Spatial multi-omics characterizes GPR35-relevant lipid metabolism signatures across liver zonation in MASLD

Wuxiyar Otkur, Yiran Zhang, Yirong Li, Wenjun Bao, Tingze Feng, Bo Wu, Yaolu Ma, Jing Shi, Li Wang, Shaojun Pei, Wen Wang, Jixia Wang, Yaopeng Zhao, Yanfang Liu, Xiuling Li, Tian Xia, Fangjun Wang, Di Chen, Xinmiao Liang, Hai-long Piao

PDF(5536 KB)
PDF(5536 KB)
Life Metabolism ›› 2024, Vol. 3 ›› Issue (6) : loae021. DOI: 10.1093/lifemeta/loae021
Original Article

Spatial multi-omics characterizes GPR35-relevant lipid metabolism signatures across liver zonation in MASLD

Author information +
History +

Abstract

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a metabolic disease that can progress to metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and cancer. The zonal distribution of biomolecules in the liver is implicated in mediating the disease progression. Recently, G-protein-coupled receptor 35 (GPR35) has been highlighted to play a role in MASLD, but the precise mechanism is not fully understood, particularly, in a liver-zonal manner. Here, we aimed to identify spatially distributed specific genes and metabolites in different liver zonation that are regulated by GPR35 in MASLD, by combining lipid metabolomics, spatial transcriptomics (ST), and spatial metabolomics (SM). We found that GPR35 influenced lipid accumulation, inflammatory and metabolism-related factors in specific regions, notably affecting the anti-inflammation factor ELF4 (E74 like E-twenty six (ETS) transcription factor 4), lipid homeostasis key factor CIDEA (cell death-inducing DNA fragmentation factor alpha (DFFA)-like effector A), and the injury response-related genes SAA1/2/3 (serum amyloid A1/2/3), thereby impacting MASLD progression. Furthermore, SM elucidated specific metabolite distributions across different liver regions, such as C10H11N4O7P (3ʹ,5ʹ-cyclic inosine monophosphate (3ʹ,5ʹ-IMP)) for the central vein, and this metabolite significantly decreased in the liver zones of GPR35-deficient mice during MASLD progression. Taken together, GPR35 regulates hepatocyte damage repair, controls inflammation, and prevents MASLD progression by influencing phospholipid homeostasis and gene expression in a zonal manner.

Keywords

GPR35 / MASLD / liver zonation / spatial transcriptomics / spatial metabolomics

Cite this article

Download citation ▾
Wuxiyar Otkur, Yiran Zhang, Yirong Li, Wenjun Bao, Tingze Feng, Bo Wu, Yaolu Ma, Jing Shi, Li Wang, Shaojun Pei, Wen Wang, Jixia Wang, Yaopeng Zhao, Yanfang Liu, Xiuling Li, Tian Xia, Fangjun Wang, Di Chen, Xinmiao Liang, Hai-long Piao. Spatial multi-omics characterizes GPR35-relevant lipid metabolism signatures across liver zonation in MASLD. Life Metabolism, 2024, 3(6): loae021 https://doi.org/10.1093/lifemeta/loae021

