
Research Progress and Future Trends in Biomass Energy Spatial Planning
Yifei ZHANG, Keqing QU, Chenshuo MA, Chanyun LI
Landsc. Archit. Front. ›› 2025, Vol. 13 ›› Issue (3) : 20-41.
Research Progress and Future Trends in Biomass Energy Spatial Planning
· Develops a research framework of biomass energy spatial planning | |
· Proposes the "resource–supply chain–demand–optimization" biomass energy spatial operational logic | |
· Reviews the recent developments and future directions of biomass energy spatial planning research |
Biomass energy, as a renewable and abundant source of clean energy, offers strong support for mitigating the environmental crises caused by fossil fuel consumption and realizing global carbon neutrality goals. Research on biomass energy spatial planning is inherently complex and interdisciplinary. Although existing studies span a wide range of spatial scales and thematic focuses, there remains a lack of review that constructs the research framework from a holistic perspective, systematically synthesizing existing literature, identifying research hotspots, and analyzing evolving trends. To address this gap, this research employs CiteSpace to visualize the research trends of the field. Thereby, grounded in "energy landscapes" theory, this research constructs the "resource–supply chain–demand–optimization" spatial operational logic and corresponding biomass energy spatial planning research framework. It reviews existing literature on potential assessment, supply chain, energy demand, and spatial optimization of supply–demand alignment, to clarify the interconnections among research themes, methods, and subfields, enhance the practical feasibility of biomass energy assessment and spatial planning, and improve the scientific rigor and applicability of optimization strategies. Finally, the research outlines future research directions, emphasizing the need to integrate energy planning with spatial planning. Through scientifically guided planning and rational allocation of biomass resources, the added spatial value of renewable energy can be fully leveraged to support sustainable development.
Renewable Energy / Energy Landscapes / Potential Assessment / Supply Chain / Supply–Demand Alignment / Biomass Combined Heat and Power Plant
[1] |
Maamoun, N. , Kennedy, R. , Jin, X. , & Urpelainen, J. (2020) Identifying coal-fired power plants for early retirement. Renewable and Sustainable Energy Reviews, ( 126), 109833–
|
[2] |
Zhuang, X. , Zhang, X. , Zhang, Q. , Chen, L. , & Ma, L. (2024) Development status and challenges of biomass energy utilization technology under background of emission peak and carbon neutrality strategy in China. Solar Energy, 7 ( 363), 40– 49.
|
[3] |
International Energy Agency. (n. d.). Bioenergy.
|
[4] |
& Lu, Y. (2014) Review and prospect of clean, renewable energy utilization. Science & Technology Review, 32 ( Z2), 15– 26.
CrossRef
Google scholar
|
[5] |
& Hepbasli, A. (2008) A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renewable and Sustainable Energy Reviews, 12 ( 3), 593– 661.
CrossRef
Google scholar
|
[6] |
de Waal, R. , & Stremke, S. (2014) Energy transition: Missed opportunities and emerging challenges for landscape planning and designing. Sustainability, 6 ( 7), 4386– 4415.
CrossRef
Google scholar
|
[7] |
Ramirez Camargo, L. , & Stoeglehner, G. (2018) Spatiotemporal modelling for integrated spatial and energy planning. Energy, Sustainability and Society, 8 ( 1), 32–
CrossRef
Google scholar
|
[8] |
& Wolsink, M. (2012) The research agenda on social acceptance of distributed generation in smart grids: Renewable as common pool resources. Renewable and Sustainable Energy Reviews, 16 ( 1), 822– 835.
