Reduced phosphatidylcholine synthesis suppresses the embryonic lethality of seipin deficiency
Jinglin Zhu, Sin Man Lam, Leilei Yang, Jingjing Liang, Mei Ding, Guanghou Shui, Xun Huang
Reduced phosphatidylcholine synthesis suppresses the embryonic lethality of seipin deficiency
Seipin plays a vital role in lipid droplet homeostasis, and its deficiency causes congenital generalized lipodystrophy type II in humans. It is not known whether the physiological defects are all caused by cellular lipid droplet defects. Loss-of-function mutation of seip-1, the Caenorhabditis elegans seipin ortholog, causes embryonic lethality and lipid droplet abnormality. We uncover nhr-114 and spin-4 as two suppressors of seip-1 embryonic lethality. Mechanistically, nhr-114 and spin-4 act in the “B12-one-carbon cycle-phosphatidylcholine (PC)” axis, and reducing PC synthesis suppresses the embryonic lethality of seip-1 mutants. Conversely, PC deficiency enhances the lipid droplet abnormality of seip-1 mutants. The suppression of seip-1 embryonic lethality by PC reduction requires polyunsaturated fatty acid. In addition, the suppression is enhanced by the knockdown of phospholipid scramblase epg-3. Therefore, seipin and PC exhibit opposite actions in embryogenesis, while they function similarly in lipid droplet homeostasis. Our results demonstrate that seipin-mediated embryogenesis is independent of lipid droplet homeostasis.
seipin / phosphatidylcholine / embryogenesis / lipid droplet
[1] |
Welte MA . Expanding roles for lipid droplets. Curr Biol 2015; 25: R470- 81.
|
[2] |
Walther TC , Farese RV Jr . Lipid droplets and cellular lipid metabolism. Annu Rev Biochem 2012; 81: 687- 714.
|
[3] |
Fei W , Shui G , Gaeta B et al. Fld1p, a functional homologue of human seipin, regulates the size of lipid droplets in yeast. J Cell Biol 2008; 180: 473- 82.
|
[4] |
Szymanski KM , Binns D , Bartz R et al. The lipodystrophy protein seipin is found at endoplasmic reticulum lipid droplet junctions and is important for droplet morphology. Proc Natl Acad Sci USA 2007; 104: 20890- 5.
|
[5] |
Yan R , Qian H , Lukmantara I et al. Human SEIPIN binds anionic phospholipids. Dev Cell 2018; 47: 248- 56.
|
[6] |
Sui X , Arlt H , Brock KP et al. Cryo-electron microscopy structure of the lipid droplet-formation protein seipin. J Cell Biol 2018; 217: 4080- 91.
|
[7] |
Wang H , Becuwe M , Housden BE et al. Seipin is required for converting nascent to mature lipid droplets. eLife 2016; 5: e16582.
|
[8] |
Salo VT , Li S , Vihinen H et al. Seipin facilitates triglyceride flow to lipid droplet and counteracts droplet ripening via endoplasmic reticulum contact. Dev Cell 2019; 50: 1- 16.
|
[9] |
Datta S , Liu Y , Hariri H et al. Cerebellar ataxia disease-associated Snx14 promotes lipid droplet growth at ER-droplet contacts. J Cell Biol 2019; 218: 1335- 51.
|
[10] |
Choudhary V , Ojha N , Golden A et al. A conserved family of proteins facilitates nascent lipid droplet budding from the ER. J Cell Biol 2015; 211: 261- 71.
|
[11] |
Fujimoto Y , Itabe H , Kinoshita T et al. Involvement of ACSL in local synthesis of neutral lipids in cytoplasmic lipid droplets in human hepatocyte HuH7. J Lipid Res 2007; 48: 1280- 92.
|
[12] |
Krahmer N , Guo Y , Wilfling F et al. Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase.Cell Metab 2011; 14: 504- 15.
|
[13] |
Gao M , Huang X , Song BL et al. The biogenesis of lipid droplets: lipids take center stage. Prog Lipid Res 2019; 75: 100989.
|
[14] |
Magre J , Delépine M , Khallouf E et al. Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat Genet 2001; 28: 365- 70.
|
[15] |
Gomes KB , Pardini VC , Fernandes AP . Clinical and molecular aspects of Berardinelli-Seip Congenital Lipodystrophy (BSCL). Clin Chim Acta 2009; 402: 1- 6.
|
[16] |
Jiang M , Gao M , Wu C et al. Lack of testicular seipin causes teratozoospermia syndrome in men. Proc Natl Acad Sci USA 2014; 111: 7054- 9.
|
[17] |
Ebihara C , Ebihara K , Megumi AA et al. Seipin is necessary for normal brain development and spermatogenesis in addition to adipogenesis. Hum Mol Genet 2015; 24: 4238- 49.
|
[18] |
Bai X , Huang LJ , Chen SW et al. Loss of the seipin gene perturbs eggshell formation in Caenorhabditis elegans. Development 2020; 147: dev.192997.
|
[19] |
Zhou L , Yin J , Wang C et al. Lack of seipin in neurons results in anxiety- and depression-like behaviors via down regulation of PPARγ. Hum Mol Genet 2014; 23: 4094- 102.
