PDF
Abstract
Aim: Experimental studies provided numerous evidence that caloric/dietary restriction may improve health and increase the lifespan of laboratory animals, and that the interplay among molecules that sense cellular stress signals and those regulating cell survival can play a crucial role in cell response to nutritional stressors. However, it is unclear whether the interplay among corresponding genes also plays a role in human health and lifespan.
Methods: Literature about roles of cellular stressors have been reviewed, such as amino acid deprivation, and the integrated stress response (ISR) pathway in health and aging. Single nucleotide polymorphisms (SNPs) in two candidate genes (GCN2/EIF2AK4 and CHOP/DDI3T) that are closely involved in the cellular stress response to amino acid starvation, have been selected using information from experimental studies. Associations of these SNPs and their interactions with human survival in the Health and Retirement Study data have been estimated. The impact of collective associations of multiple interacting SNP pairs on survival has been evaluated, using a recently developed composite index: the SNP-specific Interaction Polygenic Risk Score (SIPRS).
Results: Significant interactions have been found between SNPs from GCN2/EIF2AK4 and CHOP/DDI3T genes that were associated with survival 85+ compared to survival between ages 75 and 85 in the total sample (males and females combined) and in females only. This may reflect sex differences in genetic regulation of the human lifespan. Highly statistically significant associations of SIPRS [constructed for the rs16970024 (GCN2/EIF2AK4) and rs697221 (CHOP/DDIT3)] with survival in both sexes also been found in this study.
Conclusion: Identifying associations of the genetic interactions with human survival is an important step in translating the knowledge from experimental to human aging research. Significant associations of multiple SNPxSNP interactions in ISR genes with survival to the oldest old age that have been found in this study, can help uncover mechanisms of multifactorial regulation of human lifespan and its heterogeneity.
Keywords
Integrated stress response
/
amino acids starvation
/
health and lifespan
/
GCN2/EIF2AK4 and CHOP/DDI3T genes
/
GxG interactions
Cite this article
Download citation ▾
Anatoliy I. Yashin, Deqing Wu, Konstantin Arbeev, Arseniy P. Yashkin, Igor Akushevich, Olivia Bagley, Matt Duan, Svetlana Ukraintseva.
Roles of interacting stress-related genes in lifespan regulation: insights for translating experimental findings to humans.
Journal of Translational Genetics and Genomics, 2021, 5(4): 357-79 DOI:10.20517/jtgg.2021.26
| [1] |
KenyonCJ.The genetics of ageing.Nature2010;464:504-12
|
| [2] |
JohnsonTE.Genetic analysis of life-span in Caenorhabditis elegans.Proc Natl Acad Sci U S A1982;79:6603-7 PMCID:PMC347176
|
| [3] |
JohnsonTE,KellerML.Long-lived lines of Caenorhabditis elegans can be used to establish predictive biomarkers of aging.Exp Gerontol1988;23:281-95
|
| [4] |
FriedmanDB.Three mutants that extend both mean and maximum life span of the nematode, Caenorhabditis elegans, define the age-1 gene.J Gerontol1988;43:B102-9
|
| [5] |
UnoM.Lifespan-regulating genes in C. elegans.NPJ Aging Mech Dis2016;2:16010 PMCID:PMC5514992
|
| [6] |
PartridgeL,MairW.Dietary restriction, mortality trajectories, risk and damage.Mech Ageing Dev2005;126:35-41
|
| [7] |
MasoroEJ.Caloric restriction and aging: controversial issues.J Gerontol A Biol Sci Med Sci2006;61:14-9
|
| [8] |
ArcherCR,SouthS,HuntJ.Nutritional geometry provides food for thought.J Gerontol A Biol Sci Med Sci2009;64:956-9 PMCID:PMC2720887
|
| [9] |
EissenbergJC.Hungering for Immortality.Mo Med2018;115:12-7 PMCID:PMC6139805
|
| [10] |
Couteur DG, Solon-Biet S, Cogger VC, et al. The impact of low-protein high-carbohydrate diets on aging and lifespan.Cell Mol Life Sci2016;73:1237-52
|
| [11] |
SeidelmannSB,ChengS.Dietary carbohydrate intake and mortality: a prospective cohort study and meta-analysis.Lancet Public Health2018;3:e419-e28 PMCID:PMC6339822
