stage-specific fluorescence intensity of GFP and mCherry during sporulation in Bacillus Subtilis. BMC Res Notes 2010; 3: 303.

[49]

Katayama H, Yamamoto A, Mizushima N et al. GFP-like proteins stably accumulate in lysosomes. Cell Struct Funct 2008; 33: 1- 12.

[50]

Snapp E. Design and use of fluorescent fusion proteins in cell biology. Curr Protoc Cell Biol 2005; Chapter 21: 21.4.1- 21.4.13.

[51]

Roth Z, Yehezkel G, Khalaila I. Identification and quantification of protein glycosylation. J Carbohydr Chem 2012; 2012: 640923.

[52]

Fu J, Gao J, Liang Z et al. PDI-regulated disulfide bond formation in protein folding and biomolecular assembly. Molecules 2020; 26: 171.

[53]

Hussain MM, Shi J, Dreizen P. Microsomal triglyceride transfer protein and its role in apoB-lipoprotein assembly. J Lipid Res 2003; 44: 22- 32.

[54]

Li WJ, Wang CW, Tao L et al. Insulin signaling regulates longevity through protein phosphorylation in Caenorhabditis elegans. Nat Commun 2021; 12: 4568.

[55]

Lints R, Hall DH, Reproductive system, somatic gonad. In: WormAtlas; Cold Spring Harbor: New York, 2009.

[56]

Geens E, Van de Walle P, Caroti F et al. Yolk-deprived Caenorhabditis elegans secure brood size at the expense of competitive fitness. Life Sci Alliance 2023; 6: e202201675.

[57]

Borgonie G, Claeys M, Waele DD et al. Ultrastructure of the intestine of the bacteriophagous nematodes Caenorhabditis elegans, Panagrolaimus superbus and Acrobeloides maximus. Fundam Appl Nematol 1995; 18: 123- 34.

[58]

Turek M, Banasiak K, Piechota M et al. Muscle-derived exophers promote reproductive fitness. EMBO Rep 2021; 22: e52071.

[59]

Blazie SM, Babb C, Wilky H et al. Comparative RNA-Seq analysis reveals pervasive tissue-specific alternative polyadenylation in Caenorhabditis elegans intestine and muscles. BMC Biol 2015; 13: 4.

[60]

Kaletsky R, Yao V, Williams A et al. Transcriptome analysis of adult Caenorhabditis elegans cells reveals tissue-specific gene and isoform expression. PLoS Genet 2018; 14: e1007559.

[61]

Wang X, Jiang Q, Song Y et al. Ageing induces tissuespecific transcriptomic changes in Caenorhabditis elegans. EMBO J 2022; 41: e109633.

[62]

Duerr JS. Antibody staining in C. elegans using “Freeze-Cracking”. J Vis Exp 2013; 80: e50664.

[63]

Jiang Z, Jin X, Li Y et al. Genetically encoded tags for direct synthesis of EM-visible gold nanoparticles in cells. Nat Methods 2020; 17: 937- 46.

[64]

Weimer RM, Preservation of C. elegans tissue via High-Pressure Freezing and Freeze-Substitution for ultrastructural analysis and immunocytochemistry. In: Strange K (ed.), C. elegans: Methods and Applications. Totowa, NJ: Humana Press, 2006, 203- 21.

[65]

Zhang SO, Trimble R, Guo F et al. Lipid droplets as ubiquitous fat storage organelles in C. elegans. BMC Cell Biol 2010; 11: 96.

RIGHTS & PERMISSIONS

The Author(s). Published by Oxford University Press on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (9568KB)

324

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/