A Systematic Overview of Energy Landscapes: Cognition, Typologies, and Development

Mengyixin LI, Qi HUANG

Landsc. Archit. Front. ›› 2025, Vol. 13 ›› Issue (3) : 5-18.

PDF(3881 KB)
PDF(3881 KB)
Landsc. Archit. Front. ›› 2025, Vol. 13 ›› Issue (3) : 5-18. DOI: 10.15302/J-LAF-1-020109
Papers

A Systematic Overview of Energy Landscapes: Cognition, Typologies, and Development

Author information +
History +

Highlights

· Offers a systematic overview of energy landscapes to encourage inter-regional and cross-cultural research

· Clarifies that energy landscapes are complex concepts in the dimension of cultural landscapes

· Identifies essentials of future sustainable development of energy landscapes at three key aspects

Abstract

In the 21st century, the increasing importance of renewable energy in addressing climate change and environmental sustainability has posed opportunities and challenges to the exploration of energy landscapes. A crucial question arises for disciplines related to spatial planning and design: how to theoretically and practically collaborate to appraise the meanings, classifications, and characteristics of energy landscapes, as well as their future development? Answering this question is essential for the discipline of Landscape Architecture to deepen the understanding of energy landscapes. Therefore, this research utilizes a scientific bibliometric methodology, complemented by typical case studies, to review relevant literature and projects. This systematic approach aims to offer a comprehensive explanation of key issues about energy landscapes. Ultimately, three fundamental aspects for the future sustainable development of energy landscapes are identified: enhancing social acceptance of energy infrastructure; conducting big data processing, analysis, and mapping; and providing multiple solutions of planning and design. In conclusion, this research seeks to shed light on the significance, role, and potential of landscape in the energy transition for planners and designers.

Graphical abstract

Keywords

Climate Change / Energy Transition / Renewable Energy / Energy Landscapes / Spatial Planning and Design

Cite this article

Download citation ▾
Mengyixin LI, Qi HUANG. A Systematic Overview of Energy Landscapes: Cognition, Typologies, and Development. Landsc. Archit. Front., 2025, 13(3): 5‒18 https://doi.org/10.15302/J-LAF-1-020109