CrossRef
Google scholar
|
[9] |
Blaschke, T. , Biberacher, M. , Gadocha, S. , & Schardinger, I. (2013) 'Energy landscapes': Meeting energy demands and human aspirations. Biomass and Bioenergy, ( 55), 3– 16.
|
[10] |
Howard, D. C. , Burgess, P. J. , Butler, S. J. , Carver, S. J. , Cockerill, T. , Coleby, A. M. , Gan, G. , Goodier, C. J. , Van der Horst, D. , Hubacek, K. , Lord, R. , Mead, A. , Rivas-Casado, M. , Wadsworth, R. , & Scholefield, P. (2013) Energyscapes: Linking the energy system and ecosystem services in real landscapes. Biomass and Bioenergy, ( 55), 17– 26.
|
[11] |
Ginelli, E., & Daglio, L. (2014). Energyscapes: Developing a Multiscalar Systemic Approach to Assess the Environmental, Social and Economic Impact of Renewable Energy Systems on Landscape. Proceedings of the 2nd International Conference on Architecture and Urban Design (ICAUD 2014). Epoka University Press.
|
[12] |
Geng, A. , Pan, W. , & Yang, H. (2020) Quantifying the mitigating effects and benefits from substituting wood biomass for coal in energy production in China. Resources Science, 42 ( 3), 536– 547.
|
[13] |
Cho, S. , & Kim, J. (2019) Multi-site and multi-period optimization model for strategic planning of a renewable hydrogen energy network from biomass waste and energy crops. Energy, ( 185), 527– 540.
|
[14] |
Nebey, A. H. , Taye, B. Z. , & Workineh, T. G. (2020) Site suitability analysis of solar PV power generation in South Gondar, Amhara Region. Journal of Energy, ( 2020), 3519257–
|
[15] |
Sun, Y. , Wang, R. , Liu, J. , Xiao, L. , Lin, Y. , & Kao, W. (2013) Spatial planning framework for biomass resources for power production at regional level: A case study for Fujian Province, China. Applied Energy, ( 106), 391– 406.
|
[16] |
Song, J. , Liu, C. , Xing, J. , Yang, W. , & Ren, J. (2023) Linking bioenergy production by agricultural residues to sustainable development goals: Prospects by 2030 in China. Energy Conversion and Management, ( 276), 116568–
|
[17] |
Xin, B. , Lyu, L. , Wang, S. , Dong, J. , Zhang, N. , & Yang, C. (2024) Research progress of biomass energy field based on bibliometric investigation. China Environmental Science, 44 ( 4), 1875– 1884.
CrossRef
Google scholar
|
[18] |
Zhang, Y. , Yang, H. , & Liu, L. (2024) Comparative analysis of biomass energy research in China and America. World Sci-Tech R&D,
|
[19] |
& Chen, C. (2006) CiteSpace Ⅱ: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57 ( 3), 359– 377.
CrossRef
Google scholar
|
[20] |
de Jong, J. , & Stremke, S. (2020) Evolution of energy landscapes: A regional case study in the Western Netherlands. Sustainability, 12 ( 11), 4554–
CrossRef
Google scholar
|
[21] |
Wang, C. , Chang, Y. , Zhang, L. , Pang, M. , & Hao, Y. (2017) A life-cycle comparison of the energy, environmental and economic impacts of coal versus wood pellets for generating heat in China. Energy, ( 120), 374– 384.
|
[22] |
Martinez-Valencia, L. , Camenzind, D. , Wigmosta, M. , Garcia-Perez, M. , & Wolcott, M. (2021) Biomass supply chain equipment for renewable fuels production: A review. Biomass and Bioenergy, ( 148), 106054–
|
[23] |
Rimppi, H. , Uusitalo, V. , Väisänen, S. , & Soukka, R. (2016) Sustainability criteria and indicators of bioenergy systems from steering, research and Finnish bioenergy business operators' perspectives. Ecological Indicators, ( 66), 357– 368.
|
[24] |
Liu, Z. , Wang, Y. , & Ding, Y. (2023) Evaluation of biomass energy resource potential and emission reduction of energy-based pollutants in Shaanxi Province. Environmental Science and Management, 48 ( 11), 22– 27.
