Aim: Experimental studies provided numerous evidence that caloric/dietary restriction may improve health and increase the lifespan of laboratory animals, and that the interplay among molecules that sense cellular stress signals and those regulating cell survival can play a crucial role in cell response to nutritional stressors. However, it is unclear whether the interplay among corresponding genes also plays a role in human health and lifespan.
Methods: Literature about roles of cellular stressors have been reviewed, such as amino acid deprivation, and the integrated stress response (ISR) pathway in health and aging. Single nucleotide polymorphisms (SNPs) in two candidate genes (GCN2/EIF2AK4 and CHOP/DDI3T) that are closely involved in the cellular stress response to amino acid starvation, have been selected using information from experimental studies. Associations of these SNPs and their interactions with human survival in the Health and Retirement Study data have been estimated. The impact of collective associations of multiple interacting SNP pairs on survival has been evaluated, using a recently developed composite index: the SNP-specific Interaction Polygenic Risk Score (SIPRS).
Results: Significant interactions have been found between SNPs from GCN2/EIF2AK4 and CHOP/DDI3T genes that were associated with survival 85+ compared to survival between ages 75 and 85 in the total sample (males and females combined) and in females only. This may reflect sex differences in genetic regulation of the human lifespan. Highly statistically significant associations of SIPRS [constructed for the rs16970024 (GCN2/EIF2AK4) and rs697221 (CHOP/DDIT3)] with survival in both sexes also been found in this study.
Conclusion: Identifying associations of the genetic interactions with human survival is an important step in translating the knowledge from experimental to human aging research. Significant associations of multiple SNPxSNP interactions in ISR genes with survival to the oldest old age that have been found in this study, can help uncover mechanisms of multifactorial regulation of human lifespan and its heterogeneity.
Acute lymphoblastic leukemia (ALL) is the most frequent malignant disease in the pediatric population, accounting for about 25% of childhood cancers. Drastic therapeutic improvements have been made for pediatric ALL since the early 1960s, marking the most successful treatment paradigm in pediatric oncology. The clinical success derived from refined risk-adapted therapy based on presenting features, cytogenetics and minimal residual disease, prevention of central nervous system relapse, and improvement of supportive care measures. With contemporary therapies, survival of children with ALL now exceeds 90%. However, ALL represents one of leading causes of cancer-related death, as 15%-20% of patients continue to relapse and outcomes post-relapse remain poor. Since the early 2000s, large-scale genomic studies of ALL, greatly facilitated by the advent of next generation sequencing (NGS), have enabled the development of a novel taxonomy for ALL in the molecular era. The access to NGS technologies identifies novel ALL subsets characterized by “driver” oncogenic alterations, previously cryptic on conventional karyotyping methods. With genomic characterization, the group of formerly unclassified B-lineage ALL reduces from 25% to a marginal 5% of ALL. The revised molecular classification of ALL confers prognostic significance and describes the predilection of unfavorable ALL subtypes with increasing age, partially elucidating the worst outcome of adolescents and young adults with ALL. Large-scale genomic analysis also reveals inherited alterations predisposing to ALL occurrence or to different drugs’ sensitivities. Most importantly, the genomic portrait of ALL uncovers novel therapeutic vulnerabilities, paving the way towards precision medicine opportunities in ALL.
Talimogene laherparepvec (T-VEC) is an oncolytic virus (OV) therapy derived from the JS1 strain of herpes simplex virus one that was approved by the Food and Drug Administration in 2015 to be administered as direct injection therapy for patients with melanoma. The anti-tumor effects of T-VEC are due to viral-mediated tumor cell lysis at the site of administration and a local, and in some cases systemic, anti-tumor response via T cell-mediated host immune response pathways aided by GM-CSF. T-VEC has shown promising results for metastatic melanoma, particularly in patients with skin, lymph node, and soft tissue metastases (stages IIIB, IIIC, and IVa). Studies have explored the utility of T-VEC as monotherapy, neoadjuvant therapy, and in combination with other immunotherapies and targeted therapies. T-VEC has proven to improve durable response rates and overall survival with a very tolerable safety profile. More research is needed to better understand which patients are most likely to benefit from T-VEC therapy, which combination therapies are most effective, and how to sequence multimodality therapy. Additionally, new OVs are currently in development and/or being studied in clinical trials. In this review, we will discuss T-VEC as a monotherapy, neoadjuvant therapy, and combination therapy, in addition to future directions for melanoma therapy as it pertains to new OVs.