References

[1]
van den Dobbelsteen, A. , Broersma, S. , & Stremke, S. (2011) Energy potential mapping for energy-producing neighborhoods. International Journal of Sustainable Building Technology and Urban Development, 2 ( 2), 170– 176.
CrossRef Google scholar
[2]
Apostol, D., & Pasqualetti, M. (2016). Foreword. In: D. Apostol, J. Palmer, M. Pasqualetti, R. Smardon, & R. Sullivan (Eds.), The Renewable Energy Landscape: Preserving Scenic Values in Our Sustainable Future (p. xix). Routledge.
[3]
United Nations. (2023). The Sustainable Development Goals report 2023: Special edition.
[4]
Brown, L. R., Larsen, J., Roney, J. M., & Adams, E. E. (2015). The Great Transition: Shifting From Fossil Fuels to Solar and Wind Energy. W. W. Norton & Company.
[5]
United Nations. (2023). Tracking SDG7: The energy progress report 2023.
[6]
Schöbel, S. (2012). Wind Energy and Landscape Aesthetics [Windenergie und Landschaftsästhetik]. Jovis.
[7]
de Jong, J. , & Stremke, S. (2020) Evolution of energy landscapes: A regional case study in the western Netherlands. Sustainability, ( 12), 4554– .
[8]
Grêt-Regamey, A., & Hayek U. W. (2012). Multicriteria Decision Analysis for the Planning and Design of Sustainable Energy Landscapes. In: S. Stremke, & A. van den Dobbelsteen (Eds.), Sustainable Energy Landscapes: Designing, Planning, and Development (pp. 111–131). CRC Press.
[9]
Pasqualetti, M. , & Stremke, S. (2018) Energy landscapes in a crowded world: A first typology of origins and expressions. Energy Research & Social Science, ( 36), 94– 105.
[10]
De Waal, R. M. , & Stremke, S. (2014) Energy transition: Missed opportunities and emerging challenges for landscape planning and designing. Sustainability, ( 6), 4386– 4415.
[11]
Crowe, S. (1958). The Landscape of Power. The Architectural Press.
[12]
Nye, D. E. (1996). American Technological Sublime. MIT Press.
[13]
Pasqualetti, M., Gipe, P., & Righter, R. W. (2002). Wind Power in View: Energy Landscapes in a Crowded World. Academic Press.
[14]
Nadaï, A. , & Van Der Horst, D. (2010) Introduction: Landscape of energies. Landscape Research, 35 ( 2), 143– 155.
CrossRef Google scholar
[15]
Stremke, S. (2010). Designing sustainable energy landscapes: Concepts, principles and procedures [Doctoral dissertation]. Wageningen University.
[16]
Howard, D. C., Burgess, P. J., Butler, S. J., Carver, S. J., Cockerill, T., Coleby, A. M., ... & Scholefield, P. (2013). Energyscapes: Linking the energy system and ecosystem services in real landscapes. Biomass and Bioenergy, (55), 17–26.
[17]
Thrän, D. , Gawel, E. , & Fiedler, D. (2020) Energy landscapes of today and tomorrow. Energy, Sustainability and Society, ( 10), 43– .
[18]
Thün, G. M., Velikov, K., & Mctavish, D. (2014). The Megaregional Common: A Framework for thinking Megaregions, Infrastructure and "Open" Space. In: C. Sörensen & K. Liedtke (Eds.), Specifics: Discussing Landscape Architecture (pp. 356–361). Jovis.
[19]
Council of Europe. (2000). Council of Europe Landscape Convention.
[20]
IBA Hamburg GmbH. (2013). A hill of new horizons: The Georgswerder Energy Hill.
[21]
Pasqualetti, M. (2012). Reading the Changing Energy Landscape. In: S. Stremke & A. van den Dobbelsteen (Eds.), Sustainable Energy Landscapes: Designing, Planning, and Development. (pp. 11–44). CRC Press.
[22]
Li, M. , Li, R. , Xin, L. , & Fabris, L. M. F. (2024) A brownfield regeneration in urban renewal contexts visual analysis: Research hotspots, trends, and global challenges. Landscape Research, 49 ( 6), 896– 911.
CrossRef Google scholar
[23]