CrossRef
Google scholar
|
[25] |
Bilandzija, N. , Voca, N. , Jelcic, B. , Jurisic, V. , Matin, A. , Grubor, M. , & Kricka, T. (2018) Evaluation of Croatian agricultural solid biomass energy potential. Renewable and Sustainable Energy Reviews, ( 93), 225– 230.
|
[26] |
Anitescu, G. , & Bruno, T. J. (2012) Liquid biofuels: Fluid properties to optimize feedstock selection, processing, refining/blending, storage/transportation, and combustion. Energy & Fuels, 26 ( 1), 324– 348.
|
[27] |
Fu, J. , Yan, X. , & Jiang, D. (2021) Assessing the sweet sorghum-based ethanol potential on saline–alkali land with DSSAT model and LCA approach. Biotechnology for Biofuels, 14 ( 1), 44–
CrossRef
Google scholar
|
[28] |
Zhang, R. , & Shen, W. (2021) Research and prospects on the evaluation of the potential of agriculture and forestry biomass resources. China Forestry Economics, ( 6), 46– 49.
|
[29] |
Zhou, Y. , Wang, J. , Wang, S. , Xi, F. , Bing, L. , Yin, Y. , Hu, Q. , & Zhang, L. (2024) Assessment of biomass resources for energy use potential in China. Chinese Journal of Ecology, 43 ( 9), 2702– 2713.
|
[30] |
Nie, Y. , Chang, S. , Cai, W. , Wang, C. , Fu, J. , Hui, J. , Yu, L. , Zhu, W. , Huang, G. , Kumar, A. , Guo, W. , & Ding, Q. (2020) Spatial distribution of usable biomass feedstock and technical bioenergy potential in China. GCB Bioenergy, 12 ( 1), 54– 70.
CrossRef
Google scholar
|
[31] |
Yan, P. , Xiao, C. , Xu, L. , Yu, G. , Li, A. , Piao, S. , & He, N. (2020) Biomass energy in China's terrestrial ecosystems: Insights into the nation's sustainable energy supply. Renewable and Sustainable Energy Reviews, ( 127), 109857–
|
[32] |
Dabas, J. , Mondal, S. , & Thapar, S. (2023) Application of geospatial technology for assessment of agricultural residue based renewable energy potential in Punjab, India. Energy for Sustainable Development, ( 72), 340– 350.
|
[33] |
Younis, A. , Trujillo, Y. , Benders, R. , & Faaij, A. (2021) Regionalized cost supply potential of bioenergy crops and residues in Colombia: A hybrid statistical balance and land suitability allocation scenario analysis. Biomass and Bioenergy, ( 150), 106096–
|
[34] |
Cao, X. , Sun, B. , Chen, H. , Zhou, J. , Song, X. , Liu, X. , Deng, X. , Li, X. , Zhao, Y. , Zhang, J. , & Li, J. (2021) Approaches and research progresses of marginal land productivity expansion and ecological benefit improvement in China. Bulletin of the Chinese Academy of Sciences, 36 ( 3), 336– 348.
|
[35] |
Fu, J. , Du, J. , Jiang, D. , & Wang, D. (2020) Analysis of the marginal land resources suitable for developing liquid biofuel in China. Science & Technology Review, ( 11), 31– 40.
|
[36] |
Viccaro, M. , Caniani, D. , Masi, S. , Romano, S. , & Cozzi, M. (2022) Biofuels or not biofuels? The "Nexus Thinking" in land suitability analysis for energy crops. Renewable Energy, ( 187), 1050– 1064.
|
[37] |
Cervelli, E. , Recchi, P. F. , Fagnano, M. , di Perta, E. S. , & Pindozzi, S. (2024) Marginal lands between recovery and valorization. An inclusive definition to support bio-energy supply chains. The Southern Italy contexts case study. Agricultural Systems, ( 217), 103951–
|
[38] |
& Chen, X. (2016) Economic potential of biomass supply from crop residues in China. Applied Energy, ( 166), 141– 149.
|
[39] |
Chukwuma, E. C. , Okey-Onyesolu, F. C. , Ani, K. A. , & Nwanna, E. C. (2021) GIS bio-waste assessment and suitability analysis for biogas power plant: A case study of Anambra state of Nigeria. Renewable Energy, ( 163), 1182– 1194.