References

[1]
Ben-Moshe S , Itzkovitz S . Spatial heterogeneity in the mammalian liver. Nat Rev Gastroenterol Hepatol 2019; 16: 395- 410.
CrossRef Google scholar
[2]
Halpern KB , Shenhav R , Matcovitch-Natan O et al. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 2017; 542: 352- 6.
CrossRef Google scholar
[3]
De Giovanni M , Tam H , Valet C et al. GPR35 promotes neutrophil recruitment in response to serotonin metabolite 5-HIAA. Cell 2022; 185: 815- 30.e19.
CrossRef Google scholar
[4]
Wyant GA , Yu W , Doulamis IP et al. Mitochondrial remodeling and ischemic protection by G protein-coupled receptor 35 agonists. Science 2022; 377: 621- 9.
CrossRef Google scholar
[5]
Otkur W , Liu X , Chen H et al. GPR35 antagonist CID-2745687 attenuates anchorage-independent cell growth by inhibiting YAP/TAZ activity in colorectal cancer cells. Front Pharmacol 2023; 14: 1126119.
CrossRef Google scholar
[6]
McCallum JE , Mackenzie AE , Divorty N et al. G-protein-coupled receptor 35 mediates human saphenous vein vascular smooth muscle cell migration and endothelial cell proliferation. J Vasc Res 2015; 52: 383- 95.
CrossRef Google scholar
[7]
Otkur W , Wang J , Hou T et al. Aminosalicylates target GPR35, partly contributing to the prevention of DSS-induced colitis. Eur J Pharmacol 2023; 949: 175719.
CrossRef Google scholar
[8]
Agudelo LZ , Ferreira DMS , Cervenka I et al. Kynurenic acid and Gpr35 regulate adipose tissue energy homeostasis and inflammation. Cell Metab 2018; 27: 378- 92.e5.
CrossRef Google scholar
[9]
Wei X , Yin F , Wu M et al. G protein-coupled receptor 35 attenuates nonalcoholic steatohepatitis by reprogramming cholesterol homeostasis in hepatocytes. Acta Pharm Sin B 2023; 13: 1128- 44.
CrossRef Google scholar
[10]
Lin LC , Quon T , Engberg S et al. G protein-coupled receptor GPR35 suppresses lipid accumulation in hepatocytes. ACS Pharmacol Transl Sci 2021; 4: 1835- 48.
CrossRef Google scholar
[11]
Wu X , Chen S , Yan Q et al. Gpr35 shapes gut microbial ecology to modulate hepatic steatosis. Pharmacol Res 2023; 189: 106690.
CrossRef Google scholar
[12]
Nam SY , Park SJ , Im DS . Protective effect of lodoxamide on hepatic steatosis through GPR35. Cell Signal 2019; 53: 190- 200.
CrossRef Google scholar
[13]
Wang Y , Chen D , Liu Y et al. Multidirectional characterization of cellular composition and spatial architecture in human multiple primary lung cancers. Cell Death Dis 2023; 14: 462.
CrossRef Google scholar
[14]
Capolupo L , Khven I , Lederer AR et al. Sphingolipids control dermal fibroblast heterogeneity. Science 2022; 376: eabh1623.
CrossRef Google scholar
[15]
Ren J , Zhou H , Zeng H et al. Spatiotemporally resolved transcriptomics reveals the subcellular RNA kinetic landscape. Nat Methods 2023; 20: 695- 705.
CrossRef Google scholar
[16]
Sun C , Wang A , Zhou Y et al. Spatially resolved multi-omics highlights cell-specific metabolic remodeling and interactions in gastric cancer. Nat Commun 2023; 14: 2692.
CrossRef Google scholar
[17]
Halpern KB , Shenhav R , Massalha H et al. Paired-cell sequencing enables spatial gene expression mapping of liver endothelial cells. Nat Biotechnol 2018; 36: 962- 70.
CrossRef Google scholar
[18]
Hildebrandt F , Andersson A , Saarenpää S et al. Spatial transcriptomics to define transcriptional patterns of zonation and structural components in the mouse liver. Nat Commun 2021; 12: 7046.
CrossRef Google scholar
[19]
Wu L , Yan J , Bai Y et al. An invasive zone in human liver cancer identified by Stereo-seq promotes hepatocyte-tumor cell crosstalk, local immunosuppression and tumor progression. Cell Res 2023; 33: 585- 603.
CrossRef Google scholar
[20]
Cho CS , Xi J , Si Y et al. Microscopic examination of spatial transcriptome using Seq-Scope. Cell 2021; 184: 3559- 72.e22.
CrossRef Google scholar
[21]
Guilliams M , Bonnardel J , Haest B et al. Spatial proteogenomics reveals distinct and evolutionarily conserved hepatic macrophage niches. Cell 2022; 185: 379- 96.e38.
CrossRef Google scholar
[22]
Wang S , Wang X , Shan Y et al. Region-specific cellular and molecular basis of liver regeneration after acute pericentral injury. Cell Stem Cell 2024; 31: 341- 58.e7.
CrossRef Google scholar
[23]
Hall Z , Bond NJ , Ashmore T et al. Lipid zonation and phospholipid remodeling in nonalcoholic fatty liver disease. Hepatology 2017; 65: 1165- 80.
CrossRef Google scholar
[24]
Řlepokura KA . Purine 3’:5’-cyclic nucleotides with the nucleobase in a syn orientation: cAMP, cGMP and cIMP. Acta Crystallogr C Struct Chem 2016; 72: 465- 79.