Smardon, R., & Pasqualetti, M. (2016). Social Acceptance of Renewable Energy Landscapes. In: D. Apostol, J. Palmer, M. Pasqualetti, R. Smardon, & R. Sullivan (Eds.), The Renewable Energy Landscape: Preserving Scenic Values in Our Sustainable Future (pp. 108–142). Routledge.
[24]
& Hasenöhrl, U. (2018) Just a matter of habituation? The contentious perception of (post)energy landscapes in Germany, 1945–2016. Environment, Space, Place, 10 ( 1), 63– 88.
CrossRef Google scholar
[25]
& Shaw, R. (2002) The International Building Exhibition (IBA) Emscher Park, Germany: A model for sustainable restructuring?. European Planning Studies, 10 ( 1), 77– 97.
CrossRef Google scholar
[26]
Drewitt, A. L. , & Langston, R. H. W. (2006) Assessing the impacts of wind farms on birds. Ibis, ( 148), 29– 42.
[27]
Stremke, S., & van den Dobbelsteen, A. (Eds.). (2012). Sustainable Energy Landscapes: Designing, Planning, and Development. CRC Press.
[28]
IRENA. (2024). Renewable energy statistics 2024.
[29]
Li, L., Lin, J., Wu, N., Xie, S., Meng, C., Zheng, Y., ... & Zhao, Y. (2022). Review and outlook on the international renewable energy development. Energy and Built Environment, 3(2), 139–157.
[30]
& Liao, Z. (2016) The evolution of wind energy policies in China (1995-2014): An analysis based on policy instruments. Renewable and Sustainable Energy Reviews, ( 56), 464– 472.
[31]
Chai, S. , Liu, Q. , & Yang, J. (2023) Renewable power generation policies in China: Policy instrument choices and influencing factors from the central and local government perspectives. Renewable and Sustainable Energy Reviews, ( 174), 113126– .
[32]
Li, S. , & Gou, Z. (2023) Accepting solar photovoltaic panels in rural landscapes: The tangle among nostalgia, morality, and economic stakes. Land, ( 12), 1956– .
[33]
Oudes, D. , Van Den Brink, A. , & Stremke, S. (2022) Towards a typology of solar energy landscapes: Mixed-production, nature based and landscape inclusive solar power transitions. Energy Research & Social Science, ( 91), 102742– .
[34]
Fast, S. , Mabee, W. , & Blair, J. (2015) The changing cultural and economic values of wind energy landscapes. The Canadian Geographer/Le Géographe canadien, 59 ( 2), 181– 193.
CrossRef Google scholar
[35]
Baraja-Rodríguez, E., Herrero-Luque, D., & Pérez-Pérez, B. (2015). A Country of Windmills: Wind Energy Development and Landscape in Spain. In: M. Frolova, M.-J. Prados, & A. Nadaï (Eds.), Renewable Energies and European Landscapes: Lessons From Southern European Cases (pp. 43–61). Springer.
[36]
Seenland, L. (2022). Transformation of Industrial and Mining Territories. Shrinking Cities in Reunified East Germany (pp. 113–130). Routledge.
[37]
Burke, H. , Hough, E. , Morgan, D. J. R. , Hughes, L. , & Lawrence, D. J. (2015) Approaches to inform redevelopment of brownfield sites: An example from the Leeds area of the West Yorkshire coalfield, UK. Land Use Policy, ( 47), 321– 331.
[38]
Morato, L. (2019, January 9). Consuegra windmills. Atlas Obscura.
[39]
UNESCO World Heritage Center. (n. d.). Water management system of Augsburg.
[40]
IBA Fürst-Pückler-Land. (2010). New Landscape Lusatia. Jovis.
[41]
UNESCO World Heritage Center. (n. d.). Blaenavon industrial landscape.
[42]
Krassakis, P., Karavias, A., Zygouri, E., Koukouzas, N., Szewerda, K., Michalak, D., ... & Giouvanidis, E. (2024). CoalHeritage: Visualising and promoting Europe's coal mining heritage. Mining, 4(3), 489–509.
[43]
Junta de Castilla y León. (n. d.). Mining basins.
[44]
Xinhuanet. (2024, August 2). China focus: Green transformation of resource-dependent City in east China.
[45]
Energy Monitor. (2012, April 29). Gemasolar concentrated solar power, Seville.
[46]