|
| [12] |
JohnsonAA.The role of lipid metabolism in aging, lifespan regulation, and age-related disease.Aging Cell2019;18:e13048 PMCID:PMC6826135
|
| [13] |
YoshidaS,KumeS.Role of dietary amino acid balance in diet restriction-mediated lifespan extension, renoprotection, and muscle weakness in aged mice.Aging Cell2018;17:e12796 PMCID:PMC6052467
|
| [14] |
KitadaM,MonnoI.The impact of dietary protein intake on longevity and metabolic health.EBioMedicine2019;43:632-40 PMCID:PMC6562018
|
| [15] |
LeeD,ArtanM,LeeSJ.Effects of nutritional components on aging.Aging Cell2015;14:8-16 PMCID:PMC4326908
|
| [16] |
ArgandaS,BazaziS.Parsing the life-shortening effects of dietary protein: effects of individual amino acids.Proc Biol Sci2017;284 PMCID:PMC5247493
|
| [17] |
AmesBN.Prolonging healthy aging: longevity vitamins and proteins.Proc Natl Acad Sci U S A2018;115:10836-44 PMCID:PMC6205492
|
| [18] |
AltamuraS.Iron toxicity in diseases of aging: Alzheimer's disease, Parkinson's disease and atherosclerosis.J Alzheimers Dis2009;16:879-95
|
| [19] |
NieY.Dietary fiber: an opportunity for a global control of hyperlipidemia.Oxid Med Cell Longev2021;2021:5542342 PMCID:PMC8052145
|
| [20] |
KlassMR.A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results.Mech Ageing Dev1983;22:279-86
|
| [21] |
LiaoCY,JohnsonTE,NelsonJF.Genetic variation in the murine lifespan response to dietary restriction: from life extension to life shortening.Aging Cell2010;9:92-5 PMCID:PMC3476836
|
| [22] |
JewellJL,GuanKL.Amino acid signalling upstream of mTOR.Nat Rev Mol Cell Biol2013;14:133-9 PMCID:PMC3988467
|
| [23] |
GoberdhanDC,HarrisAL.Amino acid sensing by mTORC1: intracellular transporters mark the spot.Cell Metab2016;23:580-9 PMCID:PMC5067300
|
| [24] |
AverousJ,MesclonF.GCN2 contributes to mTORC1 inhibition by leucine deprivation through an ATF4 independent mechanism.Sci Rep2016;6:27698 PMCID:PMC4906353
|
| [25] |
FalcónP,BritoÁ.Nutrient sensing and redox balance: GCN2 as a new integrator in aging.Oxid Med Cell Longev2019;2019:5730532 PMCID:PMC6556294
|
| [26] |
PapadopoliD,KazakL.mTOR as a central regulator of lifespan and aging.F1000Res2019;8 PMCID:PMC6611156
|
| [27] |
UppuS,GopalanRP.A review on methods for detecting SNP interactions in high-dimensional genomic data.IEEE/ACM Trans Comput Biol Bioinform2018;15:599-612
|
| [28] |
LiuL.Epistasis analysis: classification through machine learning methods.Methods Mol Biol2021;2212:337-45
|
| [29] |
ManavalanR.Genetic interactions effects for cancer disease identification using computational models: a review.Med Biol Eng Comput2021;59:733-58
|
| [30] |
SlimL,AzencottCA.Novel methods for epistasis detection in genome-wide association studies.PLoS One2020;15:e0242927 PMCID:PMC7703915
|
| [31] |
PanQ,MooreJH.Epistasis, complexity, and multifactor dimensionality reduction.Methods Mol Biol2013;1019:465-77
|
| [32] |
AbegazF,MahachieJohn JM.Performance of model-based multifactor dimensionality reduction methods for epistasis detection by controlling population structure.BioData Min2021;14:16 PMCID:PMC7893746
|
| [33] |
YangCH,ChuangLY.Class balanced multifactor dimensionality reduction to detect gene-gene interactions.IEEE/ACM Trans Comput Biol Bioinform2020;17:71-81
|
| [34] |
ChenG,CaiT.Measuring gene-gene interaction using Kullback-Leibler divergence.Ann Hum Genet2019;83:405-17
|
| [35] |
MaltenJ.Modified entropy-based procedure detects gene-gene-interactions in unconventional genetic models.BMC Med Genomics2020;13:65 PMCID:PMC7181579
|
| [36] |
BorzouA.A novel estimator of the interaction matrix in Graphical Gaussian Model of omics data using the entropy of non-equilibrium systems.Bioinformatics2021;37:837-44 PMCID:PMC8098027
|
| [37] |
ChiccoD.Brief survey on machine learning in epistasis.Methods Mol Biol2021;2212:169-79
|
| [38] |
PetinrinOO.Protocol for epistasis detection with machine learning using genepi package.Methods Mol Biol2021;2212:291-305
|
| [39] |