CrossRef Google scholar
[25]
Sobolewski C , Abegg D , Berthou F et al. S100A11/ANXA2 belongs to a tumour suppressor/oncogene network deregulated early with steatosis and involved in inflammation and hepatocellular carcinoma development. Gut 2020; 69: 1841- 54.
CrossRef Google scholar
[26]
Hall KC , Bernier SG , Jacobson S et al. sGC stimulator praliciguat suppresses stellate cell fibrotic transformation and inhibits fibrosis and inflammation in models of NASH. Proc Natl Acad Sci U S A 2019; 116: 11057- 62.
CrossRef Google scholar
[27]
Kwapisz O , Górka J , Korlatowicz A et al. Fatty acids and a high-fat diet induce epithelial-mesenchymal transition by activating TGFβ and β-catenin in liver cells. Int J Mol Sci 2021; 22: 1272.
CrossRef Google scholar
[28]
Gwag T , Reddy Mooli RG , Li D et al. Macrophage-derived thrombospondin 1 promotes obesity-associated non-alcoholic fatty liver disease. JHEP Rep 2021; 3: 100193.
CrossRef Google scholar
[29]
Li Z , Zhou Y , Jia K et al. JMJD4-demethylated RIG-I prevents hepatic steatosis and carcinogenesis.J Hematol Oncol 2022; 15: 161.
CrossRef Google scholar
[30]
Kwan SY , Jiao J , Joon A et al. Gut microbiome features associated with liver fibrosis in Hispanics, a population at high risk for fatty liver disease. Hepatology 2022; 75: 955- 67.
CrossRef Google scholar
[31]
Yang Y , Li W , Liu Y et al. Alpha-lipoic acid attenuates insulin resistance and improves glucose metabolism in high fat dietfed mice. Acta Pharmacol Sin 2014; 35: 1285- 92.
CrossRef Google scholar
[32]
Gu L , Zhu Y , Lin X et al. The IKKβ-USP30-ACLY axis controls lipogenesis and tumorigenesis. Hepatology 2021; 73: 160- 74.
CrossRef Google scholar
[33]
Tyler PM , Bucklin ML , Zhao M et al. Human autoinflammatory disease reveals ELF4 as a transcriptional regulator of inflammation. Nat Immunol 2021; 22: 1118- 26.
CrossRef Google scholar
[34]
Liu T , Yu H , Zhang Z et al. Intestinal ELF4 deletion exacerbates alcoholic liver disease by disrupting gut homeostasis. Int J Mol Sci 2022; 23: 4825.
CrossRef Google scholar
[35]
Wang W , Lv N , Zhang S et al. Cidea is an essential transcriptional coactivator regulating mammary gland secretion of milk lipids. Nat Med 2012; 18: 235- 43.
CrossRef Google scholar
[36]
Duan J , Wang Z , Duan R et al. Therapeutic targeting of hepatic ACSL4 ameliorates NASH in mice. Hepatology 2022; 75: 140- 53.
CrossRef Google scholar
[37]
Zhao X , Wang W , Yao Y et al. An RDH-Plin2 axis modulates lipid droplet size by antagonizing Bmm lipase. EMBO Rep 2022; 23: e52669.
CrossRef Google scholar
[38]
Régnier M , Polizzi A , Guillou H et al. Sphingolipid metabolism in non-alcoholic fatty liver diseases. Biochimie 2019; 159: 9- 22.
CrossRef Google scholar
[39]
Hannun YA , Obeid LM . Sphingolipids and their metabolism in physiology and disease. Nat Rev Mol Cell Biol 2018; 19: 175- 91.
CrossRef Google scholar
[40]
Koh EH , Yoon JE , Ko MS et al. Sphingomyelin synthase 1 mediates hepatocyte pyroptosis to trigger non-alcoholic steatohepatitis. Gut 2021; 70: 1954- 64.
CrossRef Google scholar
[41]
Barneda D , Planas-Iglesias J , Gaspar ML et al. The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix. Elife 2015; 4: e07485.
CrossRef Google scholar
[42]
Olzmann JA , Carvalho P . Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol 2019; 20: 137- 55.
CrossRef Google scholar
[43]
Darlyuk-Saadon I , Bai C , Heng CKM et al. Active p38α causes macrovesicular fatty liver in mice. Proc Natl Acad Sci U S A 2021; 118: e2018069118.
CrossRef Google scholar
[44]
Leung SWS , Gao Y , Vanhoutte PM . 3ʹ,5ʹ-cIMP as potential second messenger in the vascular wall. Handb Exp Pharmacol 2017; 238: 209- 28.
CrossRef Google scholar
[45]
Hao Y , Hao S , Andersen-Nissen E et al. Integrated analysis of multimodal single-cell data. Cell 2021; 184: 3573- 87.e29.
CrossRef Google scholar
[46]
Ravi VM , Will P , Kueckelhaus J et al. Spatially resolved multiomics deciphers bidirectional tumor-host interdependence in glioblastoma. Cancer Cell 2022; 40: 639- 55.e13.
CrossRef Google scholar
[47]
Wu T , Hu E , Xu S et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb) 2021; 2: 100141.
CrossRef Google scholar
[48]
Palmer A , Phapale P , Chernyavsky I et al. FDR-controlled metabolite annotation for high-resolution imaging mass spectrometry. Nat Methods 2017; 14: 57- 60.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 The Author(s). Published by Oxford University Press on behalf of Higher Education Press.
AI Summary AI Mindmap
PDF(5536 KB)

Accesses

Citations

Detail

Sections
Recommended

/