Institut Für Ökologische Wirtschaftsforschung. (2025). Case study report: Wind energy in Brandenburg, Germany.
[47]
Bureau of Reclamation. (2023, May 19). Glen Canyon Unit.
[48]
Calvert, K. , & Mabee, W. (2015) More solar farms or more bioenergy crops? Mapping and assessing potential land-use conflicts among renewable energy technologies in eastern Ontario, Canada. Applied Geography, ( 56), 209– 221.
[49]
Britannica. (2025, February 3). Three Gorges Dam.
[50]
& Habecka-Rosiak, E. (2019) Windmills as the forgotten cultural heritage returning to favour. Acta Universitatis Lodziensis. Folia Archaeologica, ( 34), 129– 145.
CrossRef Google scholar
[51]
Tieskens, K. F. , Van Zanten, B. T. , Schulp, C. J. E. , & Verburg, P. H. (2018) Aesthetic appreciation of the cultural landscape through social media: An analysis of revealed preference in the Dutch river landscape. Landscape and Urban Planning, ( 177), 128– 137.
[52]
Ringel, F. (2018). Back to the Postindustrial Future: An Ethnography of Germany's Fastest-Shrinking City (Vol. 33). Berghahn Books.
[53]
Drexler, J. (2005). Post-Industrial Nature in the Coal Mine of Göttelborn, Germany: The Integration of Ruderal Vegetation in the Conversion of a Brownfield. In: I. Kowarik & S. Körner (Eds.), Wild Urban Woodlands: New Perspectives for Urban Forestry (pp. 277–286). Springer Nature.
[54]
Federal Institute for Research on Building, Urban Affairs and Spatial Development. (n. d.). Internationale Bauaustellungen.
[55]
& Wheeler, R. (2014) Mining memories in a rural community: Landscape, temporality and place identity. Journal of Rural Studies, ( 36), 22– 32.
[56]
Colmenero, J. R. , & Prado, J. G. (1993) Coal basins in the Cantabrian Mountains, northwestern Spain. International Journal of Coal Geology, 23 ( 1-4), 215– 229.
CrossRef Google scholar
[57]
Domínguez-Cuesta, M. J. , Jiménez-Sánchez, M. , & Berrezueta, E. (2007) Landslides in the Central Coalfield (Cantabrian Mountains, NW Spain): Geomorphological features, conditioning factors and methodological implications in susceptibility assessment. Geomorphology, 89 ( 3-4), 358– 369.
CrossRef Google scholar
[58]
Redondo-Vega, J. M. , Gómez-Villar, A. , Santos-González, J. , González-Gutiérrez, R. B. , & Álvarez-Martínez, J. (2017) Changes in land use due to mining in the north-western mountains of Spain during the previous 50 years. Catena, ( 149), 844– 856.
[59]
& Modica, M. (2023) From site to landscape: Re-interpreting post-industrial transformations in peripheral regions beyond urban regeneration. Landscape Architecture, ( 6), 35– 45.
[60]
Guan, J. , & Huang, Q. (2024) GIS-based mapping impacts of large-Scale photovoltaic power stations on the landscape. Journal of Digital Landscape Architecture, ( 9), 405– 418.
[61]
Frolova, M., Prados, M.-J., & Nadaï, A. (Eds.). (2015). Renewable Energies and European Landscapes: Lessons From Southern European Cases. Springer.
[62]
Saganeiti, L., Pilogallo, A., Faruolo, G., Scorza, F., & Murgante, B. (2019). Energy landscape fragmentation: Basilicata region (Italy) study case. Computational Science and Its Applications–ICCSA 2019. Springer.
[63]
Perrotti, D. (2015). Of Other (Energy) Spaces: Protected Areas and Everyday Landscapes of Energy in the Southern Italian Region of Alta Murgia. In: M. Frolova, M.-J. Prados, & A. Nadaï (Eds.), Renewable Energies and European Landscapes: Lessons From Southern European Cases (pp. 193–215). Springer.
[64]
& Krauss, W. (2010) The 'Dingpolitik' of wind energy in northern German landscapes: An ethnographic case study. Landscape Research, 35 ( 2), 195– 208.
CrossRef Google scholar
[65]