LinHY,HuangPY.SNP interaction pattern identifier (SIPI): an intensive search for SNP-SNP interaction patterns.Bioinformatics2017;33:822-33 PMCID:PMC5860469
|
| [40] |
SunR,ChongKC,WuWKK.wtest: an integrated R package for genetic epistasis testing.BMC Med Genomics2019;12:180 PMCID:PMC6929460
|
| [41] |
CaoX,GuoM.HiSSI: high-order SNP-SNP interactions detection based on efficient significant pattern and differential evolution.BMC Med Genomics2019;12:139 PMCID:PMC6936079
|
| [42] |
CarmeloVAO,MadsenMB.WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases.BMC Bioinformatics2018;19:277 PMCID:PMC6069724
|
| [43] |
ChangYC,HongMY.GenEpi: gene-based epistasis discovery using machine learning.BMC Bioinformatics2020;21:68 PMCID:PMC7041299
|
| [44] |
HuangY,PrzytyckaTM.eQTL Epistasis - challenges and computational approaches.Front Genet2013;4:51 PMCID:PMC3668133
|
| [45] |
KwonM,YoonJ.GxGrare: gene-gene interaction analysis method for rare variants from high-throughput sequencing data.BMC Syst Biol2018;12:19 PMCID:PMC5861485
|
| [46] |
HeroldC,BrockschmidtFF,BeckerT.INTERSNP: genome-wide interaction analysis guided by a priori information.Bioinformatics2009;25:3275-81
|
| [47] |
YashinAI,ArbeevK.Interplay between stress-related genes may influence Alzheimer's disease development: the results of genetic interaction analyses of human data.Mech Ageing Dev2021;196:111477 PMCID:PMC8173104
|
| [48] |
NielC,DinaC.A survey about methods dedicated to epistasis detection.Front Genet2015;6:285 PMCID:PMC4564769
|
| [49] |
Costa-MattioliM.The integrated stress response: from mechanism to disease.Science2020;368
|
| [50] |
BruhatA,WangXZ,FerraraM.Amino acid limitation induces expression of CHOP, a CCAAT/enhancer binding protein-related gene, at both transcriptional and post-transcriptional levels.J Biol Chem1997;272:17588-93
|
| [51] |
MasudaM,LeviM,MiyazakiM.PERK-eIF2α-ATF4-CHOP signaling contributes to TNFα-induced vascular calcification.J Am Heart Assoc2013;2:e000238 PMCID:PMC3835225
|
| [52] |
Pakos-ZebruckaK,MnichK,SamaliA.The integrated stress response.EMBO Rep2016;17:1374-95 PMCID:PMC5048378
|
| [53] |
WangL,JiangT.Endoplasmic reticulum stress is involved in the neuroprotective effect of propofol.Neurochem Res2014;39:1741-52
|
| [54] |
OliveiraMM.Integrated stress response: connecting ApoE4 to memory impairment in Alzheimer's disease.J Neurosci2016;36:1053-5 PMCID:PMC6604828
|
| [55] |
BondS,GannonPJ,Jordan-SciuttoKL.The integrated stress response and phosphorylated eukaryotic initiation factor 2α in neurodegeneration.J Neuropathol Exp Neurol2020;79:123-43 PMCID:PMC6970450
|
| [56] |
GirardinSE,PhilpottDJ.The eIF2α kinase HRI in innate immunity, proteostasis, and mitochondrial stress.Febs j202010.1111/febs.15553
|
| [57] |
PostnikoffSDL,TylerJK.The integrated stress response in budding yeast lifespan extension.Microb Cell2017;4:368-75 PMCID:PMC5695854
|
| [58] |
DerisbourgMJ,BaddiR.Mutagenesis screen uncovers lifespan extension through integrated stress response inhibition without reduced mRNA translation.Nat Commun2021;12:1678 PMCID:PMC7960713
|
| [59] |
WangY,AlamGN.Amino acid deprivation promotes tumor angiogenesis through the GCN2/ATF4 pathway.Neoplasia2013;15:989-97 PMCID:PMC3730049
|
| [60] |
RozpedekW,MuchaB,DiehlJA.The role of the PERK/eIF2α/ATF4/CHOP signaling pathway in tumor progression during endoplasmic reticulum stress.Curr Mol Med2016;16:533-44 PMCID:PMC5008685
|
| [61] |
YeJ,HartLS.The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation.Embo j2010;29:2082-96 PMCID:PMC2892366
|
| [62] |
EmanuelliG,MorrellNW.The integrated stress response in pulmonary disease.Eur Respir Rev2020;29 PMCID:PMC7116220
|
| [63] |
FusterJJ.Integrated stress response inhibition in atherosclerosis: preventing the stressed-out plaque.J Am Coll Cardiol2019;73:1170-2
|
| [64] |
OnatUI,TufanliÖ.Intercepting the lipid-induced integrated stress response reduces atherosclerosis.J Am Coll Cardiol2019;73:1149-69 PMCID:PMC6424590
|
| [65] |