|
[20] |
Cui X , Wang Y , Tang Y et al. Seipin ablation in mice results in severe generalized lipodystrophy. Hum Mol Genet 2011; 20: 3022- 30.
|
[21] |
Olson SK , Greenan G , Desai A et al. Hierarchical assembly of the eggshell and permeability barrier in C. elegans. J Cell Biol 2012; 198: 731- 48.
|
[22] |
Stein KKA . Golden the C. elegans eggshell. WormBook 2018; 2018: 1- 36.
|
[23] |
Rong Y , McPhee CK , Deng S et al. Spinster is required for autophagic lysosome reformation and mTOR reactivation following starvation. Proc Natl Acad Sci USA 2011; 108: 7826- 31.
|
[24] |
Giese GE , Walker MD , Ponomarova O et al. Caenorhabditis elegans methionine/S-adenosylmethionine cycle activity is sensed and adjusted by a nuclear hormone receptor. eLife 2020; 9: e60259.
|
[25] |
Gracida X , Eckmann CR . Fertility and germline stem cell maintenance under different diets requires nhr-114/HNF4 in C. elegans. Curr Biol 2013; 23: 607- 13.
|
[26] |
Watson E , MacNeil LT , Ritter AD et al. Interspecies systems biology uncovers metabolites affecting C. elegans gene expression and life history traits. Cell 2014; 156: 759- 70.
|
[27] |
Wei W , Ruvkun G . Lysosomal activity regulates Caenorhabditis elegans mitochondrial dynamics through vitamin B12 metabolism. Proc Natl Acad Sci USA 2020; 117: 19970- 81.
|
[28] |
Cao Z , Hao Y , Fung CW et al. Dietary fatty acids promote lipid droplet diversity through seipin enrichment in an ER subdomain. Nat Commun 2019; 10: 2902.
|
[29] |
Kahn-Kirby AH , Dantzker JL , Apicella AJ et al. Specific polyunsaturated fatty acids drive TRPV-dependent sensory signaling in vivo. Cell 2004; 119: 889- 900.
|
[30] |
Li YE , Wang Y , Du X et al. TMEM41B and VMP1 are scramblases and regulate the distribution of cholesterol and phosphatidylserine. J Cell Biol 2021; 220: e202103105.
|
[31] |
Zhao YG , Chen Y , Miao G et al. The ER-localized transmembrane protein EPG-3/VMP1 regulates SERCA activity to control ER-isolation membrane contacts for autophagosome formation. Mol Cell 2017; 67: 974- 89.e6.
|
[32] |
Ghanbarpour A , Valverde DP , Melia TJ et al. A model for a partnership of lipid transfer proteins and scramblases in membrane expansion and organelle biogenesis. Proc Natl Acad Sci USA 2021; 118: e2101562118.
|
[33] |
Su WC , Lin YH , Pagac M et al. Seipin negatively regulates sphingolipid production at the ER-LD contact site. J Cell Biol 2019; 218: 3663- 80.
|
[34] |
Pagac M , Cooper DE , Qi Y et al. SEIPIN regulates lipid droplet expansion and adipocyte development by modulating the activity of glycerol-3-phosphate acyltransferase. Cell Rep 2016; 17: 1546- 59.
|
[35] |
Fei WH , Shui G , Zhang Y et al. A role for phosphatidic acid in the formation of “supersized” lipid droplets. PLoS Genet 2011; 7: e1002201.
|
[36] |
Tian Y , Bi J , Shui G et al. Tissue-autonomous function of Drosophila Seipin in preventing ectopic lipid droplet formation. PLoS Genet 2011; 7: e1001364.
|
[37] |
Walker AK , Jacobs RL , Watts JL et al. A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell 2011; 147: 840- 52.
|
[38] |
Wang S , Idrissi FZ , Hermansson M et al. Seipin and the membrane-shaping protein Pex30 cooperate in organelle budding from the endoplasmic reticulum. Nat Commun 2018; 9: 2939.
|
[39] |
Vevea JD , Garcia EJ , Chan RB et al. Role for lipid droplet biogenesis and microlipophagy in adaptation to lipid imbalance in yeast. Dev Cell 2015; 35: 584- 99.
|
[40] |
Koh JH , Wang L , Beaudoin-Chabot C et al. Lipid bilayer stress-activated IRE-1 modulates autophagy during endoplasmic reticulum stress. J Cell Sci 2018; 131: jcs217992.
|
[41] |
Romanauska A , Köhler A . Reprogrammed lipid metabolism protects inner nuclear membrane against unsaturated fat. Dev Cell 2021; 56: 1- 17.
|
[42] |
Xie M , Roy R . The causative gene in Chanarian Dorfman syndrome regulates lipid droplet homeostasis in C. elegans. PLoS Genet 2015; 11: e1005284.
|
[43] |
Chen W , Zhou H , Liu S et al. Altered lipid metabolism in residual white adipose tissues of Bscl2 deficient mice. PLoS One 2013; 8: e82526.