& Devine-Wright, P. (2005) Beyond NIMBYism: Towards an integrated framework for understanding public perceptions of wind energy. Wind Energy, 8 ( 2), 125– 139.
CrossRef Google scholar
[66]
Swofford, J. , & Slattery, M. (2010) Public attitudes of wind energy in Texas: Local communities in close proximity to wind farms and their effect on decision-making. Energy policy, 38 ( 5), 2508– 2519.
CrossRef Google scholar
[67]
Bosch, S. , & Schmidt, M. (2020) Wonderland of technology? How energy landscapes reveal inequalities and injustices of the German Energiewende. Energy Research & Social Science, ( 70), 101733– .
[68]
Fu, Y. , Hao, S. , Tian, F. , & Cai, Y. (2024) Research progress and frontiers of energy savings in building integrated photovoltaic by using bibliometric analysis. Energy Reports, ( 12), 5693– 5703.
[69]
Böhm, J. , de Witte, T. , & Michaud, C. (2022) Land use prior to installation of ground-mounted photovoltaic in Germany—GIS-analysis based on MaStR and basis-DLM. Zeitschrift für Energiewirtschaft, 46 ( 2), 147– 156.
CrossRef Google scholar
[70]
Xia, Z. , Li, Y. , Guo, S. , Chen, R. , Zhang, W. , Zhang, P. , & Du, P. (2023) Mapping global water-surface photovoltaics with satellite images. Renewable and Sustainable Energy Reviews, ( 187), 1– 12.
[71]
Baricchio, M. , Korevaar, M. , Babal, P. , & Ziar, H. (2024) Modelling of bifacial photovoltaic farms to evaluate the profitability of East/West vertical configuration. Solar Energy, ( 272), 112457– .
[72]
Kruitwagen, L. , Story, K. T. , Friedrich, J. , Byers, L. , Skillman, S. , & Hepburn, C. (2021) A global inventory of photovoltaic solar energy generating units. Nature, 598 ( 28), 604– 610.
[73]
Hübner, G., Pohl, J., Warode, J., Gotchev, B., Ohlhorst, D., Krug, M., ... & Peters, W. (2020). Akzeptanzfördernde Faktoren erneuerbarer Energien. Bundesamt für Naturschutz.
[74]
López-Bravo, C. , Mora-López, L. , Sidrach-deCardona, M. , & Márquez-Ballesteros, M. J. (2024) A comprehensive analysis based on GIS-AHP to minimise the social and environmental impact of the installation of large-scale photovoltaic plants in south Spain. Renewable Energy, ( 226), 120387– .
[75]
& Scognamiglio, A. (2016) 'Photovoltaic landscapes': Design and assessment. A critical review for a new transdisciplinary design vision. Renewable and Sustainable Energy Reviews, ( 55), 629– 661.
[76]
Nobre, R., Boulêtreau, S., Colas, F., Azémar, F., Tudesque, L., Parthuisot, N., ... & Cucherousset, J. (2023). Potential ecological impacts of floating photovoltaics on lake biodiversity and ecosystem functioning. Renewable and Sustainable Energy Reviews, (188), 113852.
[77]
Shi, W., Yan, C., Ren, Z., Yuan, Z., Liu, Y., Zheng, S., ... & Han, X. (2023). Review on the development of marine floating photovoltaic systems. Ocean Engineering, (286), 115560.
[78]
Yang, Y. , Wang, Z. , Li, B. , & Guan, J. (2023) The impact of photovoltaic projects on ecological corridors through the Least-Cost Path model. Global Ecology and Conservation, ( 42), e02381– .
[79]
Mulyani, Y. P., Saifurrahman, A., Arini, H. M., Rizqiawan, A., Hartono, B., Utomo, D. S., ... & Harefa, W. D. (2024). Analyzing public discourse on photovoltaic (PV) adoption in Indonesia: A topic-based sentiment analysis of news articles and social media. Journal of Cleaner Production, (434), 1–20.
[80]
Buchecker, M., & Stober, D. (2018). Socio-Cultural Aspects of Renewable Energy Production. Renewable Energy and Landscape Quality (pp. 176–178). Jovis.
[81]
Fournis, Y. , & Fortin, M. (2017) From social 'acceptance' to social 'acceptability' of wind energy projects: Towards a territorial perspective. Journal of Environmenttal Planning and Management, ( 60), 1– 12.