XuX,SoJS.Preemptive activation of the integrated stress response protects mice from diet-induced obesity and insulin resistance by fibroblast growth factor 21 induction.Hepatology2018;68:2167-81 PMCID:PMC6203669
|
| [66] |
HenkelAS.Harnessing the integrated stress response to counteract metabolic disease.Hepatology2018;68:2056-8
|
| [67] |
DonnellyN,GuptaS.The eIF2α kinases: their structures and functions.Cell Mol Life Sci2013;70:3493-511
|
| [68] |
GállT,BallaJ.Heme, heme oxygenase, and endoplasmic reticulum stress-a new insight into the pathophysiology of vascular diseases.Int J Mol Sci2019;20 PMCID:PMC6695876
|
| [69] |
RodriguesL,CarneiroLAM.Integrated stress responses to bacterial pathogenesis patterns.Front Immunol2018;9:1306 PMCID:PMC5999787
|
| [70] |
SaelensX,VandenabeeleP.Translation inhibition in apoptosis: caspase-dependent PKR activation and eIF2-alpha phosphorylation.J Biol Chem2001;276:41620-8
|
| [71] |
TaylorSS,GhoshG.PKR and eIF2alpha: integration of kinase dimerization, activation, and substrate docking.Cell2005;122:823-5
|
| [72] |
ChesnokovaE,KolosovP.Kinases of eIF2a switch translation of mRNA subset during neuronal plasticity.Int J Mol Sci2017;18 PMCID:PMC5666893
|
| [73] |
Gal-Ben-AriS,EhrlichM.PKR: a kinase to remember.Front Mol Neurosci2018;11:480 PMCID:PMC6333748
|
| [74] |
ElviraR,NohGM,HanJ.PERK-mediated eIF2α phosphorylation contributes to the protection of dopaminergic neurons from chronic heat stress in drosophila.Int J Mol Sci2020;21 PMCID:PMC7037073
|
| [75] |
KlausS.Mitochondrial uncoupling and longevity - a role for mitokines?.Exp Gerontol2020;130:110796
|
| [76] |
WangR,KoppRF.Insulin secretion and Ca2+ dynamics in β-cells are regulated by PERK (EIF2AK3) in concert with calcineurin.J Biol Chem2013;288:33824-36 PMCID:PMC3837125
|
| [77] |
WangR,ZhuS,CavenerDR.Perk gene dosage regulates glucose homeostasis by modulating pancreatic β-cell functions.PLoS One2014;9:e99684 PMCID:PMC4051701
|
| [78] |
KimMJ,ShinSY.Attenuation of PERK enhances glucose-stimulated insulin secretion in islets.J Endocrinol2018;236:125-36
|
| [79] |
BalsaE,ThomasA.ER and nutrient stress promote assembly of respiratory chain supercomplexes through the PERK-eIF2α axis.Mol Cell2019;74:877-90.e6 PMCID:PMC6555668
|
| [80] |
EndresK.ER-stress in Alzheimer's disease: turning the scale?.Am J Neurodegener Dis2013;2:247-65 PMCID:PMC3852565
|
| [81] |
WongTH,vanRooij JGJ.EIF2AK3 variants in Dutch patients with Alzheimer's disease.Neurobiol Aging2019;73:229.e11-e18
|
| [82] |
HughesD.The unfolded protein response in neurodegenerative disorders - therapeutic modulation of the PERK pathway.FEBS J2019;286:342-55
|
| [83] |
Rozpędek-KamińskaW,WawrzynkiewiczA.The PERK-dependent molecular mechanisms as a novel therapeutic target for neurodegenerative diseases.Int J Mol Sci2020;21 PMCID:PMC7139310
|
| [84] |
HamanakaRB,CullinanSB.PERK and GCN2 contribute to eIF2alpha phosphorylation and cell cycle arrest after activation of the unfolded protein response pathway.Mol Biol Cell2005;16:5493-501 PMCID:PMC1289396
|
| [85] |
MassonGR.Towards a model of GCN2 activation.Biochem Soc Trans2019;47:1481-8 PMCID:PMC6824675
|
| [86] |
ChikashigeY,ThorntonM.Gcn2 eIF2α kinase mediates combinatorial translational regulation through nucleotide motifs and uORFs in target mRNAs.Nucleic Acids Res2020;48:8977-92 PMCID:PMC7498311
|
| [87] |
YuanF,YinH.Activation of GCN2/ATF4 signals in amygdalar PKC-δ neurons promotes WAT browning under leucine deprivation.Nat Commun2020;11:2847 PMCID:PMC7275074
|
| [88] |
AugustoL,WekRC,Jr.Regulation of arginine transport by GCN2 eIF2 kinase is important for replication of the intracellular parasite Toxoplasma gondii.PLoS Pathog2019;15:e1007746 PMCID:PMC6564765
|
| [89] |
HaynerJN,KilbergMS.Regulation of the ATF3 gene by a single promoter in response to amino acid availability and endoplasmic reticulum stress in human primary hepatocytes and hepatoma cells.Biochim Biophys Acta Gene Regul Mech2018;1861:72-9 PMCID:PMC5830097
|
| [90] |
HardingHP,ZhangY.Regulated translation initiation controls stress-induced gene expression in mammalian cells.Mol Cell2000;6:1099-108