|
[40] |
Wolfsmayr, U. J. , & Rauch, P. (2014) The primary forest fuel supply chain: A literature review. Biomass & Bioenergy, ( 60), 203– 221.
|
[41] |
Mamo, T. , Montastruc, L. , Negny, S. , & Dendena, L. (2024) Considering economic-environmental dimension in the integrated strategic and tactical optimization of Ethiopia's bioethanol supply chain coupled with operational planning. Computers and Chemical Engineering, ( 189), 108781–
|
[42] |
Lin, T. , Rodríguez, L. F. , Shastri, Y. N. , Hansen, A. C. , & Ting, K. C. (2013) GIS-enabled biomass‐ethanol supply chain optimization: Model development and Miscanthus application. Biofuels, Bioproducts and Biorefining, 7 ( 3), 314– 333.
CrossRef
Google scholar
|
[43] |
Mamo, T. , Montastruc, L. , Negny, S. , & Dendena, L. (2023) Integreted strategic and tactical optimization planning of biomass to bioethanol supply chains coupled with operational plan using vehicle routing: A case study in Ethiopia. Computers and Chemical Engineering, ( 172), 108186–
|
[44] |
Sánchez-García, S. , Athanassiadis, D. , Martínez-Alonso, C. , Tolosana, E. , Majada, J. , & Canga, E. (2017) A GIS methodology for optimal location of a wood-fired power plant: Quantification of available woodfuel, supply chain costs and GHG emissions. Journal of Cleaner Production, ( 157), 201– 212.
|
[45] |
Wu, J. , Zhang, J. , Yi, W. , Cai, H. , Li, Y. , & Su, Z. (2022) Agri-biomass supply chain optimization in north China: Model development and application. Energy, ( 239), 122374–
|
[46] |
Balaman, E. Y. , Wright, D. G. , Scott, J. , & Matopoulos, A. (2018) Network design and technology management for waste to energy production: An integrated optimization framework under the principles of circular economy. Energy, ( 143), 911– 933.
|
[47] |
Morato, T. , Vaezi, M. , & Kumar, A. (2019) Developing a framework to optimally locate biomass collection points to improve the biomass-based energy facilities locating procedure—A case study for Bolivia. Renewable and Sustainable Energy Reviews, ( 107), 183– 199.
|
[48] |
Cao, J. , Pang, B. , Mo, X. , & Xu, F. (2016) A new model that using transfer stations for straw collection and transportation in the rural areas of China: A case of Jinghai, Tianjin. Renewable Energy, ( 99), 911– 918.
|
[49] |
Tang, Z.-H. , Liang, C. , & Zhang, R.-C. (2023) Optimizing crop residues collection patterns in rural areas to reduce transportation costs and carbon emissions. Environmental Technology & Innovation, ( 32), 103367–
|
[50] |
Mafakheri, F. , & Nasiri, F. (2014) Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions. Energy Policy, ( 67), 116– 126.
|
[51] |
Mohd Idris, M. N. , Hashim, H. , & Razak, N. H. (2018) Spatial optimisation of oil palm biomass co-firing for emissions reduction in coal-fired power plant. Journal of Cleaner Production, ( 172), 3428– 3447.
|
[52] |
& Flodén, J. (2016) Opportunities and challenges for rail transport of solid wood biofuel. European Journal of Transport and Infrastructure Research, 16 ( 4), 512– 553.
|
[53] |
Stephen, J. D. , Mabee, W. E. , & Saddler, J. N. (2010) Biomass logistics as a determinant of second-generation biofuel facility scale, location and technology selection. Biofuels, Bioproducts & Biorefining, 4 ( 5), 503– 518.
|
[54] |
Ko, S. , Lautala, P. , & Handler, R. M. (2018) Securing the feedstock procurement for bioenergy products: A literature review on the biomass transportation and logistics. Journal of Cleaner Production, ( 200), 205– 218.
|
[55] |
Mirkouei, A. , Haapala, K. R. , Sessions, J. , & Murthy, G. S. (2017) A mixed biomass-based energy supply chain for enhancing economic and environmental sustainability benefits: A multi-criteria decision making framework. Applied Energy, ( 206), 1088– 1101.