[82]
Suskevics, M., Buchecker, M., Eiter, S., Stober, D., Kuvac, I., Jongejan, B., ... & de Boer, C. (2018). Public Acceptance of Renewable Energy Projects: A Focus on Wind Energy. Renewable Energy and Landscape Quality (pp. 179–184). Jovis.
[83]
Devine-Wright, P. , & Howes, Y. (2010) Disruption to place attachment and the protection of restorative environments: A wind energy case study. Journal of Environmental Psychology, ( 30), 271– 280.
[84]
Bohn, C. , & Lant, C. (2009) Welcoming the wind? Determinants of wind power development among the US States. The Professional Geographer, 6 ( 1), 87– 100.
[85]
Huber, N., Hergert, R., Price, B., Zäch, C., Hersperger, A. M., Pütz, M., ... & Bolliger, J. (2017). Renewable energy sources: Conflicts and opportunities in a changing landscape. Regional Environmental Change, (17), 1241–1255.
[86]
Resch, B., Sagl, G., Törnros, T., Bachmaier, A., Eggers, J.-B., Herkel, S., ... & Gündra, H. (2014). GIS-based planning and modeling for renewable energy: Challenges and future research avenues. ISPRS International Journal of Geo-Information, (3), 662–692.
[87]
Picchi, P. , van Lierop, M. , Geneletti, D. , & Stremke, S. (2019) Advancing the relationship between renewable energy and ecosystem services for landscape planning and design: A literature review. Ecosystem Services, ( 35), 241– 259.
[88]
Martínez-Martínez, Y. , Dewulf, J. , & Casas-Ledón, Y. (2022) GIS-based site suitability analysis and ecosystem services approach for supporting renewable energy development in south-central Chile. Renewable Energy, ( 182), 363– 376.
[89]
Stremke, S. (2012). Five-Step Approach to the Design of sustainable Energy Landscapes. In: S. Stremke, & A. van den Dobbelsteen (Eds.), Sustainable Energy Landscapes: Designing, Planning, and Development (p. 95). CRC Press.
[90]
& Mahzouni, A. (2018) Urban brownfield redevelopment and energy transition pathways: A review of planning policies and practices in Freiburg. Journal of Cleaner Production, ( 195), 1476– 1486.
[91]
Koutra, S. , Bouillard, P. , Becue, V. , Cenci, J. , & Zhang, J. (2023) From 'brown' to 'bright': Key issues and challenges in former industrialized areas. Land Use Policy, ( 129), 106672– .
[92]
Stremke, S. , & Schöbel, S. (2019) Research through design for energy transition: Two case studies in Germany and The Netherlands. Smart and Sustainable Built Environment, 8 ( 1), 16– 33.
[93]
Carty, C. , & Claveria, O. (2024) A synergistic analysis of solar and wind energy deployment in Europe. Environmental Development, ( 49), 100967– .
[94]
De Boer, J. , & Zuidema, C. (2015) Towards an integrated energy landscape. Urban Design and Planning, 168 ( 5), 231– 240.
[95]
Aboulnaga, M., & Elsharkawy, M. (2023). Towards Climate Neutrality: Global Perspective and Actions for Net-Zero Buildings to Achieve Climate Change Mitigation and the SDGs. In: A. Sayigh (Ed.), Towards Net Zero Carbon Emissions in the Building Industry (pp. 373–433). Springer.
[96]
& Sijmons, D. (2016) Landscape and energy. Landscape Architecture, ( 11), 22– 40.

Acknowledgements

· Project of "Research on Beijing's Green Open Space Construction Model Based on Vacated Space Potential and Hierarchical Analysis Method," Fundamental Research Funds for Beijing University of Civil Engineering and Architecture (No. X20029) · Project of "Research on Brownfield Regeneration and Landscape Transformation," Beijing Overseas Talents Program (No. 01082722004)

RIGHTS & PERMISSIONS

© Higher Education Press 2025
AI Summary AI Mindmap
PDF(3881 KB)

Accesses

Citations

Detail

Sections
Recommended

/