|
| [91] |
KilbergMS,SuN.ATF4-dependent transcription mediates signaling of amino acid limitation.Trends Endocrinol Metab2009;20:436-43 PMCID:PMC3587693
|
| [92] |
RasmussenBB.ATF4 is a fundamental regulator of nutrient sensing and protein turnover.J Nutr2020;150:979-80 PMCID:PMC7198309
|
| [93] |
TianF,BuS.KLF6 induces apoptosis in human lens epithelial cells through the ATF4-ATF3-CHOP axis.Drug Des Devel Ther2020;14:1041-55 PMCID:PMC7069589
|
| [94] |
ChoyMS,LeeIC.Structural and functional analysis of the GADD34:PP1 eIF2α phosphatase.Cell Rep2015;11:1885-91 PMCID:PMC4489983
|
| [95] |
JooJH,BortnerCD,LiaoG.Farnesol activates the intrinsic pathway of apoptosis and the ATF4-ATF3-CHOP cascade of ER stress in human T lymphoblastic leukemia Molt4 cells.Biochem Pharmacol2015;97:256-68 PMCID:PMC4618488
|
| [96] |
AmeriK.Activating transcription factor 4.Int J Biochem Cell Biol2008;40:14-21
|
| [97] |
PikeLR,SimonAK.ATF4 orchestrates a program of BH3-only protein expression in severe hypoxia.Mol Biol Rep2012;39:10811-22
|
| [98] |
DeyS,ZhouD,SpandauDF.Both transcriptional regulation and translational control of ATF4 are central to the integrated stress response.J Biol Chem2010;285:33165-74 PMCID:PMC2963398
|
| [99] |
RzymskiT,PikeL.Regulation of autophagy by ATF4 in response to severe hypoxia.Oncogene2010;29:4424-35
|
| [100] |
FrankCL,XieZ,TsaiLH.Control of activating transcription factor 4 (ATF4) persistence by multisite phosphorylation impacts cell cycle progression and neurogenesis.J Biol Chem2010;285:33324-37 PMCID:PMC2963346
|
| [101] |
MukherjeeD,TorokMA.Regulation of cellular immunity by activating transcription factor 4.Immunol Lett2020;228:24-34 PMCID:PMC7688477
|
| [102] |
NaritaT,MasakiA.Lower expression of activating transcription factors 3 and 4 correlates with shorter progression-free survival in multiple myeloma patients receiving bortezomib plus dexamethasone therapy.Blood Cancer J2015;5:e373 PMCID:PMC4735074
|
| [103] |
JousseC,MaurinAC.TRB3 inhibits the transcriptional activation of stress-regulated genes by a negative feedback on the ATF4 pathway.J Biol Chem2007;282:15851-61
|
| [104] |
AndersonCA,ClarkeGM,MorrisAP.Data quality control in genetic case-control association studies.Nature Protocols2010;5:1564-73 PMCID:PMC3025522
|
| [105] |
MareesAT,StringerS.A tutorial on conducting genome-wide association studies: quality control and statistical analysis.Int J Methods Psychiatr Res2018;27:e1608 PMCID:PMC6001694
|
| [106] |
AkushevichI,UkraintsevaS,YashinAI.Age patterns of incidence of geriatric disease in the U.S. elderly population: medicare-based analysis.J Am Geriatr Soc2012;60:323-7 PMCID:PMC3288526
|
| [107] |
UkraintsevaS,ArbeevK.Puzzling role of genetic risk factors in human longevity: "risk alleles" as pro-longevity variants.Biogerontology2016;17:109-27 PMCID:PMC4724477
|
| [108] |
ChasiotiD,NhoK.Progress in polygenic composite scores in Alzheimer's and other complex diseases.Trends Genet2019;35:371-82 PMCID:PMC6475476
|
| [109] |
CruchagaC,SaefB.Polygenic risk score of sporadic late-onset Alzheimer's disease reveals a shared architecture with the familial and early-onset forms.Alzheimers Dement2018;14:205-14 PMCID:PMC5803427
|
| [110] |
LeonenkoG,ShoaiM.Polygenic risk and hazard scores for Alzheimer's disease prediction.Ann Clin Transl Neurol2019;6:456-65 PMCID:PMC6414493
|
| [111] |
TesiN,HulsmanM.Polygenic risk score of longevity predicts longer survival across an age continuum.J Gerontol A Biol Sci Med Sci2021;76:750-9 PMCID:PMC8087277
|
| [112] |
ZengY,MinJ.Sex differences in genetic associations with longevity.JAMA Netw Open2018;1:e181670 PMCID:PMC6173523
|
| [113] |
YashinAI,ArbeevKG.Joint influence of small-effect genetic variants on human longevity.Aging (Albany NY)2010;2:612-20 PMCID:PMC2984609
|
| [114] |
YashinAI,ArbeevKG,LandKC.How genes influence life span: the biodemography of human survival.Rejuvenation Res2012;15:374-80 PMCID:PMC3419845
|
| [115] |