As a DNA-binding protein, high mobility group box 1 (HMGB1) has been shown be involved in various biological activities, including transcription regulation, DNA repair, genomic stability, and extracellular signaling. Accumulating evidence indicates that HMGB1 has an important role in biological processes in cancer. Moreover, HMGB1 has been shown to have intracellular and extracellular roles, activating key cancerogenic signaling pathways. The main signal pathway is activated via the interaction of HMGB1 with its receptor, receptor for advanced glycation end-products (RAGE). In addition, overexpression of HMGB1/RAGE occurs in certain types of primary tumors and has been linked to increased metastasis and poorer prognosis. In our previous research, we demonstrated that co-expression of HMGB1 and RAGE is associated with cancer progression and poor patient outcome in prostate cancer (PCa). Together with the recent published evidence, we describe and speculate on the character of the HMGB1/RAGE axis in PCa progression and elaborate on future prospects for the application of potential strategies to target HMGB1 in PCa therapy.
Aim: To molecularly characterize the tumor microenvironment and evaluate immunologic parameters in canine glioma patients before and after treatment with oncolytic human IL-12-expressing herpes simplex virus (M032) and in treatment naïve canine gliomas.
Methods: We assessed pet dogs with sporadically occurring gliomas enrolled in Stage 1 of a veterinary clinical trial that was designed to establish the safety of intratumoral oncoviral therapy with M032, a genetically modified oncolytic herpes simplex virus. Specimens from dogs in the trial and dogs not enrolled in the trial were evaluated with immunohistochemistry, NanoString, Luminex cytokine profiling, and multi-parameter flow cytometry.
Results: Treatment-naive canine glioma microenvironment had enrichment of Iba1 positive macrophages and minimal numbers of T and B cells, consistent with previous studies identifying these tumors as immunologically “cold”. NanoString mRNA profiling revealed enrichment for tumor intrinsic pathways consistent with suppression of tumor-specific immunity and support of tumor progression. Oncolytic viral treatment induced an intratumoral mRNA transcription signature of tumor-specific immune responses in 83% (5/6) of canine glioma patients. Changes included mRNA signatures corresponding with interferon signaling, lymphoid and myeloid cell activation, recruitment, and T and B cell immunity. Multiplexed protein analysis identified a subset of oligodendroglioma subjects with increased concentrations of IL-2, IL-7, IL-6, IL-10, IL-15, TNFα, GM-CSF between 14 and 28 days after treatment, with evidence of CD4+ T cell activation and modulation of IL-4 and IFNγ production in CD4+ and CD8+ T cells isolated from peripheral blood.
Conclusion: These findings indicate that M032 modulates the tumor-immune microenvironment in the canine glioma model.
The redefinition of classical electroclinical syndromes and the emergence of neurogenetics has led to a revolution in the field of developmental and epileptic encephalopathies (DEEs). In this context, advances in genetic techniques are leading to the final diagnosis of a large proportion of patients with DEE. However, up to 50% of patients with DEE remain undiagnosed. For patients with uncertain genetic etiology, there is a pressing need for the implementation of new targeted treatments and precision medicine. In some undiagnosed patients, genetic reanalysis with further in-depth or reverse phenotyping are valuable diagnostic tools to clarify new variants of uncertain significance. In other cases, the implementation of new bioinformatic algorithms is required for the update and reassessment of previously generated genetic data. Moreover, many other clinical tools have been developed for the management of patients of DEEs after a negative or inconclusive genetic testing. In this review, we highlight advances and limitations of new diagnostic strategies used in DEE patients without a known genetic etiology. Finally, we provide a wide perspective on aspects that will need further research, especially in non-Mendelian inheritance DEEs, such as those related to somatic mosaicism of the central nervous system or epigenetic and oligogenic mechanisms.