|
[44] |
Lounis MA , Lalonde S , Rial SA et al. Hepatic BSCL2 (Seipin) deficiency disrupts lipid droplet homeostasis and increases lipid metabolism via SCD1 activity. Lipids 2017; 52: 129- 50.
|
[45] |
Ding L , Yang X , Tian H et al. Seipin regulates lipid homeostasis by ensuring calcium-dependent mitochondrial metabolism. EMBO J 2018; 37: e97572.
|
[46] |
Yang W , Thein S , Wang X et al. BSCL2/seipin regulates adipogenesis through actin cytoskeleton remodelling. Hum Mol Genet 2014; 23: 502- 13.
|
[47] |
Molenaar MR , Yadav KK , Toulmay A et al. Retinyl esters form lipid droplets independently of triacylglycerol and seipin. J Cell Biol 2021; 220: e202011071.
|
[48] |
Bi JF , Wang W , Liu Z et al. Seipin promotes adipose tissue fat storage through the ER Ca2+-ATPase SERCA. Cell Metab 2014; 19: 861- 71.
|
[49] |
Li Z , Agellon LB , Allen TM et al. The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell Metab 2006; 3: 321- 31.
|
[50] |
Haider A , Wei YC , Lim K et al. PCYT1A regulates phosphatidylcholine homeostasis from the inner nuclear membrane in response to membrane stored curvature elastic stress. Dev Cell 2018; 45: 481- 95.
|
[51] |
Vanni S , Hirose H , Barelli H et al. A sub-nanometre view of how membrane curvature and composition modulate lipid packing and protein recruitment. Nat Commun 2014; 5: 4916.
|
[52] |
Boumann HA , Gubbens J , Koorengevel MC et al. Depletion of phosphatidylcholine in yeast induces shortening and increased saturation of the lipid acyl chains: evidence for regulation of intrinsic membrane curvature in a eukaryote. Mol Biol Cell 2006; 17: 1006- 17.
|
[53] |
Naito T , Takatsu H , Miyano R et al. Phospholipid flippase ATP10A translocates phosphatidylcholine and is involved in plasma membrane dynamics. J Biol Chem 2015; 290: 15004- 17.
|
[54] |
Cao Z , Fung CW , Mak HY . A flexible network of lipid droplet associated proteins support embryonic integrity of C. elegans. Front Cell Dev Biol 2022; 10: 856474.
|
[55] |
Xu DJ , Li Y , Wu L et al. Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDs through SNARE and NRZ interactions. J Cell Biol 2018; 217: 975- 95.
|
[56] |
Ozeki S , Cheng J , Tauchi-Sato K et al. Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane. J Cell Sci 2005; 118: 2601- 11.
|
[57] |
Morishita H , Zhao YG , Tamura N et al. A critical role of VMP1 in lipoprotein secretion. Elife 2019; 8: e48834.
|
[58] |
Xu P , Wang H , Kayoumu A et al. Diet rich in Docosahexaenoic Acid/Eicosapentaenoic Acid robustly ameliorates hepatic steatosis and insulin resistance in seipin deficient lipodystrophy mice. Nutr Metab 2015; 12: 58.
|
[59] |
Dollet L , Levrel C , Coskun T et al. FGF21 improves the adipocyte dysfunction related to seipin deficiency. Diabetes 2016; 65: 3410- 7.
|
[60] |
Gao M , Liu L , Wang X et al. GPAT3 deficiency alleviates insulin resistance and hepatic steatosis in a mouse model of severe congenital generalized lipodystrophy. Hum Mol Genet 2020; 29: 432- 43.
|
[61] |
McIlroy GD , Mitchell SE , Han W et al. Ablation of Bscl2/seipin in hepatocytes does not cause metabolic dysfunction in congenital generalised lipodystrophy. Dis Model Mech 2020; 13: dmm042655.
|
[62] |
McIlroy GD , Suchacki K , Roelofs AJ et al. Adipose specific disruption of seipin causes early-onset generalised lipodystrophy and altered fuel utilisation without severe metabolic disease. Mol Metab 2018; 10: 55- 65.
|
[63] |
Davis MW , Hammarlund M , Harrach T et al. Rapid single nucleotide polymorphism mapping in C. elegans. BMC Genomics 2005; 6: 118.
|
[64] |
Yang L , Liang J , Lam SM et al. Neuronal lipolysis participates in PUFA-mediated neural function and neurodegeneration. EMBO Rep 2020; 21: e50214.
|
[65] |
Liu ZL , Li X , Ge Q et al. A lipid droplet-associated GFP reporter-based screen identifies new fat storage regulators in C. elegans. J Genet Genomics 2014; 41: 305- 13.
|
[66] |
Lam SM , Wang Z , Li J et al. Sequestration of polyunsaturated fatty acids in membrane phospholipids of Caenorhabditis elegans dauer larva attenuates eicosanoid biosynthesis for prolonged survival. Redox Biol 2017; 12: 967- 77.
|
[67] |
Lam SM , Zhang C , Wang Z et al. A multi-omics investigation of the composition and function of extracellular vesicles along the temporal trajectory of COVID-19. Nat Metab 2021; 3: 909- 22.
|
/
〈 | 〉 |