YashinAI,ArbeevKG.Polygenic effects of common single-nucleotide polymorphisms on life span: when association meets causality.Rejuvenation Res2012;15:381-94 PMCID:PMC3419841
|
| [116] |
Ala-KorpelaM.Polygenic risk scores and the prediction of common diseases.Int J Epidemiol2020;49:1-3 PMCID:PMC7261205
|
| [117] |
YabluchanskiyA,CsiszarA.Advances and challenges in geroscience research: an update.Physiol Int2018;105:298-308
|
| [118] |
McCayCM,MaynardLA.The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935.Nutrition1989;5:155-71; discussion 72
|
| [119] |
FontanaL.Promoting health and longevity through diet: from model organisms to humans.Cell2015;161:106-18 PMCID:PMC4547605
|
| [120] |
BalasubramanianP,AndersonRM.Nutrition, metabolism, and targeting aging in nonhuman primates.Ageing Res Rev2017;39:29-35 PMCID:PMC5563491
|
| [121] |
CummingsNE.Regulation of metabolic health and aging by nutrient-sensitive signaling pathways.Mol Cell Endocrinol2017;455:13-22 PMCID:PMC5440210
|
| [122] |
EdickAM,BurgosSA.CRISPR-Cas9-mediated knockout of GCN2 reveals a critical role in sensing amino acid deprivation in bovine mammary epithelial cells.J Dairy Sci2021;104:1123-35
|
| [123] |
XiaX,QinW,ZhangG.GCN2 controls the cellular checkpoint: potential target for regulating inflammation.Cell Death Discov2018;4:20 PMCID:PMC5841328
|
| [124] |
HuG,TangYJ,LongF.The amino acid sensor Eif2ak4/GCN2 is required for proliferation of osteoblast progenitors in mice.J Bone Miner Res2020;35:2004-14 PMCID:PMC7688563
|
| [125] |
ReveloXS,WinerDA.Starving intestinal inflammation with the amino acid sensor GCN2.Cell Metab2016;23:763-5
|
| [126] |
AnandAA.Structural insights into ISRIB, a memory-enhancing inhibitor of the integrated stress response.FEBS J2020;287:239-45
|
| [127] |
ChuHS,JunA.Targeting the integrated stress response in ophthalmology.Curr Eye Res2021;46:1075-88 PMCID:PMC8292453
|
| [128] |
ZyryanovaAF,RatoC.ISRIB blunts the integrated stress response by allosterically antagonising the inhibitory effect of phosphorylated eIF2 on eIF2B.Mol Cell2021;81:88-103.e6 PMCID:PMC7837216
|
| [129] |
FontanaL,LongoVD.Extending healthy life span - from yeast to humans.Science2010;328:321-6 PMCID:PMC3607354
|
| [130] |
AntikainenH,HaspelG.TOR-mediated regulation of metabolism in aging.Aging Cell2017;16:1219-33 PMCID:PMC5676073
|
| [131] |
Bar-PeledL.Regulation of mTORC1 by amino acids.Trends Cell Biol2014;24:400-6 PMCID:PMC4074565
|
| [132] |
JungJ,BehrendsC.Amino acid-dependent mTORC1 regulation by the lysosomal membrane protein SLC38A9.Mol Cell Biol2015;35:2479-94 PMCID:PMC4475919
|
| [133] |
KucheryavenkoO,vonZglinicki T,CarrollB.The mTORC1-autophagy pathway is a target for senescent cell elimination.Biogerontology2019;20:331-5 PMCID:PMC6535413
|
| [134] |
JohnsonSC,KaeberleinM.mTOR is a key modulator of ageing and age-related disease.Nature2013;493:338-45 PMCID:PMC3687363
|
| [135] |
LongchampA,ArduiniA.Amino acid restriction triggers angiogenesis via GCN2/ATF4 regulation of VEGF and H(2)S production.Cell2018;173:117-29.e14
|
| [136] |
PathakSS,LiT.The eIF2α Kinase GCN2 modulates period and rhythmicity of the circadian clock by translational control of Atf4.Neuron2019;104:724-35.e6 PMCID:PMC6872934
|
| [137] |
PereiraCM,DubielaFP.The GCN2 inhibitor IMPACT contributes to diet-induced obesity and body temperature control.PLoS One2019;14:e0217287 PMCID:PMC6550387
|
| [138] |
HardingHP,ZengH.An integrated stress response regulates amino acid metabolism and resistance to oxidative stress.Mol Cell2003;11:619-33
|
| [139] |
RashidiA,Lee-ChangC.GCN2 is essential for CD8(+) T cell survival and function in murine models of malignant glioma.Cancer Immunol Immunother2020;69:81-94 PMCID:PMC6952559
|
| [140] |
SchmidtS,UtheFW.A MYC-GCN2-eIF2α negative feedback loop limits protein synthesis to prevent MYC-dependent apoptosis in colorectal cancer.Nat Cell Biol2019;21:1413-24 PMCID:PMC6927814
|
| [141] |
KannoA,FurubayashiA.GCN2 regulates pancreatic β cell mass by sensing intracellular amino acid levels.JCI Insight2020;5:e128820 PMCID:PMC7253016
|
| [142] |