|
[56] |
Schröder, M. , & Cabral, P. (2019b) Eco-friendly 3D-Routing: A GIS based 3D-Routing-Model to estimate and reduce CO2-emissions of distribution transports. Computers, Environment and Urban Systems, ( 73), 40– 55.
|
[57] |
Golecha, R. , & Gan, J. (2016) Biomass transport cost from field to conversion facility when biomass yield density and road network vary with transport radius. Applied Energy, ( 164), 321– 331.
|
[58] |
Levihn, F. , & Nuur, C. (2014) Biomass and waste incineration CHP: The co-benefits of primary energy savings, reduced emissions and costs. WIT Transactions on Ecology and the Environment, ( 190), 127– 138.
|
[59] |
Zhao, B. , Wang, H. , Huang, Z. , & Sun, Q. (2022) Location mapping for constructing biomass power plant using multi-criteria decision-making method. Sustainable Energy Technologies and Assessments, ( 49), 101707–
|
[60] |
Mokarram, M. , Shafie-Khah, M. , & Aghaei, J. (2021) Risk-based multi-criteria decision analysis of gas power plants placement in semi-arid regions. Energy Reports, ( 7), 3362– 3372.
|
[61] |
Pergola, M. , Rita, A. , Tortora, A. , Castellaneta, M. , Borghetti, M. , De Franchi, A. S. , Lapolla, A. , Moretti, N. , Pecora, G. , Pierangeli, D. , Todaro, L. , & Ripullone, F. (2020) Identification of suitable areas for biomass power plant construction through environmental impact assessment of forest harvesting residues transportation. Energies, 13 ( 11), 2699–
CrossRef
Google scholar
|
[62] |
Franco, C. , Bojesen, M. , Hougaard, J. L. , & Nielsen, K. (2015) A fuzzy approach to a multiple criteria and Geographical Information System for decision support on suitable locations for biogas plants. Applied Energy, ( 140), 304– 315.
|
[63] |
Ma, C. , Zhang, Y. , & Ma, K. (2022) The effect of biomass raw material collection distance on energy surplus factor. Journal of Environmental Management, ( 317), 115461–
|
[64] |
Zhang, Y. , & Kang, J. (2018) Effect of the distribution density of biomass combined heat and power plant networks on total energy utilization efficiency. Journal of Renewable and Sustainable Energy, 10 ( 6), 065902–
CrossRef
Google scholar
|
[65] |
& Wolf, G. W. (2022) Solving location-allocation problems with professional optimization software. Transactions in GIS, 26 ( 7), 2741– 2775.
CrossRef
Google scholar
|
[66] |
Suganthi, L. , & Samuel, A. A. (2012) Energy models for demand forecasting—A review. Renewable and Sustainable Energy Reviews, 16 ( 2), 1223– 1240.
CrossRef
Google scholar
|
[67] |
Peng, C. , Li, Z. , Xu, Q. , Li, X. , Li, X. , & Chen, H. (2024) Spatial distribution of energy consumption: Integrating climate and macro-statistics for insights from clustering and sensitivity analysis. Energy & Buildings, ( 318), 114446–
|
[68] |
Ma, C. , Zhang, Y. , & Zhao, W. (2021) Influence of latitude on raw material consumption by biomass combined heat and power plants: Energy conservation study of 50 cities and counties in the cold region of China. Journal of Cleaner Production, ( 278), 123796–
|
[69] |
Venghaus, S. , & Hoffmann, J. (2016) The impacts of energy from biomass on the perceived quality of life of the rural population in Brandenburg, Germany. Innovation: The European Journal of Social Science Research, ( 29), 337– 372.
|
[70] |
Li, L. , Zhang, J. , Tang, L. , & Yu, L. (2017) Analysis on factors of China's energy intensity changes for 1997-2012: Based on structural decomposition analysis. Chinese Journal of Management Science, 25 ( 9), 125– 132.