B'ChirW,CarraroV.Dual role for CHOP in the crosstalk between autophagy and apoptosis to determine cell fate in response to amino acid deprivation.Cell Signal2014;26:1385-91
|
| [143] |
B'ChirW,CarraroV.The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression.Nucleic Acids Res2013;41:7683-99 PMCID:PMC3763548
|
| [144] |
CarrollB,SarkarS.Amino acids and autophagy: cross-talk and co-operation to control cellular homeostasis.Amino Acids2015;47:2065-88
|
| [145] |
HumeauJ,KeppO.EIF2α phosphorylation: a hallmark of both autophagy and immunogenic cell death.Mol Cell Oncol2020;7:1776570 PMCID:PMC7469655
|
| [146] |
KroemerG,LevineB.Autophagy and the integrated stress response.Mol Cell2010;40:280-93 PMCID:PMC3127250
|
| [147] |
AmaravadiR,WhiteE.Recent insights into the function of autophagy in cancer.Genes Dev2016;30:1913-30 PMCID:PMC5066235
|
| [148] |
Acevo-RodríguezPS,Castro-ObregónS.Autophagy regulation by the translation machinery and its implications in cancer.Front Oncol2020;10:322 PMCID:PMC7082396
|
| [149] |
Castrejón-JiménezNS,Hernández-GonzálezJC,García-PérezBE.The role of autophagy in bacterial infections.Biosci Trends2015;9:149-59
|
| [150] |
NakahiraK,ChoiAM.Autophagy in pulmonary diseases.Am J Respir Crit Care Med2016;194:1196-207 PMCID:PMC5114440
|
| [151] |
AndhavarapuS,ArvasM,Jr., Makar TK. Interplay between ER stress and autophagy: a possible mechanism in multiple sclerosis pathology.Exp Mol Pathol2019;108:183-90
|
| [152] |
BretinA,DalmassoG.Activation of the EIF2AK4-EIF2A/eIF2α-ATF4 pathway triggers autophagy response to Crohn disease-associated adherent-invasive Escherichia coli infection.Autophagy2016;12:770-83 PMCID:PMC4854551
|
| [153] |
RyterSW,SmithA.Autophagy in vascular disease.Proc Am Thorac Soc2010;7:40-7 PMCID:PMC3137148
|
| [154] |
LuJ,YueZ.Autophagy and Parkinson's disease.Adv Exp Med Biol2020;1207:21-51
|
| [155] |
TanP,MaoJ.Autophagy and immune-related diseases.Adv Exp Med Biol2019;1209:167-79
|
| [156] |
WuJ,KongW,ZhengY.Programmed cell death pathways in hearing loss: a review of apoptosis, autophagy and programmed necrosis.Cell Prolif2020;53:e12915 PMCID:PMC7653260
|
| [157] |
EscobarKA,MermierCM.Autophagy and aging: maintaining the proteome through exercise and caloric restriction.Aging Cell2019;18:e12876 PMCID:PMC6351830
|
| [158] |
EskelinenEL.Autophagy: a lysosomal degradation pathway with a central role in health and disease.Biochim Biophys Acta2009;1793:664-73
|
| [159] |
RajawatYS,BossisI.Aging: central role for autophagy and the lysosomal degradative system.Ageing Res Rev2009;8:199-213
|
| [160] |
HansenM,WalkerDW.Autophagy as a promoter of longevity: insights from model organisms.Nat Rev Mol Cell Biol2018;19:579-93 PMCID:PMC6424591
|
| [161] |
RubnerM.Machinery of metabolism.JAMA1916;66:1111
|
| [162] |
FontanaL.The scientific basis of caloric restriction leading to longer life.Curr Opin Gastroenterol2009;25:144-50
|
| [163] |
FerrucciL,KnuthND.Aging and the energetic cost of life.J Am Geriatr Soc2012;60:1768-9 PMCID:PMC3569852
|
| [164] |
Al-RegaieyKA.The effects of calorie restriction on aging: a brief review.Eur Rev Med Pharmacol Sci2016;20:2468-73
|
| [165] |
BartkeA,MustersCJM.Anti-aging interventions affect lifespan variability in sex, strain, diet and drug dependent fashion.Aging (Albany NY)2019;11:4066-74 PMCID:PMC6628994
|
| [166] |
CantóC.Calorie restriction: is AMPK a key sensor and effector?.Physiology (Bethesda)2011;26:214-24 PMCID:PMC3627048
|
| [167] |
ColmanRJ.Nonhuman primate calorie restriction.Antioxid Redox Signal2011;14:229-39 PMCID:PMC3000242
|
| [168] |
FlanaganEW,MeyJT.Calorie restriction and aging in humans.Annu Rev Nutr2020;40:105-33
|
| [169] |
GreenCL.Regulation of metabolic health by essential dietary amino acids.Mech Ageing Dev2019;177:186-200 PMCID:PMC6333505
|
| [170] |
RuggieroC,MelenovskyV.High basal metabolic rate is a risk factor for mortality: the Baltimore Longitudinal Study of Aging.J Gerontol A Biol Sci Med Sci2008;63:698-706 PMCID:PMC4984846
|
| [171] |
JumpertzR,SieversML,NelsonRG.Higher energy expenditure in humans predicts natural mortality.J Clin Endocrinol Metab2011;96:E972-6 PMCID:PMC3100751
|
| [172] |
TanQ,BladbjergEM.A case-only approach for assessing gene by sex interaction in human longevity.J Gerontol A Biol Sci Med Sci2002;57:B129-33
|
| [173] |
ZengY,ChenH.Effects of FOXO genotypes on longevity: a biodemographic analysis.J Gerontol A Biol Sci Med Sci2010;65:1285-99 PMCID:PMC2990269
|
| [174] |
TanQ,KruseTA,ChristiansenL.A novel permutation test for case-only analysis identifies epistatic effects on human longevity in the FOXO gene family.Aging Cell2013;12:690-4 PMCID:PMC3714332
|
| [175] |
DatoS,DeRango F.The genetic component of human longevity: new insights from the analysis of pathway-based SNP-SNP interactions.Aging Cell2018;17:e12755 PMCID:PMC5946073
|
| [176] |
CurkT,ZupanB.SNPsyn: detection and exploration of SNP-SNP interactions.Nucleic Acids Res2011;39:W444-9 PMCID:PMC3125755
|
| [177] |
UkraintsevaS,ArbeevK.Interactions between genes from aging pathways may influence human lifespan and improve animal to human translation.Front Cell Dev Biol2021;9:692020
|
| [178] |
UkraintsevaS,DuanM.Decline in biological resilience as key manifestation of aging: potential mechanisms and role in health and longevity.Mech Ageing Dev2021;194:111418 PMCID:PMC7882032
|
| [179] |
UkraintsevaS,ArbeevKG.Resilience versus robustness in aging.J Gerontol A Biol Sci Med Sci2016;71:1533-4 PMCID:PMC6279216
|
| [180] |
GalvinA,ArbeevK,ChristensenK.Physical robustness and resilience among long-lived female siblings: a comparison with sporadic long-livers.Aging (Albany NY)2020;12:15157-68 PMCID:PMC7425496
|
| [181] |
ArbeevKG,KulminskiAM,YashinAI.Biodemographic analyses of longitudinal data on aging, health, and longevity: recent advances and future perspectives.Adv Geriatr2014;2014:957073 PMCID:PMC4290867
|
| [182] |
ArbeevKG,BagleyO."Physiological Dysregulation" as a promising measure of robustness and resilience in studies of aging and a new indicator of preclinical disease.J Gerontol A Biol Sci Med Sci2019;74:462-8 PMCID:PMC6417443
|
| [183] |
YashinAI,AkushevichI.The quadratic hazard model for analyzing longitudinal data on aging, health, and the life span.Phys Life Rev2012;9:177-88 PMCID:PMC3392540
|
| [184] |
YashinAI,ArbeevaLS.How the effects of aging and stresses of life are integrated in mortality rates: insights for genetic studies of human health and longevity.Biogerontology2016;17:89-107 PMCID:PMC4724574
|
| [185] |
AglerR.On the interpretation and use of mediation: multiple perspectives on mediation analysis.Front Psychol2017;8:1984 PMCID:PMC5694788
|
| [186] |
GroverS,KönigIR.Evaluating the current state of Mendelian randomization studies: a protocol for a systematic review on methodological and clinical aspects using neurodegenerative disorders as outcome.Syst Rev2018;7:145 PMCID:PMC6154408
|
| [187] |
AllmanPH,TiwariHK.An introduction to Mendelian randomization with applications in neurology.Multiple sclerosis and related disorders2018;24:72-8
|
| [188] |
YashinAI,VaupelJW.Genes, demography, and life span: the contribution of demographic data in genetic studies on aging and longevity.Am J Hum Genet1999;65:1178-93 PMCID:PMC1288251
|
| [189] |
YashinAI,VaupelJW.Genes and longevity: lessons from studies of centenarians.J Gerontol A Biol Sci Med Sci2000;55:B319-28
|
| [190] |
BergmanA,YeK,BarzilaiN.Buffering mechanisms in aging: a systems approach toward uncovering the genetic component of aging.PLoS Comput Biol2007;3:e170 PMCID:PMC1963511
|
| [191] |
BeekmanM,SuchimanHE.Genome-wide association study (GWAS)-identified disease risk alleles do not compromise human longevity.Proc Natl Acad Sci U S A2010;107:18046-9 PMCID:PMC4049304
|
| [192] |
EbbertMT,KauweJS.Bridging the gap between statistical and biological epistasis in Alzheimer's disease.Biomed Res Int2015;2015:870123 PMCID:PMC4449899
|
| [193] |
PhilipsAM.Amino acid sensing pathway: a major check point in the pathogenesis of obesity and COVID-19.Obes Rev2021;22:e13221 PMCID:PMC7995014
|