|
[71] |
Yasmeen, R. , Cui, Z. , Shah, W. U. H. , Kamal, M. A. , & Khan, A. (2022) Exploring the role of biomass energy consumption, ecological footprint through FDI and technological innovation in B&R economies: A simultaneous equation approach. Energy, ( 244), 122703–
|
[72] |
Mutschler, R. , Rüdisüli, M. , Heer, P. , & Eggimann, S. (2021) Benchmarking cooling and heating energy demands considering climate change, population growth and cooling device uptake. Applied Energy, ( 288), 116636–
|
[73] |
Hao, Y. , Wang, L. , Fan, W. , Wei, Y. , Wen, T. , & Zhang, K. (2018) What determines China's electricity consumption? New evidence using the logarithmic mean Divisia index method. Journal of Renewable and Sustainable Energy, ( 10), 015909–
|
[74] |
Wang, S. , Xie, Z. , & Wu, R. (2020) Examining the effects of education level inequality on energy consumption: Evidence from Guangdong Province. Journal of Environmental Management, ( 269), 110761–
|
[75] |
& Otsuka, A. (2018) Population agglomeration and residential energy consumption: Evidence from Japan. Sustainability, 10 ( 2), 469–
CrossRef
Google scholar
|
[76] |
Zhang, Y. , Qin, C. , & Liu, Y. (2018) Effects of population density of a village and town system on the transportation cost for a biomass combined heat and power plant. Journal of Environmental Management, ( 223), 444– 451.
|
[77] |
Li, J. , Guo, J. , & Yuan, Q. (2018) Forecast of energy demand and policy impact under the background of the coordinated development in Beijing–Tianjin–Hebei region. Journal of Arid Zone Resources and Environment, 32 ( 5), 5– 11.
|
[78] |
Popp, J. , Kovács, S. , Oláh, J. , Divéki, Z. , & Balázs, E. (2021) Bioeconomy: Biomass and biomass-based energy supply and demand. New Biotechnology, ( 60), 76– 84.
|
[79] |
Cintas, O. , Berndes, G. , Englund, O. , & Johnsson, F. (2021) Geospatial supply-demand modeling of lignocellulosic biomass for electricity and biofuels in the European Union. Biomass and Bioenergy, ( 144), 105870–
|
[80] |
He, Y. , Zhang, Y. , & Ma, K. (2024) A comprehensive planning study on the thermal potential of various biomass conversion technologies: Case study of 47 cities in China. Journal of Cleaner Production, ( 437), 140305–
|
[81] |
Hassan, Q. , Algburi, S. , Al-Musawi, T. J. , Viktor, P. , Jaszczur, M. , Barakat, M. , Sameen, A. Z. , & Hussein, A. H. (2024) GIS-based multi-criteria analysis for solar, wind, and biomass energy potential: A case study of Iraq with implications for climate goals. Results in Engineering, ( 22), 102212–
|
[82] |
Lemm, R. , Haymoz, R. , Gurung, A. B. , Burg, V. , Strebel, T. , & Thees, O. (2020) Replacing fossil fuels and nuclear power with renewable energy: Utopia or valid option? A Swiss case study of bioenergy. Energies, 13 ( 8), 2051–
|
[83] |
Shi, Z. , Ferrari, G. , Ai, P. , Marinello, F. , & Pezzuolo, A. (2024) Bioenergy potential from agricultural by-product in 2030: An AI-based spatial analysis and climate change scenarios in a Chinese region. Journal of Cleaner Production, ( 436), 140621–
|
[84] |
Nie, Y. , Cai, W. , Wang, C. , Huang, G. , Ding, Q. , Yu, L. , Li, H. , & Ji, D. (2019) Assessment of the potential and distribution of an energy crop at 1-km resolution from 2010 to 2100 in China—The case of sweet sorghum. Applied Energy, ( 239), 395– 407.
|
[85] |
Cervelli, E. , di Perta, E. S. , & Pindozzi, S. (2020) Energy crops in marginal areas: Scenario-based assessment through ecosystem services, as support to sustainable development. Ecological Indicators, ( 113), 106180–
|
/
〈 |
|
〉 |